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Abstract: The problem of finding link/node-disjoint paths between a pair of nodes in a network has received 
much attention in the past. This problem is fairly well understood when the links in a network are only specified 
by a single link weight. However, in the context of Quality of Service routing, links are specified by multiple link 
weights and restricted by multiple constraints. Unfortunately, the problem of finding link/node disjoint paths in 
multiple dimensions faces different conceptual problems. This paper presents a first step to understanding these 
conceptual problems in link-disjoint Quality of Service routing and proposes a heuristic link-disjoint QoS 
algorithm that circumvents these problems. 
 

1 Introduction 
The problem of finding disjoint paths in a network has been given much attention in the literature due to its 

theoretical as well as practical significance to many applications, such as layout design of integrated circuits, 

survivable design of telecommunication networks and restorable/reliable routing. Paths between a given pair of 

source and destination nodes in a network are called link disjoint if they have no common (i.e. overlapping) links, 

and node disjoint if, besides the source and destination nodes, they have no common nodes. With the 

development of optical networks and the deployment of MPLS or GMPLS networks, the disjoint paths problem 

is receiving renewed interest as fast restoration after a network failure is crucial in such kind of networks. In 

robust communication networks, a connection usually consists of two link- or node-disjoint paths: one active 

path, and one backup path. A service flow will be redirected to the backup path if the active path fails. Load 

balancing, another important aspect for communication networks to avoid network congestion and optimize 

network throughput, also requires disjoint paths to distribute flows. Robustness and load balancing are, among 

others, both aspects of Quality of Service (QoS) routing.  

In this paper we will focus on finding QoS-aware link-disjoint paths. In general a link-disjoint paths 

algorithm can be extended to a node-disjoint algorithm with the concept of node splitting, i.e. replacing one node 

with two nodes that are linked together by a link with zero weights [26]. Throughout this paper, we use the 

following notation. A network is denoted by a directed graph G(V,E), where V is the set of nodes and E is the set 

of links. A directed link from node u to node v is represented as u → v, u, v∈V. Each link is characterized by a 

link weight vector w
r

 consisting of M link metrics wm(u → v), for m = 1,�, M.  We assume that only non-

negative link metrics are assigned to each link. However, in the process of computing disjoint paths, negative link 
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weights may be assigned to links. QoS metrics can be a) additive, e.g. delay, jitter, in which case the path-weight 

vector consists of summing the link-weight vectors of the links defining the path, b) multiplicative, e.g., one 

minus the packet loss probability, which can be considered as additive after taking the logarithm and c) min-max, 

e.g. bandwidth, and policy flags, in which case the minimum (or maximum) link weight defines the weight of a 

path. Min/max links that do not obey the constraints can be pruned from the topology, which is called topology 

filtering. Additive metrics cause more difficulties and therefore without loss of generality, we assume all metrics 

to be additive [29]. In the context of QoS routing or multi-constrained routing, a path is called feasible when its 

weight vector does not violate the constraints specified by the vector L
r

. 

Since we mainly focus on finding link-disjoint paths, a path P, between a source s and destination t is 

considered to be a set of links that compose this path.  With a slight abuse of notation, we choose P to denote the 

path as well as its link set. If path P1 is link-disjoint with P2, there is no common link element in the link set 

representing each path and ∅=21 PP I , else ∅≠21 PP I .  

 
Definition of path length: Given a graph G(V,E) with M metrics per link, the non-linear length of a path P  from 

source node s to destination node t is defined as [5]: 
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where wm(P) = ∑(u → v)∈P wm(u → v).  

The normalization in (1) by the constraints L
r

 ascertains that if l(P)>1, then one of the constraints has been 

violated. For M = 1, the non-linear length of a path as defined in (1) reduces to a linear one, and the link weight 

vector w
r

 reduces to a scalar w(u → v). When no constraint is required, as in the LPP problem stated below, the 

linear length of a path is computed as ∑(u → v)∈P w(u → v), i.e. L1 = 1. For simplicity of representation, the above 

notation of path length l(P) is still used.  

If path P1 is link-disjoint with P2, i.e. ∅=21 PP I , we have )()()( 2121 PlPlPPl +=U  for M = 1. But for M > 

1, we have )()()( 2121 PlPlPPl +≤U . Our target in this paper is to find a set of two link-disjoint paths that both 

obey multiple constants. We define the total length of two paths as  

)()( 21 PlPl +                                                                           (2) 

for M ≥ 1.  

 

Link-disjoint Path Pair (LPP) Problem. Given a graph G(V,E) with 1 metric per link (M = 1), for a source-

destination pair (s,t), find a set of two paths P1 and P2, such that ∅=21 PP I , and the total length                            

l(P1) + l(P2) is minimized. 

The LPP problem can be solved in polynomial time [1][25][26].  

 

Multiple Constrained Path (MCP) Problem. Given a graph G(V,E) with M > 1 metrics per link and a 

constraint  vector L
r

, for a source-destination pair (s, t), find a path that obeys the constraint vector L
r

,  
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mm LPw ≤)( , for m = 1,�, M, 

where ∑
∈→

→=
Evu

mm vuwPw )()( , for m = 1,�, M.  

The MCP problem is NP-complete [8][30]. 

 

Multiple Constrained Link-disjoint Path Pair (MCLPP) Problem.  Given a graph G(V,E)  with M > 1 metrics 

per link and a constraint vector L
r

, for a source-destination pair (s, t), find a pair of link-disjoint paths P1 and P2, 

such that ∅=21 PP I , and both paths obey the constraint vector L
r

. 

 

Theorem 1. MCLPP is NP-complete. 
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Figure 1.  The assignment of link weights to the links in the chain topology between nodes i and i+1 

Proof: Given a chain topology with n+1 nodes and 2n links, each with a two-component weight vector as 

depicted in Figure 1 and a set of numbers ai ∈ A, 0 ≤ ai ≤ S, for i=1,...,n, where ∑
=

=
n

i
iaS

1
. The constraints are 

chosen as follows: L1 = nS-(S/2), and L2 =(S/2).  

To solve the MCLPP problem, we need to find two paths P and P� from node 1 to node n+1 that obey the 

constraints. Since, for all link weight vectors, the sum of the components equals S, we have that w1(P)+w2(P)=nS 

and w1(P�)+w2(P�)=nS. Accordingly, a solution satisfying the constraints is only found if w1(P and P�)=nS-(S/2) 

and w2(P and P�)=(S/2). The problem has now become an instance of the well-known NP-complete partition 

problem [8] and can only be solved by finding the set A′⊆A, for which ∑
∈ 'Aa

i
i

a =(S/2). A feasible path P exists if 

the set A′ exists. A feasible path P consists of the lower link if ai ∈ A′ and the upper link if ai ∉ A′. The path P� 

then follows the remaining links. □ 

 

In this paper we focus on solving the MCLPP problem. Related work on finding disjoint paths in one 

dimension between a source and a destination will be reviewed in Section 2 and a simple link-disjoint algorithm 

LBA will be explained in Section 3. In Section 4 an extension of LBA to multiple dimensions is discussed and 

shown to be difficult. Therefore, a heuristic algorithm DIMCRA for solving the MCLPP problem is proposed in 

Section 5. We conclude this article in Section 6.  
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2 Related work 

2.1 Link-disjoint Paths Routing in One Dimension 
An intuitive method to determine two shortest link-disjoint paths between a pair of source and destination nodes 

consists of two steps. The first step retrieves the shortest path between a given pair of nodes in a graph. The 

second step is to remove all the links of that path from the graph, and to find the shortest path in the pruned 

graph. We will refer to this method as the Remove-Find (RF) method. Although the RF method is direct and 

simple, it has at least two disadvantages due to the removal of links belonging to the first shortest path: (a) 

provided that two link-disjoint paths exist, there is no guarantee that they will be found as illustrated in Section 

3.1 and (b) the second link-disjoint shortest path may have a significantly larger length. 

To surmount the disadvantages of the RF method, other methods have been devised to find a pair of shortest 

link-disjoint paths with minimal total length [1][3][4][19][24][25][26][31]. In [25], Suurballe proposes an 

algorithm, referred to as Suurballe�s algorithm, to find K node-disjoint paths with minimal total length using the 

path augmentation method. The path augmentation method is originally used to increase the size of a matching 

with an augmenting path [6] and to find a maximum flow or a minimum cost flow in a network [7][21]. The 

problem to find link/node disjoint paths can be viewed as a special case of the minimum cost flow problem as 

demonstrated in [1][25][26]. The basic idea of Suurballe�s algorithm is to construct a solution set of two disjoint 

paths based on the shortest path and a shortest augmenting path. K disjoint paths can be obtained by augmenting 

the K-1 optimal disjoint paths with this algorithm. In 1984, Suurballe and Tarjan [26] improved Suurballe�s 

algorithm such that pairs of link-disjoint paths from one source node to n destination nodes could be efficiently 

obtained in a single Dijkstra-like computation. This algorithm is referred to as the S-T algorithm. To find n pairs 

of disjoint paths, the S-T algorithm requires )log( )/1( nEO nE+ time and Suurballe�s algorithm )log( 2 nnO , where 

n is the number of destination nodes and E is the number of links. Kar et al. [12] and Kodialam and Lakshman 

[13][14] incorporated the S-T algorithm into their algorithms to find a pair of link-disjoint paths serving as active 

and backup paths for routing bandwidth guaranteed connections. Liang [17] extended the S-T algorithm to find 

two link-disjoint paths between a pair of nodes with optimization in both network load and routing cost. 

In 1994, Bhandari [1] proposed an algorithm to find a pair of span-disjoint paths between two nodes in 

optical-fiber networks. The disjoint paths algorithm used by Bhandari is a modified version of Suurballe�s 

algorithm [25] that requires a special link weight transformation to facilitate the use of Dijkstra�s. Bhandari made 

a simplification to Suurballe�s algorithm by directly setting all the link weights on the first shortest path negative. 

Shaikh [23] made an extension to Bhandari�s algorithm [1] to solve the span-disjoint paths problem in more 

complicated structured optical networks.  

It is proved in [16][22] that the LPP problem will be NP-complete if it is required that the maximal length of 

the two disjoint paths, i.e. max(l(P1), l(P2)), is minimized. In addition, Ho and Mouftah [10] proposed another 

optimal object function α · l(P1) + l(P2), where P1 and P2 are the active path and the backup path, respectively. 

The parameter α can be set large for a shared protection scheme (1:N or M:N) and could be as small as unity for a 

dedicated protection scheme (1:1). When α = 1, it reduces to the object function used in [1][25][26].   
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Heuristic algorithms based on matrix calculation [28] or recursive matrix-calculation [20] to solve the K-

shortest link-disjoint paths problem with a bounded hopcount have been proposed as well. There are also some 

algorithms for finding K-best paths, i.e. K disjoint or maximally disjoint paths with minimum total length 

between a pair of nodes, in a trellis graph [3][31]. An optimal algorithm for finding K-best paths without 

hopcount limitation between a pair of nodes is given by Lee and Wu in [15], where they transfer the K-best paths 

problem into a maximum network flow and minimum cost network flow algorithm via some modifications to the 

original graph. Distributed algorithms for the link/node-disjoint paths algorithms can be found in [4][19][24].  

2.2 Disjoint Paths Routing in Multiple Dimensions  
To the best of our knowledge there is no literature on the MCLPP problem. Recently some papers on disjoint 

paths in QoS routing have emerged. However, they only considered bandwidth and/or delay as their QoS metrics 

[2][14][11][9][18]. The maximally disjoint shortest and widest paths (MADSWIP) algorithm from Taft-Plotkin, 

et al. [27], involves a modified version of the S-T algorithm to find a pair of disjoint paths. MADSWIP can 

produce a pair of widest or shortest maximally link-disjoint paths from a source node to all other nodes. 

Moreover it tries to find two paths simultaneously to satisfy the maximally link-disjointness to each other in a 

QoS routing context. However the link metrics used in their algorithm are bandwidth and delay, where only the 

latter metric is additive.  

3 Path Augmentation for Solving LPP 
In this section we will present a simplified variant of Bhandari�s Algorithm [1], referred to as LBA (Link-disjoint 

version of Bhandari�s Algorithm), which can produce an optimal solution for the LPP problem. The basic steps of 

LBA are given in Section 3.1. The fundamental concepts of this algorithm are discussed in Section 3.2. The 

optimality is proved in Section 3.3 and in Section 3.4, LBA is shown to be loop-free. 

3.1 The steps of LBA 
Bhandari�s algorithm [1] was designed to find a pair of span-disjoint paths in an optical network. We modify 

Bhandari�s algorithm into a link-disjoint path pair algorithm LBA by omitting the node-splitting operation that 

ensures the node-disjointness and the graph transformations that ensure span-disjointness.  

Before explaining the operation of LBA we first introduce some notations that will be used further. If we 

reverse the direction and the sign of the link weights of each link on the path P1 between s and t, i.e. w(v→u) = 

−w(u→v), ∀ (u→v)∈P1,  then we will have a path directed from t to s, denoted by −P1, which consists of the 

reversed P1 links. We define1 l(−P1) = −l(P1). A set, which consists of the P1 links whose reversed links appear on 

P2 and vice versa, is denoted as })( and )(|)( and ){(
~

2121 PuvPvuuvvuPP ∈→∈→→→=I . In all 

the figures, bold lines represent links on the shortest path(s) in a graph or its corresponding modified graph, 

dashed lines represent reversed links which do not exist in the original graph and bold dashed lines represent such 

reversed links that appear on the shortest path. The steps of the LBA algorithm are as follows:  

                                                           
1 With the definition of length in (1), we have l(−P1) = − l(P1) only for M = 1.  
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Given a directed graph G(V, E), for a source-destination pair  (s, t), 

Step 1. Find the shortest2 path P1 from node s to node t;  

Step 2. Replace P1 with −P1, a modified graph G(V,E′) is created;  

Step 3. Find a shortest path P2 from node s to node t in the modified graph G(V,E′); if P2 does not exist, then 

stop;  

Step 4. Take the union of P1 and P2, remove from the union the link set which consists of the P1 links whose 

reversed links appear in P2, and vice versa, then group the remaining links into two paths 1P′ and 2P′ , 

i.e. )
~

(\)( 212121 PPPPPP IUU =′′ . 

We will explain the steps of LBA with an example in Figure 2. Suppose that we are required to find a set of 

two shortest disjoint paths between a and b. In Step 1, the shortest path from a to b is found as P1 = acdb, with 

minimum length 4. In Step 2, a modified graph G(V,E′) is created by reversing the direction and the sign of the 

weight of each link on P1. For instance, the link c→d with weight 1 is replaced by the link d→c with weight �1.  

In Step 3, the shortest path in the modified graph P2 = adcb has length 6. In Step 4, 21
~

PP I ={c→d, d→c} is 

removed from the union 21 PP U .  The solution set of disjoint paths },{ 21 PP ′′ ={acb, adb} is obtained. The total 

length of this path set equals 5 + 5 = 10, which is exactly the minimal total length of two link-disjoint paths in 

this graph.  

                                                           
2 If there exist more than one shortest path in the original graph or in the modified graph, either one of them can 
be chosen. Choosing different shortest paths may lead to different solution sets. However, these solution sets will 
have the same minimum total length. 

Figure 2.  Example of the operation of LBA 
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For comparison, in Figure 3, we apply the RF method on the same topology with the same requirements. In 

step 1 the shortest path acdb is retrieved. In step 2, a modified graph is created by removing all the links on acdb 

The shortest path in the modified graph is aeb with length 11. Thus the set {acdb, aeb} has a total length 4 + 11 = 

15, which is longer than 10 as found with LBA. This example illustrates that the RF method cannot guarantee to 

find the optimal solution. More important, in the graph shown in Figure 4(a), although there exist two link-

disjoint paths between a and b, RF cannot find the second path in step 2 as shown in Figure 4(b). LBA, on the 

other hand, still returns the optimal set in this case. 

 

3.2 LBA is Based on the Shortest Path 
In this subsection, we will clarify why the optimal solution set of LBA, as well as other path augmentation 

algorithms [1,18,19], is based on the shortest path. Although the theory presented here is based on (or can be 

derived from) the theory of min-cost flow [7][21], it is instructive to give an outline. 

 We will first show that the optimal set for the LPP problem is based on the shortest path. Secondly, we will 

show that the optimal set of two link-disjoint paths has the smallest difference in length from the shortest path 

among all the possible sets of link-disjoint paths. Finally, we will show that the logical difference set (defined 

below) can be viewed as a path.  

Given a digraph G(V,E) and a pair of source-destination nodes (s, t), the relation between a set of two link-

disjoint paths {Pd1, Pd2} and the shortest path P1 belongs to one of the following types: 

1. P1 itself is Pd1 or Pd2, i.e. P1 = Pd1 or P1 = Pd2; 

2. P1 overlaps with both paths Pd1 and Pd2, i.e. ∅≠11 dPP I , P1 ≠ Pd1 and ∅≠21 dPP I , P1 ≠ Pd2;  

(a) Step 1 
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Figure 4.  Example 2 of the operation of RF 
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3. P1 only overlaps with one path in the set {Pd1, Pd2}, but not with the other one, i.e. ∅≠11 dPP I , P1 ≠ 

Pd1 and ∅=21 dPP I  (or ∅≠21 dPP I , P1 ≠ Pd2 and ∅=11 dPP I );  

4. P1 is link-disjoint with both paths in {Pd1, Pd2}, i.e. ∅=)( 211 dd PPP UI . 

 
Lemma 1. Given a directed graph G(V, E) and a source-destination pair (s, t), if the optimal set },{ 21 PP ′′  of LPP 

exists, 21 PP ′′U  must contain either the first shortest path P1 itself or some P1 links on each of its two paths. 

Proof: If 21 PP ′′U  is of type (4), then each path in },{ 21 PP ′′ is link-disjoint with P1. As P1 is the shortest path, 

both },{ 11 PP ′ and },{ 21 PP ′ have a total length shorter than },{ 21 PP ′′ . Hence the optimal set },{ 21 PP ′′  cannot be of 

type (4) and 21 PP ′′U  must contain some or all P1 links to be the optimal set.  

If 21 PP ′′U  is of type (3), only one path in 21 PP ′′U contains some P1 links, without loss of generality, suppose 

1P′ contains some P1 links, and the other path 2P′  is link-disjoint with P1, then },{ 21 PP ′  is a set which is shorter 

than },{ 21 PP ′′ , Hence the optimal set },{ 21 PP ′′  cannot be of type (3).  

Therefore, if the optimal set },{ 21 PP ′′  exists, 21 PP ′′U must be either of type (1) or (2). □ 

 

Property 1. The optimal set },{ 21 PP ′′ has the smallest difference in length 

0)()()( 121 ≥−′+′= PlPlPlY                                                               (3) 
from the shortest path P1, among all the possible sets of link-disjoint path pairs. 

 

In the set )( 121 PPP −′′ UU , the P1 links contained in the set 21 PP ′′U will form loops with the −P1 links. For 

example, if a P1 link u→v is contained in the set 21 PP ′′U , then it will create a loop with the link v→u on −P1 

between the nodes u and v. The length of this loop is zero because w(v→u) = −w(u→v). Let us denote Ol 

= )(
~

)( 121 PPP −′′ IU , which means that the set Ol consists of each P1 link in the union of P2 U P1 and its 

corresponding −P1 link. We define the logical difference set 3  between 21 PP ′′U and P1 as 

=−′′ 121 )( PPP U )( 121 PPP −′′ UU \Ol. In fact, l(Ol) = 0 because the set Ol consists of loops with zero length, each 

consisting of a pair of opposite P1 and −P1 links. With l(−P1)= −l(P1), we have  

)()()()()()()())()(())(( 121121121121 PlPlPlPlPlPlOlPPPlPPPl l −′+′=−+′+′=−−′′=−′′ UUU ,  

                                                           
3 The logical difference set P2−P1 also can be computed as P2−P1={(u → v)| (u → v)∈ P2\(P2 ∩P1)} U { (v → u) 
|(u → v)∈ P1\(P2 ∩P1)}, which means that if a link u →v of P2 does not appear on P1, then this link belongs to the 
difference set P2−P1, and if a link u → v of P1 does not appear on P2, then its direction reversed link v → u 
belongs to the difference set P2−P1, with a link weight w(v → u) = −w(u → v). In set theory, the difference 
operation is defined as P2 −P1= P2\ (P1 ∩P2), and the symmetric difference operation is defined as P2 −P1 = 
(P2 UP1)\ (P1 ∩P2). The concept of logical difference set in this paper resembles the symmetric difference set but 
it is not the same. 
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which is exactly Y in (3). 

Lemma 2 shows that the logical difference set forms the shortest path in the modified graph where P1 is 

replaced with �P1. 

 

Lemma 2. Given a directed graph G(V,E) and pair (s, t) and let P1 be the shortest path in this graph. We define 

G(V,E′) as the graph G(V,E) for which the path P1 is replaced with −P1. The logical difference set 121 PPP −′′U  

between the optimal set of two link-disjoint paths },{ 21 PP ′′ and the shortest path P1 forms the shortest path P2  

from node s to node t in G(V,E′).  

Proof: We will first prove that 1212 PPPP −′′= U is a complete path from s to t in G(V,E′), then we will prove that 

P2 is the shortest path in G(V,E′). 

Part A. From Lemma 1, the optimal set of two link-disjoint paths 21 PP ′′U must contain either the first shortest 

path P1 itself or some P1 links on each of its two paths.  

If 121 )( PPP ⊃′′U , without loss of generality, suppose 11 PP =′ , then )( 11 PPOl −= U . With the definition of logical 

difference set, we have 2111211212 ))((\))((\))()(( PPPPPPOPPPP l ′=−−′=−′′= UUUUU . Hence P2 must be a 

complete path from s to t. 

If 21 PP ′′U contains some P1 links on each of its two paths, as −P1 is the path from t to s in G(V,E′), and neither 

1P′ nor 2P′  contains any −P1 links, then the union )( 121 PPP −′′ UU  contains two cycles: one cycle consists of  1P′  

and −P1, the other consists of 2P′  and −P1. When the set Ol is removed from the union set, the remaining links 

compose the logical difference set P2. Hence P2 must be a complete path from s to t.   

Part B. Assume that the shortest path in G(V,E′) is P3 ≠ P2, then we must have )()( 23 PlPl < . As  

)()()()( 1212 PlPlPlPl −′+′=  we have 3 1 1 2( ) ( ) ( ) ( )l P l P l P l P′ ′+ < + , which contradicts the assumption that },{ 21 PP ′′ is 

the optimal set. □  

3.3 LBA Is Loop-free 
Many routing algorithms assume non-negative link weights to avoid a loop of negative length appearing on a 

path. However, negative link weights introduced to a graph in LBA will not cause loops in the routing process.  

Figure 5. A loop contains some negative link  

(a) The shortest path P1(s,t) 

(b) A loop containing some  �P1 link  

ui

.�...�..
vi+1 vn ts v1 vi

.�...�..
vi+1 vn ts v1 vi

ui
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Theorem 2: Given a digraph G(V,E) and source-destination pair (s, t) and let P1 be the shortest path in this 

graph. The modified graph G(V,E′) is defined as the graph G(V,E) for which P1 is replaced with �P1. A loop 

containing some negative link(s) in G(V,E′) will not have a negative length.  

Proof: Assume tvvvsv nii ...... 11 +  is the shortest path P1 from node s to node t in G(V,E), as shown in Figure 5(a). 

The corresponding path �P1 in G(V,E′) (Figure 5(b)) has a link (vi+1 → vi) which appears on loop Pl = ui vi+1 vi ui. 

Suppose the loop Pl has a negative length l(Pl) = w(ui → vi+1) + w(vi+1 → vi) + w(vi → ui) < 0. Because w(vi+1 → vi) 

= �w(vi → vi+1), we must have w(vi → ui) + w(ui → vi+1) < w(vi → vi+1). Hence the sub-path 11... +iii vuvsv  is shorter 

than the sub-path 11... +iivvsv . This contradicts the assumption that tvvvsv nii ...... 11 +  is the shortest path. □ 

3.4 Optimality of the solution produced with LBA 
Theorem 3.  Given a directed graph G(V,E) and source-destination pair (s,t), the algorithm LBA returns the 

optimal set for the LPP problem. 

Proof: Let P1 be the shortest path in the original graph G(V,E) found in step 1 of LBA and P2 be the shortest path 

in the modified graph G(V,E′), found in step 3 of LBA. },{ 21 PP ′′ is the solution set generated by LBA. The proof 

consists of three parts. 

Part A. (Proof of Link-disjointness) By construction of the solution set, we must have ∅=′′ 21 PP I .  

Part B. (Proof of Minimal Total Length) Suppose the optimal set of link-disjoint paths is },{ 21 PP ′′′′  instead of 

},{ 21 PP ′′ . According to Lemma 2, the logical difference set of },{ 21 PP ′′′′  with P1 is the shortest path in the modified 

graph G(V,E′). This contradicts that P2  is the shortest path in modified graph G(V,E′).   

Part C. (Proof of Loop-freeness) On Theorem 2, LBA is loop-free. Thus the solution set returned by LBA must 

be the optimal set. □ 

4 Extending LBA to Multiple Dimensions 
The extension of LBA to multiple dimensions using SAMCRA [29] is called MLBA (Multiple-constrained 

LBA).  A brief description of SAMCRA, which serves as the multiple-constrained shortest path routing algorithm 

in MLBA, is given in Section 4.1. The basic steps of MLBA (Multiple-constrained LBA) are presented in Section 

4.2. The problems appearing in multiple dimensions are addressed in Section 4.3.  

4.1 Brief Introduction of SAMCRA 
SAMCRA [29] is an exact multiple-constrained routing algorithm based on three concepts: (a) non-linear path 

length, (b) k-shortest path routing, and (c) non-dominance. The non-linear length function defined in (1) is 

necessary for exactness and implies that a sub-path of a shortest path is not necessarily a shortest itself. It is 

therefore necessary to keep track of multiple sub-paths at each intermediate node on the path between a pair of 

nodes. A (sub)-path P1 is dominated by a (sub)-path P2 if ),()( 21 PwPw mm ≥  for m = 1,�,M, with an inequality 
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sign for at least one m. This operation reduces the search space and removes loops from a route when non-

negative link weights are used. 

4.2 Operations of MLBA  
The basic steps of MLBA are the same as those for LBA except that the shortest path routing algorithm is 

replaced with SAMCRA in MLBA. We will illustrate the operation of MLBA with the example topology shown 

in Figure 6(a). For the sake of simplicity, we have assigned each link a two-dimensional weight vector, but it is 

also possible to use an M-dimensional weight vector (M>1). The complexity of solving the MCLPP problem will 

increase with M, but as shown in [29], the complexity may decrease (and even become polynomial) if M tends to 

infinity. To solve the MCLPP problem, we are required to find two link-disjoint paths from source node A to 

destination node B that both obey the constraints vector L
r

 = (20, 20). Among the solutions to MCLPP we prefer 

the one with the minimum total length. The shortest multiple-constrained path from node A to node B is the path 

acdb. Its path weight vector is (4, 5). The optimal set of two shortest link-disjoint paths (according to (2)) in this 

topology is {acb, adb}, with path vectors (5, 6) and (5, 5) respectively and minimum total length 0.3 +0.25 = 

0.55. 

Now let us run MLBA on this topology.  In Step 1, the shortest path P1 = acdb is found. In Step 2, the 

original graph is modified by replacing all the P1 links with −P1 links. In this case, each component of link weight 

vector of a −P1 link is set negative. For instance, the link c → d with weight vector (1, 1) is replaced with the link 

d → c with corresponding weight vector (−1,−1). In Step 3, the shortest path in the modified graph found with 
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Figure 6.  Example of the operation of MLBA 
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SAMCRA is P2 = adcb, with path weight vector  (3,3) + (−1,−1) + (4,5) = (6, 6). In Step 4, the set Ol consisting 

of a pair of opposite P1 and P2 links (c → d ) and (d → c) are removed from the union of P1 and P2. Then the 

optimal solution set {acb, adb} is returned.  

4.3 Problems due to the Non-linear Length in Multiple Dimensions 

4.3.1 Loops caused by Negative Link Weights 
For M =1, SAMCRA acts just like Dijkstra�s algorithm, therefore MLBA reduces to LBA and negative link 

weights along −P1 will not cause a loop in the routing process of MLBA. For M > 1, Theorem 2 still holds and a 

loop containing some −P1 link(s) still has a non-negative length. However, some of the components of the loop 

weight vector may be negative, causing MLBA to pass this loop a finite number of times. We will explain this 

looping through Figure 7, where each link possesses two link metrics. Suppose that the shortest path P1 is sadf, 

depicted with bold lines in Figure 7(a). The link weights vector (x1, x2) of link c→d must be chosen to ensure that 

the path sacdf is longer than sadf, i.e. 
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After Step 2 of MLBA is executed, there appears a loop Pl = dacd shown with double lines in Figure 7(b), 

containing the link d→a with negative link weights (−5,−4). 

If equation (4) holds and each component of vector (x1, x2) is greater than 3, then the sub-path sdacd will be 

dominated by the direct link s→d with weight vector  (5,8) and will be removed by the non-dominance check in 

SAMCRA. However, if equation (4) holds but one component of (x1, x2) is not greater than 3, say x1 < 3, x2 > 3, 

then 

Figure 7. Non-dominance may fail to remove a loop in the case of M>1. 
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(a) The shortest path is sadf. (b) The loop dacd contains a negative link d → a. 
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where (w1(Pl), w2(Pl)) is the path vector of the loop Pl. In this case, the sub-path sdacd is not dominated by the 

link s→d, although l(Pl) > 0. Hence, loops can occur in MLBA that continue until one of the constraints is 

violated. Unfortunately, checking all paths to assure that they are loop-free is computationally too expensive. 

As mentioned in Section 2, in Suurballe�s algorithm [25] and the S-T algorithm [26], a transformation of link 

weights )()()()( vdudvuwvuw −+→=→′ is applied to each link, where )(ud  is the distance from source node 

s to node u on the shortest path tree. This transformation is made to guarantee that the links on the shortest path 

tree have zero link weights and those links not on the tree have link weights greater than zero in the modified 

graph. However, an artifact of a non-linear length is that subsections of shortest paths are not necessarily shortest 

paths [5][29]. Consequently, for M > 1, Suurballe�s transformation cannot ensure non-negative link weights and 

loops may emerge. 

4.3.2 Total Length of the Solutions Produced with MLBA 
We assume for the moment that the constraints are large enough such that all paths are feasible. If M =1, it is 

proved in Section 3.4 that the solution set },{ 21 PP ′′  produced with MLBA has the minimum total length. With the 

total length defined in (2), Lemma 1 in section 3 still holds for M > 1. The optimal solution set of two link-

disjoint multiple-constrained paths with minimum total length either contains the first shortest path P1 itself or 

some P1 links on each of its two paths. Also, the optimal set },{ 21 PP ′′  still obeys Property 1. Unfortunately, the 

logical difference set 121 )( PPP −′′U is not necessarily the shortest path P2 in the modified graph, since 

)()()())(( 121121 PlPlPlPPPl −′+′=−′′U does not necessarily hold for M > 1. Hence, Lemma 2 may not hold for M 

> 1 and the solution set constructed based on P1 and P2 is not necessarily the optimal set with minimum total 

length. Moreover, the solution set may also violate the constraints or a feasible solution may not be found. 

5 DIMCRA 
In the previous section, we have shown that it is not trivial to extend LBA to multiple dimensions. Due to the 

problems existing in MLBA, we propose a heuristic algorithm DIMCRA (link-Disjoint Multiple Constraints 

Routing Algorithm) for the MCLPP problem.  

5.1 Operations of DIMCRA 
 
DIMCRA (G, s, t):  Given a directed graph G(V, E), a constraint vector L

r
 and a source-destination pair (s, t), 

Step 1. Find the shortest path P1 obeying L
r

 with SAMCRA; if P1 does not exist, then stop; 

Step 2. Reverse the direction of all the links on the shortest path P1, and set the sign of their link weights zero, 

0)( =→ uvwm , 1)( Pvu ∈→∀  and m = 1, �, M. A modified graph G′ is created; 
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Step 3. Find the shortest path P2 constrained by L
r

2  in the modified graph G′with SAMCRA; if P2 does not 

exist, then stop;  

Step 4. Make the union of P1 and P2, remove from the union the P1 links whose reversed links appear on P2, 

and vice versa, then group the remaining links into a set of two paths },{ 21 PP ′′ , i.e.  

)
~

(\)( 212121 PPPPPP IUU =′′ . 

Step 5. Check the length of each path in the set },{ 21 PP ′′ . If the path  iP′ (1 ≤ i ≤ 2) violates the constraints, then 

update the modified graph G ′ by removing the link set )(\ 1PPP ii I′′ from it, and go to Step 3. 

Otherwise stop and return the current solution set },{ 21 PP ′′ .  

 

Compared to MLBA, DIMCRA uses a different transformation to create the modified graph. In Step 2 of 

DIMCRA, the shortest path links are still reversed in direction but the corresponding direction�reversed links are 

assigned with zero link weight vectors instead of negative ones. Therefore the loop problem caused by negative 

link weights that mainly destroys the efficiency of MLBA is bypassed. In MLBA, P2 is required to obey the 

constraints, which may cause some feasible sets to be ignored by MLBA. In fact, when LPw
rr

>)( 2 , if P2 contains 

no reversed P1 link(s), then },{ 21 PP ′′ is actually {P1, P2} and cannot be a feasible set. But if P2 contains some 

reversed P1 link(s), it is possible that },{ 21 PP ′′ is a feasible set, for instance, l(P1) = 0.6, )( 1Pl ′ = 0.8, )( 2Pl ′ = 0.9, 

and l(P2) = 1.1. However, if LPw
rr

2)( 2 > , then we must have LPwPPPwPPw r

rrrr
2)()()( 211221 ≥>−+=′+′ , 

where P1r  denotes the set of P1 links whose reversed links appear on P2, and P1r must be a proper subset of P1. 

Therefore, in Step 3 of DIMCRA, the constraint check on path P2 in SAMCRA is performed with L
r

2  as the 

constraints vector, otherwise a feasible solution set may not be found. We have also added an extra step, Step 5 

of DIMCRA, to check that the constraints are obeyed. If only with LPPw
rr

2)( 21 ≤′+′  DIMCRA does not always 

ensure both paths within constraints,  i.e. LPw
rr

≤′)( 1 and LPw
rr

≤′)( 2 . Hence Step 5 of DIMCRA checks both paths 

in the solution set returned at Step 4. If each of them obeys the constraints, DIMCRA will return the solution set 

and stop. On the other hand, if either of them does not obey the constraints, DIMCRA is redirected to Step 3 to 

continue the search for a feasible set. In Step 3, if no P2 exists, DIMCRA will stop with no solution. We will 

illustrate the operation of DIMCRA with the following examples. 

 

Example 1: Consider the example graph in Figure 8(a). We are required to find a set of two link-disjoint 

paths between a and b, each within the constraints L
r

 = (20,20) and preferably with the minimum total length. In 

Step 1, the shortest path P1 = acdb is found. In Step 2, each P1 link is reversed and is assigned with zero link 

weights. In Step 3, the shortest path in the modified graph G� is found as P2 = adcb, with path vector (3,3) + (0,0) 

+ (4,5) = (7,8), as shown with bold lines in Figure 8(c). In Step 4, only for the P1 link c→ d, its reversed link d → 

c appears on P2 and vice versa. Thus these two links are removed from the union of P1 and P2, and the remaining 
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links are grouped into a set of two paths },{ 21 PP ′′ ={acb, adb}, shown with bold lines. In Step 5, the constraints 

check is executed on both paths. As each of them obeys the constraints, DIMCRA stops. In this case, the optimal 

solution set of {acb, adb} is returned by DIMCRA. The solution set that would have been returned by RF, is not 

optimal. 

Example 2: Consider the graph in Figure 9(a), which is the same as in the previous example except that the 

Figure 9.  Example 2 of the operation of DIMCRA 
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Figure 8.  Example 1 of the operation of DIMCRA 
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link e→b is assigned a different vector (2,1). The constraints remain the same. In this example the optimal set of 

two link-disjoint multiple-constrained paths is still the set {adb, acb} with path vectors (5,5) and (5,6) 

respectively, and the minimum total length 5/20 + 6/20 = 0.55. In Step 3, the shortest path in the modified graph 

is found as P2 = aeb with path vector (7,7), shown in Figure 9(c). In Step 4, as for each P1 link, its reversed link 

does not appear on P2, or vice versa, the solution set },{ 21 PP ′′ is constructed as {acdb, aeb}, exactly P1 and P2 

themselves. The total length of {acdb, aeb} is 5/20 + 7/20 = 0.6. In this example, DIMCRA failed to return the 

optimal set, but DIMCRA�s solution set is close to the optimal one and both paths obey the constraints. RF would 

have returned the same solution. 

Example 3. We again consider Example 2 except with different constraints (6,6). Running DIMCRA, we 

obtain the same results as in Example 2 (for Step 1 to Step 4). But in Step 5, when the constraints check is made 

on each path in the solution set },{ 21 PP ′′ ={acdb, aeb}, the longer path 2P′ = aeb with path vector (7,7) does not 

obey the constraints. This means that the currently built solution set is not feasible. The links that only appear on 

2P′ = aeb, i.e. link a→ e and e→ b, are removed from the modified graph shown in Figure 9(b). The updated 

modified graph is shown in Figure 10(a) and DIMCRA is redirected to Step 3. In Step 3, a shortest path in the 

updated modified graph is found as P2 = adcb, depicted in Figure 10(b). In Step 4, the solution set is {acb, adb}, 

as shown in Figure 10(c). At last, in Step 5, each path in the current solution set obeys the constraints. The 

optimal set {acb, adb} is returned and DIMCRA stops. RF would have failed to return a solution. 

In Step 3 the constraints are set to L
r

2 . With these modified constraints, if the shortest path P2 in the modified 

graph violates the constraints L
r

 but obeys L
r

2 , it can be returned by SAMCRA in Step 3, hence a feasible set 

Figure 10.  Example 3 of the operation of DIMCRA 
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related to such kind of P2 will not be ignored, as illustrated in Example 3. Moreover, if a path P2 does not exist in 

the updated modified graph, DIMCRA will stop. Thus DIMCRA will not bounce back and forth between Step 3 

and 5.  

With the constraints check on each path in the solution set, Step 5 guarantees that DIMCRA returns a feasible 

set of two link-disjoint multiple-constrained paths, as illustrated in the above examples.  

However it may occur, as illustrated in Figure 11, that DIMCRA cannot return a feasible set even if there 

exists one. The RF method also fails to return the feasible set in this case. 

 

5.2 Properties of DIMCRA 
As proved in Section 3, the way to construct a solution set by reversing the shortest path P1, finding a shortest 

path P2 in the modified graph and constructing the solution set based on these two shortest paths P1 and P2 

guarantees the disjointness of the two paths in the solution set. Setting the direction-reversed P1 links with zero 

link weights guarantees the loop-freeness of DIMCRA. For, if no negative link weights are used in a graph, a 

loop can be avoided by the non-dominance check in SAMCRA. Comparing with the operation of setting 

direction-reversed P1 links negative, the operation of setting such reversed P1 links with zero link weights still 

encourages the choice of such reversed P1 links on a path but with less intensity.  

Unfortunately DIMCRA does not always find the set of feasible link-disjoint paths. Hence, it may be possible to 

further optimize DIMCRA, such that it can guarantee to always find a set of feasible link-disjoint paths, if they 

exist. However, DIMCRA in its current state is better than the RF method (as was indicated in the examples). 

Both methods return the same solution when },{ 21 PP ′′ ={P1, P2} and ∅=21 PP I . In all other cases DIMCRA 

Figure 11.  Example of the operation of DIMCRA with constraints (10,10) 
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either returns a more optimal solution than RF or RF does not find a solution where DIMCRA does. Since, to our 

knowledge, no other algorithms for solving MCLPP exist, the performance of DIMCRA is difficult to assess. 

6 Conclusions 
The Link-disjoint path problem occurs in network design where aspects as survivability, load balancing and 

network resource utilization are strived for. This problem has barely been investigated in the QoS routing context 

where a path is characterized by multiple metrics. A simple algorithm for solving the LPP problem for is 

presented in this paper. The problems surrounding the extension of this simple algorithm to multiple dimensions 

are discussed. A heuristic algorithm DIMCRA is proposed to find link-disjoint multiple-constrained paths 

between a pair of source and destination nodes. If DIMCRA returns a link-disjoint pair of paths they always 

obeys the constraints. However, DIMCRA�s solution is not necessarily optimal in terms of minimizing the total 

length of the returned paths or guaranteeing to always find the feasible set. Its performance however is better than 

the simple Remove-Find method. 

Some open issues remain, namely: making DIMCRA exact whilst still efficient, allowing maximally disjoint 

paths or bridges and simulating the performance. 
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