
 1

Link-Disjoint Paths for Reliable QoS Routing

Yuchun Guo1, Fernando Kuipers2 and Piet Van Mieghem2#

1School of Electrical and Information Engineering, Northern Jiaotong University, Beijing, 100044, P.R. China∗
2Faculty of Information Technology and Systems, Delft University of Technology, P.O. Box 5031, 2600 GA Delft,
The Netherlands

Abstract: The problem of finding link/node-disjoint paths between a pair of nodes in a network has received
much attention in the past. This problem is fairly well understood when the links in a network are only specified
by a single link weight. However, in the context of Quality of Service routing, links are specified by multiple link
weights and restricted by multiple constraints. Unfortunately, the problem of finding link/node disjoint paths in
multiple dimensions faces different conceptual problems. This paper presents a first step to understanding these
conceptual problems in link-disjoint Quality of Service routing and proposes a heuristic link-disjoint QoS
algorithm that circumvents these problems.

1 Introduction
The problem of finding disjoint paths in a network has been given much attention in the literature due to its

theoretical as well as practical significance to many applications, such as layout design of integrated circuits,

survivable design of telecommunication networks and restorable/reliable routing. Paths between a given pair of

source and destination nodes in a network are called link disjoint if they have no common (i.e. overlapping) links,

and node disjoint if, besides the source and destination nodes, they have no common nodes. With the

development of optical networks and the deployment of MPLS or GMPLS networks, the disjoint paths problem

is receiving renewed interest as fast restoration after a network failure is crucial in such kind of networks. In

robust communication networks, a connection usually consists of two link- or node-disjoint paths: one active

path, and one backup path. A service flow will be redirected to the backup path if the active path fails. Load

balancing, another important aspect for communication networks to avoid network congestion and optimize

network throughput, also requires disjoint paths to distribute flows. Robustness and load balancing are, among

others, both aspects of Quality of Service (QoS) routing.

In this paper we will focus on finding QoS-aware link-disjoint paths. In general a link-disjoint paths

algorithm can be extended to a node-disjoint algorithm with the concept of node splitting, i.e. replacing one node

with two nodes that are linked together by a link with zero weights [26]. Throughout this paper, we use the

following notation. A network is denoted by a directed graph G(V,E), where V is the set of nodes and E is the set

of links. A directed link from node u to node v is represented as u → v, u, v∈V. Each link is characterized by a

link weight vector w
r

 consisting of M link metrics wm(u → v), for m = 1,�, M. We assume that only non-

negative link metrics are assigned to each link. However, in the process of computing disjoint paths, negative link

Corresponding author
∗ The research for this paper was conducted when Y. Guo was a visiting scientist at Delft University of
Technology, sponsored by NUFFIC (Netherlands organization for cooperation in higher education) and CSC
(Chinese scholarship council).

 2

weights may be assigned to links. QoS metrics can be a) additive, e.g. delay, jitter, in which case the path-weight

vector consists of summing the link-weight vectors of the links defining the path, b) multiplicative, e.g., one

minus the packet loss probability, which can be considered as additive after taking the logarithm and c) min-max,

e.g. bandwidth, and policy flags, in which case the minimum (or maximum) link weight defines the weight of a

path. Min/max links that do not obey the constraints can be pruned from the topology, which is called topology

filtering. Additive metrics cause more difficulties and therefore without loss of generality, we assume all metrics

to be additive [29]. In the context of QoS routing or multi-constrained routing, a path is called feasible when its

weight vector does not violate the constraints specified by the vector L
r

.

Since we mainly focus on finding link-disjoint paths, a path P, between a source s and destination t is

considered to be a set of links that compose this path. With a slight abuse of notation, we choose P to denote the

path as well as its link set. If path P1 is link-disjoint with P2, there is no common link element in the link set

representing each path and ∅=21 PP I , else ∅≠21 PP I .

Definition of path length: Given a graph G(V,E) with M metrics per link, the non-linear length of a path P from

source node s to destination node t is defined as [5]:

)
)(

(max)(
,,1

m

m

Mm L
Pw

Pl
K=

= (1)

where wm(P) = ∑(u → v)∈P wm(u → v).

The normalization in (1) by the constraints L
r

 ascertains that if l(P)>1, then one of the constraints has been

violated. For M = 1, the non-linear length of a path as defined in (1) reduces to a linear one, and the link weight

vector w
r

 reduces to a scalar w(u → v). When no constraint is required, as in the LPP problem stated below, the

linear length of a path is computed as ∑(u → v)∈P w(u → v), i.e. L1 = 1. For simplicity of representation, the above

notation of path length l(P) is still used.

If path P1 is link-disjoint with P2, i.e. ∅=21 PP I , we have)()()(2121 PlPlPPl +=U for M = 1. But for M >

1, we have)()()(2121 PlPlPPl +≤U . Our target in this paper is to find a set of two link-disjoint paths that both

obey multiple constants. We define the total length of two paths as

)()(21 PlPl + (2)

for M ≥ 1.

Link-disjoint Path Pair (LPP) Problem. Given a graph G(V,E) with 1 metric per link (M = 1), for a source-

destination pair (s,t), find a set of two paths P1 and P2, such that ∅=21 PP I , and the total length

l(P1) + l(P2) is minimized.

The LPP problem can be solved in polynomial time [1][25][26].

Multiple Constrained Path (MCP) Problem. Given a graph G(V,E) with M > 1 metrics per link and a

constraint vector L
r

, for a source-destination pair (s, t), find a path that obeys the constraint vector L
r

,

 3

mm LPw ≤)(, for m = 1,�, M,

where ∑
∈→

→=
Evu

mm vuwPw)()(, for m = 1,�, M.

The MCP problem is NP-complete [8][30].

Multiple Constrained Link-disjoint Path Pair (MCLPP) Problem. Given a graph G(V,E) with M > 1 metrics

per link and a constraint vector L
r

, for a source-destination pair (s, t), find a pair of link-disjoint paths P1 and P2,

such that ∅=21 PP I , and both paths obey the constraint vector L
r

.

Theorem 1. MCLPP is NP-complete.

i i+1

S
0

S-ai
ai

Figure 1. The assignment of link weights to the links in the chain topology between nodes i and i+1

Proof: Given a chain topology with n+1 nodes and 2n links, each with a two-component weight vector as

depicted in Figure 1 and a set of numbers ai ∈ A, 0 ≤ ai ≤ S, for i=1,...,n, where ∑
=

=
n

i
iaS

1
. The constraints are

chosen as follows: L1 = nS-(S/2), and L2 =(S/2).

To solve the MCLPP problem, we need to find two paths P and P� from node 1 to node n+1 that obey the

constraints. Since, for all link weight vectors, the sum of the components equals S, we have that w1(P)+w2(P)=nS

and w1(P�)+w2(P�)=nS. Accordingly, a solution satisfying the constraints is only found if w1(P and P�)=nS-(S/2)

and w2(P and P�)=(S/2). The problem has now become an instance of the well-known NP-complete partition

problem [8] and can only be solved by finding the set A′⊆A, for which ∑
∈ 'Aa

i
i

a =(S/2). A feasible path P exists if

the set A′ exists. A feasible path P consists of the lower link if ai ∈ A′ and the upper link if ai ∉ A′. The path P�

then follows the remaining links. □

In this paper we focus on solving the MCLPP problem. Related work on finding disjoint paths in one

dimension between a source and a destination will be reviewed in Section 2 and a simple link-disjoint algorithm

LBA will be explained in Section 3. In Section 4 an extension of LBA to multiple dimensions is discussed and

shown to be difficult. Therefore, a heuristic algorithm DIMCRA for solving the MCLPP problem is proposed in

Section 5. We conclude this article in Section 6.

 4

2 Related work

2.1 Link-disjoint Paths Routing in One Dimension
An intuitive method to determine two shortest link-disjoint paths between a pair of source and destination nodes

consists of two steps. The first step retrieves the shortest path between a given pair of nodes in a graph. The

second step is to remove all the links of that path from the graph, and to find the shortest path in the pruned

graph. We will refer to this method as the Remove-Find (RF) method. Although the RF method is direct and

simple, it has at least two disadvantages due to the removal of links belonging to the first shortest path: (a)

provided that two link-disjoint paths exist, there is no guarantee that they will be found as illustrated in Section

3.1 and (b) the second link-disjoint shortest path may have a significantly larger length.

To surmount the disadvantages of the RF method, other methods have been devised to find a pair of shortest

link-disjoint paths with minimal total length [1][3][4][19][24][25][26][31]. In [25], Suurballe proposes an

algorithm, referred to as Suurballe�s algorithm, to find K node-disjoint paths with minimal total length using the

path augmentation method. The path augmentation method is originally used to increase the size of a matching

with an augmenting path [6] and to find a maximum flow or a minimum cost flow in a network [7][21]. The

problem to find link/node disjoint paths can be viewed as a special case of the minimum cost flow problem as

demonstrated in [1][25][26]. The basic idea of Suurballe�s algorithm is to construct a solution set of two disjoint

paths based on the shortest path and a shortest augmenting path. K disjoint paths can be obtained by augmenting

the K-1 optimal disjoint paths with this algorithm. In 1984, Suurballe and Tarjan [26] improved Suurballe�s

algorithm such that pairs of link-disjoint paths from one source node to n destination nodes could be efficiently

obtained in a single Dijkstra-like computation. This algorithm is referred to as the S-T algorithm. To find n pairs

of disjoint paths, the S-T algorithm requires)log()/1(nEO nE+ time and Suurballe�s algorithm)log(2 nnO , where

n is the number of destination nodes and E is the number of links. Kar et al. [12] and Kodialam and Lakshman

[13][14] incorporated the S-T algorithm into their algorithms to find a pair of link-disjoint paths serving as active

and backup paths for routing bandwidth guaranteed connections. Liang [17] extended the S-T algorithm to find

two link-disjoint paths between a pair of nodes with optimization in both network load and routing cost.

In 1994, Bhandari [1] proposed an algorithm to find a pair of span-disjoint paths between two nodes in

optical-fiber networks. The disjoint paths algorithm used by Bhandari is a modified version of Suurballe�s

algorithm [25] that requires a special link weight transformation to facilitate the use of Dijkstra�s. Bhandari made

a simplification to Suurballe�s algorithm by directly setting all the link weights on the first shortest path negative.

Shaikh [23] made an extension to Bhandari�s algorithm [1] to solve the span-disjoint paths problem in more

complicated structured optical networks.

It is proved in [16][22] that the LPP problem will be NP-complete if it is required that the maximal length of

the two disjoint paths, i.e. max(l(P1), l(P2)), is minimized. In addition, Ho and Mouftah [10] proposed another

optimal object function α · l(P1) + l(P2), where P1 and P2 are the active path and the backup path, respectively.

The parameter α can be set large for a shared protection scheme (1:N or M:N) and could be as small as unity for a

dedicated protection scheme (1:1). When α = 1, it reduces to the object function used in [1][25][26].

 5

Heuristic algorithms based on matrix calculation [28] or recursive matrix-calculation [20] to solve the K-

shortest link-disjoint paths problem with a bounded hopcount have been proposed as well. There are also some

algorithms for finding K-best paths, i.e. K disjoint or maximally disjoint paths with minimum total length

between a pair of nodes, in a trellis graph [3][31]. An optimal algorithm for finding K-best paths without

hopcount limitation between a pair of nodes is given by Lee and Wu in [15], where they transfer the K-best paths

problem into a maximum network flow and minimum cost network flow algorithm via some modifications to the

original graph. Distributed algorithms for the link/node-disjoint paths algorithms can be found in [4][19][24].

2.2 Disjoint Paths Routing in Multiple Dimensions
To the best of our knowledge there is no literature on the MCLPP problem. Recently some papers on disjoint

paths in QoS routing have emerged. However, they only considered bandwidth and/or delay as their QoS metrics

[2][14][11][9][18]. The maximally disjoint shortest and widest paths (MADSWIP) algorithm from Taft-Plotkin,

et al. [27], involves a modified version of the S-T algorithm to find a pair of disjoint paths. MADSWIP can

produce a pair of widest or shortest maximally link-disjoint paths from a source node to all other nodes.

Moreover it tries to find two paths simultaneously to satisfy the maximally link-disjointness to each other in a

QoS routing context. However the link metrics used in their algorithm are bandwidth and delay, where only the

latter metric is additive.

3 Path Augmentation for Solving LPP
In this section we will present a simplified variant of Bhandari�s Algorithm [1], referred to as LBA (Link-disjoint

version of Bhandari�s Algorithm), which can produce an optimal solution for the LPP problem. The basic steps of

LBA are given in Section 3.1. The fundamental concepts of this algorithm are discussed in Section 3.2. The

optimality is proved in Section 3.3 and in Section 3.4, LBA is shown to be loop-free.

3.1 The steps of LBA
Bhandari�s algorithm [1] was designed to find a pair of span-disjoint paths in an optical network. We modify

Bhandari�s algorithm into a link-disjoint path pair algorithm LBA by omitting the node-splitting operation that

ensures the node-disjointness and the graph transformations that ensure span-disjointness.

Before explaining the operation of LBA we first introduce some notations that will be used further. If we

reverse the direction and the sign of the link weights of each link on the path P1 between s and t, i.e. w(v→u) =

−w(u→v), ∀ (u→v)∈P1, then we will have a path directed from t to s, denoted by −P1, which consists of the

reversed P1 links. We define1 l(−P1) = −l(P1). A set, which consists of the P1 links whose reversed links appear on

P2 and vice versa, is denoted as })(and)(|)(and){(
~

2121 PuvPvuuvvuPP ∈→∈→→→=I . In all

the figures, bold lines represent links on the shortest path(s) in a graph or its corresponding modified graph,

dashed lines represent reversed links which do not exist in the original graph and bold dashed lines represent such

reversed links that appear on the shortest path. The steps of the LBA algorithm are as follows:

1 With the definition of length in (1), we have l(−P1) = − l(P1) only for M = 1.

 6

Given a directed graph G(V, E), for a source-destination pair (s, t),

Step 1. Find the shortest2 path P1 from node s to node t;

Step 2. Replace P1 with −P1, a modified graph G(V,E′) is created;

Step 3. Find a shortest path P2 from node s to node t in the modified graph G(V,E′); if P2 does not exist, then

stop;

Step 4. Take the union of P1 and P2, remove from the union the link set which consists of the P1 links whose

reversed links appear in P2, and vice versa, then group the remaining links into two paths 1P′ and 2P′ ,

i.e.)
~

(\)(212121 PPPPPP IUU =′′ .

We will explain the steps of LBA with an example in Figure 2. Suppose that we are required to find a set of

two shortest disjoint paths between a and b. In Step 1, the shortest path from a to b is found as P1 = acdb, with

minimum length 4. In Step 2, a modified graph G(V,E′) is created by reversing the direction and the sign of the

weight of each link on P1. For instance, the link c→d with weight 1 is replaced by the link d→c with weight �1.

In Step 3, the shortest path in the modified graph P2 = adcb has length 6. In Step 4, 21
~

PP I ={c→d, d→c} is

removed from the union 21 PP U . The solution set of disjoint paths },{ 21 PP ′′ ={acb, adb} is obtained. The total

length of this path set equals 5 + 5 = 10, which is exactly the minimal total length of two link-disjoint paths in

this graph.

2 If there exist more than one shortest path in the original graph or in the modified graph, either one of them can
be chosen. Choosing different shortest paths may lead to different solution sets. However, these solution sets will
have the same minimum total length.

Figure 2. Example of the operation of LBA

(a) Step 1

1

5

2

65

4

4

1

3

c

d

f

e

ba

−1

5

−2

6 5

4

4
−1

3

c

d

f

e

b a

(b) Step 2

3

−1

5

−2

65

4

4

−1 c

d

f

e

ba

(c) Step 3 (d) Step 4

−1

3

1

5

2

6 5

4

4

1 c

d

f

e

b a

 7

For comparison, in Figure 3, we apply the RF method on the same topology with the same requirements. In

step 1 the shortest path acdb is retrieved. In step 2, a modified graph is created by removing all the links on acdb

The shortest path in the modified graph is aeb with length 11. Thus the set {acdb, aeb} has a total length 4 + 11 =

15, which is longer than 10 as found with LBA. This example illustrates that the RF method cannot guarantee to

find the optimal solution. More important, in the graph shown in Figure 4(a), although there exist two link-

disjoint paths between a and b, RF cannot find the second path in step 2 as shown in Figure 4(b). LBA, on the

other hand, still returns the optimal set in this case.

3.2 LBA is Based on the Shortest Path
In this subsection, we will clarify why the optimal solution set of LBA, as well as other path augmentation

algorithms [1,18,19], is based on the shortest path. Although the theory presented here is based on (or can be

derived from) the theory of min-cost flow [7][21], it is instructive to give an outline.

 We will first show that the optimal set for the LPP problem is based on the shortest path. Secondly, we will

show that the optimal set of two link-disjoint paths has the smallest difference in length from the shortest path

among all the possible sets of link-disjoint paths. Finally, we will show that the logical difference set (defined

below) can be viewed as a path.

Given a digraph G(V,E) and a pair of source-destination nodes (s, t), the relation between a set of two link-

disjoint paths {Pd1, Pd2} and the shortest path P1 belongs to one of the following types:

1. P1 itself is Pd1 or Pd2, i.e. P1 = Pd1 or P1 = Pd2;

2. P1 overlaps with both paths Pd1 and Pd2, i.e. ∅≠11 dPP I , P1 ≠ Pd1 and ∅≠21 dPP I , P1 ≠ Pd2;

(a) Step 1

1

2

4

1

3

c

d ba

Figure 4. Example 2 of the operation of RF

3

4

c

d b a

(b) Step 2

Figure 3. Example 1 of the operation of RF

(a) Step 1

1

5

2

65

4

4

1

3

c

d

f

e

ba
3

5

65

4

4

c

d

f

e

b a

(b) Step 2

 8

3. P1 only overlaps with one path in the set {Pd1, Pd2}, but not with the other one, i.e. ∅≠11 dPP I , P1 ≠

Pd1 and ∅=21 dPP I (or ∅≠21 dPP I , P1 ≠ Pd2 and ∅=11 dPP I);

4. P1 is link-disjoint with both paths in {Pd1, Pd2}, i.e. ∅=)(211 dd PPP UI .

Lemma 1. Given a directed graph G(V, E) and a source-destination pair (s, t), if the optimal set },{ 21 PP ′′ of LPP

exists, 21 PP ′′U must contain either the first shortest path P1 itself or some P1 links on each of its two paths.

Proof: If 21 PP ′′U is of type (4), then each path in },{ 21 PP ′′ is link-disjoint with P1. As P1 is the shortest path,

both },{ 11 PP ′ and },{ 21 PP ′ have a total length shorter than },{ 21 PP ′′ . Hence the optimal set },{ 21 PP ′′ cannot be of

type (4) and 21 PP ′′U must contain some or all P1 links to be the optimal set.

If 21 PP ′′U is of type (3), only one path in 21 PP ′′U contains some P1 links, without loss of generality, suppose

1P′ contains some P1 links, and the other path 2P′ is link-disjoint with P1, then },{ 21 PP ′ is a set which is shorter

than },{ 21 PP ′′ , Hence the optimal set },{ 21 PP ′′ cannot be of type (3).

Therefore, if the optimal set },{ 21 PP ′′ exists, 21 PP ′′U must be either of type (1) or (2). □

Property 1. The optimal set },{ 21 PP ′′ has the smallest difference in length

0)()()(121 ≥−′+′= PlPlPlY (3)
from the shortest path P1, among all the possible sets of link-disjoint path pairs.

In the set)(121 PPP −′′ UU , the P1 links contained in the set 21 PP ′′U will form loops with the −P1 links. For

example, if a P1 link u→v is contained in the set 21 PP ′′U , then it will create a loop with the link v→u on −P1

between the nodes u and v. The length of this loop is zero because w(v→u) = −w(u→v). Let us denote Ol

=)(
~

)(121 PPP −′′ IU , which means that the set Ol consists of each P1 link in the union of P2 U P1 and its

corresponding −P1 link. We define the logical difference set 3 between 21 PP ′′U and P1 as

=−′′ 121)(PPP U)(121 PPP −′′ UU \Ol. In fact, l(Ol) = 0 because the set Ol consists of loops with zero length, each

consisting of a pair of opposite P1 and −P1 links. With l(−P1)= −l(P1), we have

)()()()()()()())()(())((121121121121 PlPlPlPlPlPlOlPPPlPPPl l −′+′=−+′+′=−−′′=−′′ UUU ,

3 The logical difference set P2−P1 also can be computed as P2−P1={(u → v)| (u → v)∈ P2\(P2 ∩P1)} U { (v → u)
|(u → v)∈ P1\(P2 ∩P1)}, which means that if a link u →v of P2 does not appear on P1, then this link belongs to the
difference set P2−P1, and if a link u → v of P1 does not appear on P2, then its direction reversed link v → u
belongs to the difference set P2−P1, with a link weight w(v → u) = −w(u → v). In set theory, the difference
operation is defined as P2 −P1= P2\ (P1 ∩P2), and the symmetric difference operation is defined as P2 −P1 =
(P2 UP1)\ (P1 ∩P2). The concept of logical difference set in this paper resembles the symmetric difference set but
it is not the same.

 9

which is exactly Y in (3).

Lemma 2 shows that the logical difference set forms the shortest path in the modified graph where P1 is

replaced with �P1.

Lemma 2. Given a directed graph G(V,E) and pair (s, t) and let P1 be the shortest path in this graph. We define

G(V,E′) as the graph G(V,E) for which the path P1 is replaced with −P1. The logical difference set 121 PPP −′′U

between the optimal set of two link-disjoint paths },{ 21 PP ′′ and the shortest path P1 forms the shortest path P2

from node s to node t in G(V,E′).

Proof: We will first prove that 1212 PPPP −′′= U is a complete path from s to t in G(V,E′), then we will prove that

P2 is the shortest path in G(V,E′).

Part A. From Lemma 1, the optimal set of two link-disjoint paths 21 PP ′′U must contain either the first shortest

path P1 itself or some P1 links on each of its two paths.

If 121)(PPP ⊃′′U , without loss of generality, suppose 11 PP =′ , then)(11 PPOl −= U . With the definition of logical

difference set, we have 2111211212))((\))((\))()((PPPPPPOPPPP l ′=−−′=−′′= UUUUU . Hence P2 must be a

complete path from s to t.

If 21 PP ′′U contains some P1 links on each of its two paths, as −P1 is the path from t to s in G(V,E′), and neither

1P′ nor 2P′ contains any −P1 links, then the union)(121 PPP −′′ UU contains two cycles: one cycle consists of 1P′

and −P1, the other consists of 2P′ and −P1. When the set Ol is removed from the union set, the remaining links

compose the logical difference set P2. Hence P2 must be a complete path from s to t.

Part B. Assume that the shortest path in G(V,E′) is P3 ≠ P2, then we must have)()(23 PlPl < . As

)()()()(1212 PlPlPlPl −′+′= we have 3 1 1 2() () () ()l P l P l P l P′ ′+ < + , which contradicts the assumption that },{ 21 PP ′′ is

the optimal set. □

3.3 LBA Is Loop-free
Many routing algorithms assume non-negative link weights to avoid a loop of negative length appearing on a

path. However, negative link weights introduced to a graph in LBA will not cause loops in the routing process.

Figure 5. A loop contains some negative link

(a) The shortest path P1(s,t)

(b) A loop containing some �P1 link

ui

.�...�..
vi+1 vn ts v1 vi

.�...�..
vi+1 vn ts v1 vi

ui

 10

Theorem 2: Given a digraph G(V,E) and source-destination pair (s, t) and let P1 be the shortest path in this

graph. The modified graph G(V,E′) is defined as the graph G(V,E) for which P1 is replaced with �P1. A loop

containing some negative link(s) in G(V,E′) will not have a negative length.

Proof: Assume tvvvsv nii 11 + is the shortest path P1 from node s to node t in G(V,E), as shown in Figure 5(a).

The corresponding path �P1 in G(V,E′) (Figure 5(b)) has a link (vi+1 → vi) which appears on loop Pl = ui vi+1 vi ui.

Suppose the loop Pl has a negative length l(Pl) = w(ui → vi+1) + w(vi+1 → vi) + w(vi → ui) < 0. Because w(vi+1 → vi)

= �w(vi → vi+1), we must have w(vi → ui) + w(ui → vi+1) < w(vi → vi+1). Hence the sub-path 11... +iii vuvsv is shorter

than the sub-path 11... +iivvsv . This contradicts the assumption that tvvvsv nii 11 + is the shortest path. □

3.4 Optimality of the solution produced with LBA
Theorem 3. Given a directed graph G(V,E) and source-destination pair (s,t), the algorithm LBA returns the

optimal set for the LPP problem.

Proof: Let P1 be the shortest path in the original graph G(V,E) found in step 1 of LBA and P2 be the shortest path

in the modified graph G(V,E′), found in step 3 of LBA. },{ 21 PP ′′ is the solution set generated by LBA. The proof

consists of three parts.

Part A. (Proof of Link-disjointness) By construction of the solution set, we must have ∅=′′ 21 PP I .

Part B. (Proof of Minimal Total Length) Suppose the optimal set of link-disjoint paths is },{ 21 PP ′′′′ instead of

},{ 21 PP ′′ . According to Lemma 2, the logical difference set of },{ 21 PP ′′′′ with P1 is the shortest path in the modified

graph G(V,E′). This contradicts that P2 is the shortest path in modified graph G(V,E′).

Part C. (Proof of Loop-freeness) On Theorem 2, LBA is loop-free. Thus the solution set returned by LBA must

be the optimal set. □

4 Extending LBA to Multiple Dimensions
The extension of LBA to multiple dimensions using SAMCRA [29] is called MLBA (Multiple-constrained

LBA). A brief description of SAMCRA, which serves as the multiple-constrained shortest path routing algorithm

in MLBA, is given in Section 4.1. The basic steps of MLBA (Multiple-constrained LBA) are presented in Section

4.2. The problems appearing in multiple dimensions are addressed in Section 4.3.

4.1 Brief Introduction of SAMCRA
SAMCRA [29] is an exact multiple-constrained routing algorithm based on three concepts: (a) non-linear path

length, (b) k-shortest path routing, and (c) non-dominance. The non-linear length function defined in (1) is

necessary for exactness and implies that a sub-path of a shortest path is not necessarily a shortest itself. It is

therefore necessary to keep track of multiple sub-paths at each intermediate node on the path between a pair of

nodes. A (sub)-path P1 is dominated by a (sub)-path P2 if),()(21 PwPw mm ≥ for m = 1,�,M, with an inequality

 11

sign for at least one m. This operation reduces the search space and removes loops from a route when non-

negative link weights are used.

4.2 Operations of MLBA
The basic steps of MLBA are the same as those for LBA except that the shortest path routing algorithm is

replaced with SAMCRA in MLBA. We will illustrate the operation of MLBA with the example topology shown

in Figure 6(a). For the sake of simplicity, we have assigned each link a two-dimensional weight vector, but it is

also possible to use an M-dimensional weight vector (M>1). The complexity of solving the MCLPP problem will

increase with M, but as shown in [29], the complexity may decrease (and even become polynomial) if M tends to

infinity. To solve the MCLPP problem, we are required to find two link-disjoint paths from source node A to

destination node B that both obey the constraints vector L
r

 = (20, 20). Among the solutions to MCLPP we prefer

the one with the minimum total length. The shortest multiple-constrained path from node A to node B is the path

acdb. Its path weight vector is (4, 5). The optimal set of two shortest link-disjoint paths (according to (2)) in this

topology is {acb, adb}, with path vectors (5, 6) and (5, 5) respectively and minimum total length 0.3 +0.25 =

0.55.

Now let us run MLBA on this topology. In Step 1, the shortest path P1 = acdb is found. In Step 2, the

original graph is modified by replacing all the P1 links with −P1 links. In this case, each component of link weight

vector of a −P1 link is set negative. For instance, the link c → d with weight vector (1, 1) is replaced with the link

d → c with corresponding weight vector (−1,−1). In Step 3, the shortest path in the modified graph found with

4,51,1

4,5
c

d

f

e

ba

1,2

5,7

2,2

6,35,6

3,3

(a) Step 1

−1, −2
4,5

−1, −1
4,5

c

d

f

e

b a

5,7

−2, −2

6,35,6

3,3

(b) Step 2

−1, −2

4,5
−1, −1

4,5

c

d

f

e

ba

5,7

−2, −2

6,35,6

3,3

(c) Step 3

4,51,1

4,5
c

d

f

e

b a

1,2

5,7

2,2

6,35,6

3,3

−1, −2

(d) Step 4

Figure 6. Example of the operation of MLBA

 12

SAMCRA is P2 = adcb, with path weight vector (3,3) + (−1,−1) + (4,5) = (6, 6). In Step 4, the set Ol consisting

of a pair of opposite P1 and P2 links (c → d) and (d → c) are removed from the union of P1 and P2. Then the

optimal solution set {acb, adb} is returned.

4.3 Problems due to the Non-linear Length in Multiple Dimensions

4.3.1 Loops caused by Negative Link Weights
For M =1, SAMCRA acts just like Dijkstra�s algorithm, therefore MLBA reduces to LBA and negative link

weights along −P1 will not cause a loop in the routing process of MLBA. For M > 1, Theorem 2 still holds and a

loop containing some −P1 link(s) still has a non-negative length. However, some of the components of the loop

weight vector may be negative, causing MLBA to pass this loop a finite number of times. We will explain this

looping through Figure 7, where each link possesses two link metrics. Suppose that the shortest path P1 is sadf,

depicted with bold lines in Figure 7(a). The link weights vector (x1, x2) of link c→d must be chosen to ensure that

the path sacdf is longer than sadf, i.e.

→+→+→
→+→+→

>

→++→+→
→++→+→

)()()(
)()()(

max
)()()(

)()()(
max

222

111

2222

1111

fdwdawasw
fdwdawasw

fdwxcawasw
fdwxcawasw

.

Numerically,

=

−
−

=

→−→
→−→

>

3
3

14
25

)()(
)()(

maxmax
22

11

2

1

cawdaw
cawdaw

x
x

 (4)

After Step 2 of MLBA is executed, there appears a loop Pl = dacd shown with double lines in Figure 7(b),

containing the link d→a with negative link weights (−5,−4).

If equation (4) holds and each component of vector (x1, x2) is greater than 3, then the sub-path sdacd will be

dominated by the direct link s→d with weight vector (5,8) and will be removed by the non-dominance check in

SAMCRA. However, if equation (4) holds but one component of (x1, x2) is not greater than 3, say x1 < 3, x2 > 3,

then

Figure 7. Non-dominance may fail to remove a loop in the case of M>1.

 5,4

 1,3
2,2

5,8
2,5

4,6
2,1

6,4

2,1

2,7

3,2

1,3
x1, x2

s

b

e
d

a

c

f

g

(a) The shortest path is sadf. (b) The loop dacd contains a negative link d → a.

 −5, −4

 −1, −3

2,2

5,8
2,5

4,6
2,1

6,4

−2, −1

2,7

3,2

1,3
x1, x2

s

b

e
d

a

c

f

g

 13

>++−=→+→+→=
<++−=→+→+→=

01)4()()()()(
02)5()()()()(

22222

11111

xdcwcawadwPw
xdcwcawadwPw

l

l ,

where (w1(Pl), w2(Pl)) is the path vector of the loop Pl. In this case, the sub-path sdacd is not dominated by the

link s→d, although l(Pl) > 0. Hence, loops can occur in MLBA that continue until one of the constraints is

violated. Unfortunately, checking all paths to assure that they are loop-free is computationally too expensive.

As mentioned in Section 2, in Suurballe�s algorithm [25] and the S-T algorithm [26], a transformation of link

weights)()()()(vdudvuwvuw −+→=→′ is applied to each link, where)(ud is the distance from source node

s to node u on the shortest path tree. This transformation is made to guarantee that the links on the shortest path

tree have zero link weights and those links not on the tree have link weights greater than zero in the modified

graph. However, an artifact of a non-linear length is that subsections of shortest paths are not necessarily shortest

paths [5][29]. Consequently, for M > 1, Suurballe�s transformation cannot ensure non-negative link weights and

loops may emerge.

4.3.2 Total Length of the Solutions Produced with MLBA
We assume for the moment that the constraints are large enough such that all paths are feasible. If M =1, it is

proved in Section 3.4 that the solution set },{ 21 PP ′′ produced with MLBA has the minimum total length. With the

total length defined in (2), Lemma 1 in section 3 still holds for M > 1. The optimal solution set of two link-

disjoint multiple-constrained paths with minimum total length either contains the first shortest path P1 itself or

some P1 links on each of its two paths. Also, the optimal set },{ 21 PP ′′ still obeys Property 1. Unfortunately, the

logical difference set 121)(PPP −′′U is not necessarily the shortest path P2 in the modified graph, since

)()()())((121121 PlPlPlPPPl −′+′=−′′U does not necessarily hold for M > 1. Hence, Lemma 2 may not hold for M

> 1 and the solution set constructed based on P1 and P2 is not necessarily the optimal set with minimum total

length. Moreover, the solution set may also violate the constraints or a feasible solution may not be found.

5 DIMCRA
In the previous section, we have shown that it is not trivial to extend LBA to multiple dimensions. Due to the

problems existing in MLBA, we propose a heuristic algorithm DIMCRA (link-Disjoint Multiple Constraints

Routing Algorithm) for the MCLPP problem.

5.1 Operations of DIMCRA

DIMCRA (G, s, t): Given a directed graph G(V, E), a constraint vector L

r
 and a source-destination pair (s, t),

Step 1. Find the shortest path P1 obeying L
r

 with SAMCRA; if P1 does not exist, then stop;

Step 2. Reverse the direction of all the links on the shortest path P1, and set the sign of their link weights zero,

0)(=→ uvwm , 1)(Pvu ∈→∀ and m = 1, �, M. A modified graph G′ is created;

 14

Step 3. Find the shortest path P2 constrained by L
r

2 in the modified graph G′with SAMCRA; if P2 does not

exist, then stop;

Step 4. Make the union of P1 and P2, remove from the union the P1 links whose reversed links appear on P2,

and vice versa, then group the remaining links into a set of two paths },{ 21 PP ′′ , i.e.

)
~

(\)(212121 PPPPPP IUU =′′ .

Step 5. Check the length of each path in the set },{ 21 PP ′′ . If the path iP′ (1 ≤ i ≤ 2) violates the constraints, then

update the modified graph G ′ by removing the link set)(\ 1PPP ii I′′ from it, and go to Step 3.

Otherwise stop and return the current solution set },{ 21 PP ′′ .

Compared to MLBA, DIMCRA uses a different transformation to create the modified graph. In Step 2 of

DIMCRA, the shortest path links are still reversed in direction but the corresponding direction�reversed links are

assigned with zero link weight vectors instead of negative ones. Therefore the loop problem caused by negative

link weights that mainly destroys the efficiency of MLBA is bypassed. In MLBA, P2 is required to obey the

constraints, which may cause some feasible sets to be ignored by MLBA. In fact, when LPw
rr

>)(2 , if P2 contains

no reversed P1 link(s), then },{ 21 PP ′′ is actually {P1, P2} and cannot be a feasible set. But if P2 contains some

reversed P1 link(s), it is possible that },{ 21 PP ′′ is a feasible set, for instance, l(P1) = 0.6,)(1Pl ′ = 0.8,)(2Pl ′ = 0.9,

and l(P2) = 1.1. However, if LPw
rr

2)(2 > , then we must have LPwPPPwPPw r

rrrr
2)()()(211221 ≥>−+=′+′ ,

where P1r denotes the set of P1 links whose reversed links appear on P2, and P1r must be a proper subset of P1.

Therefore, in Step 3 of DIMCRA, the constraint check on path P2 in SAMCRA is performed with L
r

2 as the

constraints vector, otherwise a feasible solution set may not be found. We have also added an extra step, Step 5

of DIMCRA, to check that the constraints are obeyed. If only with LPPw
rr

2)(21 ≤′+′ DIMCRA does not always

ensure both paths within constraints, i.e. LPw
rr

≤′)(1 and LPw
rr

≤′)(2 . Hence Step 5 of DIMCRA checks both paths

in the solution set returned at Step 4. If each of them obeys the constraints, DIMCRA will return the solution set

and stop. On the other hand, if either of them does not obey the constraints, DIMCRA is redirected to Step 3 to

continue the search for a feasible set. In Step 3, if no P2 exists, DIMCRA will stop with no solution. We will

illustrate the operation of DIMCRA with the following examples.

Example 1: Consider the example graph in Figure 8(a). We are required to find a set of two link-disjoint

paths between a and b, each within the constraints L
r

 = (20,20) and preferably with the minimum total length. In

Step 1, the shortest path P1 = acdb is found. In Step 2, each P1 link is reversed and is assigned with zero link

weights. In Step 3, the shortest path in the modified graph G� is found as P2 = adcb, with path vector (3,3) + (0,0)

+ (4,5) = (7,8), as shown with bold lines in Figure 8(c). In Step 4, only for the P1 link c→ d, its reversed link d →

c appears on P2 and vice versa. Thus these two links are removed from the union of P1 and P2, and the remaining

 15

links are grouped into a set of two paths },{ 21 PP ′′ ={acb, adb}, shown with bold lines. In Step 5, the constraints

check is executed on both paths. As each of them obeys the constraints, DIMCRA stops. In this case, the optimal

solution set of {acb, adb} is returned by DIMCRA. The solution set that would have been returned by RF, is not

optimal.

Example 2: Consider the graph in Figure 9(a), which is the same as in the previous example except that the

Figure 9. Example 2 of the operation of DIMCRA

0,0 4,5

4,5
c

d

f

e

ba

5,7

2,15,6

3,3

(c) Step 3

0,0

0,0

1,2
4,51,1

4,5
c

d

f

e

b

5,7

2,2

2,15,6

3,3

(d) Step 4

a

0,0

0,0

0,0
4,5

4,5
c

d

f

e

b

5,7

2,15,6

3,3

(b) Step 2

a

4,51,1

4,5
c

d

f

e

b

1,2

5,7

2,2

2,15,6

3,3

(a) Step 1

Figure 8. Example 1 of the operation of DIMCRA

0,0 4,5

4,5
c

d

f

e

ba

5,7

6,35,6

3,3

(c) Step 3

0,0

0,0

4,51,1

4,5
c

d

f

e

b

1,2

5,7

2,2

6,35,6

3,3

(d) Step 4

0,0

a

0,0

0,0

0,0
4,5

4,5
c

d

f

e

b

5,7

6,35,6

3,3

(b) Step 2

a

4,51,1

4,5
c

d

f

e

b

1,2

5,7

2,2

6,35,6

3,3

(a) Step 1

a

 16

link e→b is assigned a different vector (2,1). The constraints remain the same. In this example the optimal set of

two link-disjoint multiple-constrained paths is still the set {adb, acb} with path vectors (5,5) and (5,6)

respectively, and the minimum total length 5/20 + 6/20 = 0.55. In Step 3, the shortest path in the modified graph

is found as P2 = aeb with path vector (7,7), shown in Figure 9(c). In Step 4, as for each P1 link, its reversed link

does not appear on P2, or vice versa, the solution set },{ 21 PP ′′ is constructed as {acdb, aeb}, exactly P1 and P2

themselves. The total length of {acdb, aeb} is 5/20 + 7/20 = 0.6. In this example, DIMCRA failed to return the

optimal set, but DIMCRA�s solution set is close to the optimal one and both paths obey the constraints. RF would

have returned the same solution.

Example 3. We again consider Example 2 except with different constraints (6,6). Running DIMCRA, we

obtain the same results as in Example 2 (for Step 1 to Step 4). But in Step 5, when the constraints check is made

on each path in the solution set },{ 21 PP ′′ ={acdb, aeb}, the longer path 2P′ = aeb with path vector (7,7) does not

obey the constraints. This means that the currently built solution set is not feasible. The links that only appear on

2P′ = aeb, i.e. link a→ e and e→ b, are removed from the modified graph shown in Figure 9(b). The updated

modified graph is shown in Figure 10(a) and DIMCRA is redirected to Step 3. In Step 3, a shortest path in the

updated modified graph is found as P2 = adcb, depicted in Figure 10(b). In Step 4, the solution set is {acb, adb},

as shown in Figure 10(c). At last, in Step 5, each path in the current solution set obeys the constraints. The

optimal set {acb, adb} is returned and DIMCRA stops. RF would have failed to return a solution.

In Step 3 the constraints are set to L
r

2 . With these modified constraints, if the shortest path P2 in the modified

graph violates the constraints L
r

 but obeys L
r

2 , it can be returned by SAMCRA in Step 3, hence a feasible set

Figure 10. Example 3 of the operation of DIMCRA

0,0

0,0

0,0
4,5

4,5

c

d

f

e

b

5,7

3,3

(a) Step 5

a

0,0 4,5

4,5
c

d

f

e

b a

5,7

3,3

(b) Step 3

0,0

0,0

4,51,1

4,5

c

d

f

e

b

1,2

5,7

2,2

2,15,6

3,3

(c) Step 4

0,0

 17

related to such kind of P2 will not be ignored, as illustrated in Example 3. Moreover, if a path P2 does not exist in

the updated modified graph, DIMCRA will stop. Thus DIMCRA will not bounce back and forth between Step 3

and 5.

With the constraints check on each path in the solution set, Step 5 guarantees that DIMCRA returns a feasible

set of two link-disjoint multiple-constrained paths, as illustrated in the above examples.

However it may occur, as illustrated in Figure 11, that DIMCRA cannot return a feasible set even if there

exists one. The RF method also fails to return the feasible set in this case.

5.2 Properties of DIMCRA
As proved in Section 3, the way to construct a solution set by reversing the shortest path P1, finding a shortest

path P2 in the modified graph and constructing the solution set based on these two shortest paths P1 and P2

guarantees the disjointness of the two paths in the solution set. Setting the direction-reversed P1 links with zero

link weights guarantees the loop-freeness of DIMCRA. For, if no negative link weights are used in a graph, a

loop can be avoided by the non-dominance check in SAMCRA. Comparing with the operation of setting

direction-reversed P1 links negative, the operation of setting such reversed P1 links with zero link weights still

encourages the choice of such reversed P1 links on a path but with less intensity.

Unfortunately DIMCRA does not always find the set of feasible link-disjoint paths. Hence, it may be possible to

further optimize DIMCRA, such that it can guarantee to always find a set of feasible link-disjoint paths, if they

exist. However, DIMCRA in its current state is better than the RF method (as was indicated in the examples).

Both methods return the same solution when },{ 21 PP ′′ ={P1, P2} and ∅=21 PP I . In all other cases DIMCRA

Figure 11. Example of the operation of DIMCRA with constraints (10,10)

(a) Step 1

1,2

c

d

e

b

1,2 2,1

5,1

3,1

6,1
a

(b) Step 2

0,0

c

d

e

b

0,00,0

5,1

0,0

6,1
a

(c) Step 3

0,0

c

d

e

b

0,0 0,0

5,1

0,0

6,1
a

(d) Step 4

1,2

c

d

e

b

1,22,1

5,1

3,1

6,1
a

(e) Step 5

0,0

c

d

e

b

0,0 0,00,0

 18

either returns a more optimal solution than RF or RF does not find a solution where DIMCRA does. Since, to our

knowledge, no other algorithms for solving MCLPP exist, the performance of DIMCRA is difficult to assess.

6 Conclusions
The Link-disjoint path problem occurs in network design where aspects as survivability, load balancing and

network resource utilization are strived for. This problem has barely been investigated in the QoS routing context

where a path is characterized by multiple metrics. A simple algorithm for solving the LPP problem for is

presented in this paper. The problems surrounding the extension of this simple algorithm to multiple dimensions

are discussed. A heuristic algorithm DIMCRA is proposed to find link-disjoint multiple-constrained paths

between a pair of source and destination nodes. If DIMCRA returns a link-disjoint pair of paths they always

obeys the constraints. However, DIMCRA�s solution is not necessarily optimal in terms of minimizing the total

length of the returned paths or guaranteeing to always find the feasible set. Its performance however is better than

the simple Remove-Find method.

Some open issues remain, namely: making DIMCRA exact whilst still efficient, allowing maximally disjoint

paths or bridges and simulating the performance.

Reference:
[1] R. Bhandari, �Optimal Diverse Routing in Telecommunication Fiber Networks�, Proc. IEEE INFOCOM�94, Toronto,

Ontario, Canada, Vol.3, pp.1498-1508, June 1994.
[2] Y. Bejerano, Y. Breitbart, A. Orda, R. Rastogi, and A. Sprintson, �Algorithms for Computing QoS Paths with

Restoration�, Proc. of IEEE INFOCOM�03, April 2003.
[3] D.A. Castanon, �Efficient algorithms for finding the K best paths through a trellis�, IEEE Trans. on Aerospace and

Electronic Systems, Vol. 26, No. 2, pp. 405-410, March 1990.
[4] C. Cheng, S.P.R. Kumar and J.J. Garcia-Luna-Aceves, �A distributed algorithm for finding K disjoint paths of minimal

total length�, Proc. 28th Annual Allerton Conference on Communication, Control, and Computing, Urbana, Illinois,
October 1990.

[5] H. De Neve and P. Van Mieghem, �TAMCRA: a tunable accuracy multiple constraints routing algorithm�, Computer
Communications, vol. 23, No. 7, pp 667-679, March 2000.

[6] R. Diestel, Graph Theory, Graduate Texts in Mathematics, Springer-Verlag New York, 1997.
[7] L.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, New Jersey, 1962.
[8] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, Freeman,

San Francisco, 1979.
[9] K.P. Gummadi, M.J. Pradeep and C.S.R. Murthy, �An Efficient Primary-Segmented Backup Scheme for Dependable

Real-Time Communication in Multihop Networks�, ACM/IEEE Transactions on Networking, vol. 11, no. 1, pp. 81-94,
February 2003.

[10] P-H Ho and H.T. Mouftah, �Issues on diverse routing for WDM mesh networks with survivability�, Proc. Tenth
International Conference on Computer Communications and Networks, pp. 61-66, 1997.

[11] G.F. Italiana, R. Rastogi and B. Yener, �Restoration Algorithms for Virtual Private Networks in the Hose Model�, Proc.
of IEEE INFOCOM�02, 2002.

[12] K. Kar, M. Kodialam and T. V. Lakshman, �Routing Restorable Bandwidth Guaranteed Connections using Maximum
2-Route Flows�, Proc. IEEE INFOCOM�02, 2002.

[13] M. Kodialam and T. V. Lakshman, �Dynamic Routing of Bandwidth Guaranteed Tunnels with Restoration�, Proc.
IEEE INFOCOM�00, 2000.

[14] M. Kodialam and T.V. Lakshman, �Restorable Dynamic Quality of Service Routing�, IEEE Communications
Magazine, pp. 72-81, June 2002.

[15] S.W. Lee and C. S. Wu, �A k-best paths algorithm for highly reliable communication networks�, IEICE Trans. on
Commun., Vol. E82-B, No.4, pp.586-580, April 1999.

[16] C-L Li, S.T. McCormick, D. Simchi-Levi, �The complexity of finding two disjoint paths with min-max objective
function�, Discrete Applied Mathematics, Vol. 26, No. 1, pp. 105-115, January 1990.

[17] W. Liang, �Robust routing in wide-area WDM networks�, Proc. of 15th Int'l Parallel and Distributed Processing Symp.,
San Francisco, April 2001.

 19

[18] C-C Lo and B-W Chuang, �A Novel Approach of Backup Path Reservation for Survivable High-Speed Networks�,
IEEE Communications Magazine, March 2003.

[19] R.G. Ogier, V. Rutenburg and N. Shacham, �Distributed algorithms for computing shortest pairs of disjoint paths�,
IEEE Trans. on Information Theory, Vol. 39, No. 2, pp. 443-455, March 1993.

[20] E. Oki and N. Yamanaka, �A recursive matrix �calculation method for disjoint path search with hop link number
constraints�, IEICE Trans. Commun., Vol. E78-B, No.5, pp. 769-774, May 1995.

[21] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization � Algorithms and Complexity, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1982.

[22] A. Sen, B.H. Shen, S. Bandyopadhyay and J.M. Capone, �Survivability of lightwave networks - path lengths in WDM
protection scheme�, Journal of High Speed Networks, vol. 10, no. 4, pp. 303-315, 2001.

[23] S.Z. Shaikh, �Span-disjoint paths for physical diversity in networks�, Proc. of IEEE Symposium on Computers and
Communications, pp. 127-133, 1995.

[24] D. Sidhu, R. Nair and S. Abdallah, �Finding disjoint paths in networks�, ACM SIGCOMM Computer Communication
Review, Proc. of the conference on Communications architecture & protocols, Vol. 21, No. 4, August 1991.

[25] J.W. Suurballe, �Disjoint Paths in a Network�, Networks, Vol. 4, pp. 125-145, 1974.
[26] J.W. Suurballe and R.E. Tarjan, �A Quick Method for Finding Shortest Pairs of Disjoint Paths�, Networks, Vol. 14, pp.

325-333, 1984.
[27] N. Taft-Plotkin, B. Bellur and R. Ogier, �Quality-of-Service Using Maximally Disjoint Paths�, Proc. of IWQoS

(International Workshop on Quality-of-Service), June 1999.
[28] Y. Tanaka, F. Rue-Xue and M. Akiyama, �Design Method of Highly Reliable Communication Network by the Use of

Matrix Calculation,� IEICE Trans., Vol. J70-B, No. 5, pp. 551-556, 1987.
[29] P. Van Mieghem, H. De Neve and F.A. Kuipers, "Hop-by-hop Quality of Service Routing", Computer Networks, Vol.

37. No 3-4, pp. 407-423, 2001.
[30] Z. Wang and J. Crowcroft, �QoS Routing for supporting Multimedia Applications�, IEEE J. Selected Areas in

Communications, Vol. 14, No.7, pp. 1228-1234, September 1996.
[31] J.K. Wolf, A.M. Viterbi and G.S. Dixon, �Finding the Best set of K paths through a trellis with application to

multitarget tracking,� IEEE Transactions on Aerospace and Electronic Systems, Vol. 25, No. 2, pp. 287-296, March
1989.

