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Delay Distributions on Fixed Internet Paths
Gerard Hooghiemstra and Piet Van Mieghem

Abstract�Based on end-to-end delay measurements of IP
probe-packets over a Þxed path obtained from RIPE NCC,
we model the stochastic part of the delay and propose sta-
tistical methods to analyse the data.
The Internet traffic on the Þxed path interferes with the

IP probe-packets. This is modeled as an alternating on/off
renewal process. On top of the delay caused by Internet
traffic, the IP probe-packets experience a random process-
ing delay due to scheduling and conversing of IP packets to
various lower layer technologies in the routers on the Þxed
path.
The total delay is both modeled parametricly and by a

non-parametric method. Although the data indicates that
the end-to-end delay distribution is heavy tailed, neither
a Pareto nor Weibull law provided sufficient accurate Þts.
The non-parametric method essentially enabled a stable de-
convolution that led to the delay due to Internet traffic.
Furthermore, the non-parametric method provides good es-
timates of the probability that the path is not loaded and
bounds on the queueing tail probabilities. Especially these
qualiÞers are useful for deploying real-time services on In-
ternet.

Keywords�End-to-end delay, stochastic modeling.

I. Introduction

Since the Internet is being regarded as the universal net-
work for both non-real-time and real-time services, serious
efforts are being devoted to verify whether the current best-
effort Internet can satisfy certain end-to-end delay bounds
for real-time service such as Voice over IP [18], [7], [21].
For example, a tolerable one-way mouth-to-ear delay for a
voice communication [21] is about 150 ms, while the pack-
etization delay depending on the codec varies from 20 ms
to 80 ms, leaving a remaining network end-to-end delay
budget ranging from 70 ms to 130 ms. In about 84% of
the cases as shown below, that remaining network end-to-
end delay is of the order of a one-way transmission time of
an IP-packet between two (arbitrary) routers in Internet.
Therefore, understanding the end-to-end delay components
in the (Inter)network is crucial to assess the possibility and
the level of quality of service (QoS) of real-time services and
to improve the current Internet architecture.
Several papers [4], [16], [10] and [21] report end-to-

end delay measurements, mostly based on round-trip time
(RTT). Difficulties with clock synchronization, asymme-
tries in the one-way and return path and path-variations
during the measurement limit RTT-based measurements.
To surmount these problems and because large amounts of
unicast traffic are necessary to cover substantial parts of
the Internet much attention is payed to multicast inference
(e.g. [2], [8] and [13]). The key idea in multicast inference is
to obtain performance measures of common links in a mul-
ticast tree based on the statistics of the multicast users.
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However, the above measurement techniques do not pro-
vide the accuracy of active, one-way delay measurements
as performed by RIPE NCC (outlined in Section II).
The end-to-end delay D experienced by probe-packets

over a Þxed path containing h hops (routers) consists of
two components: a deterministic Dd and a stochastic de-
lay Ds. The deterministic delay Dd adds the contributions
of the physical delay (speed of light/electromagnetic waves
through the links and the routers, roughly 5µs/km), the
time between time-stamp generation and effective start of
transmission of the probe-packet and of the bandwidth of a
link (y b/s-links imply a delay of x/y s to transmit an x bit
packet). The stochastic delay Ds is caused by interfering
Internet traffic on that Þxed path and by the random part
of the processing delay generated by the operation of the h
routers (table look-up, delay in the interface card, etc.). A
detailed study of a single-hop delay is presented by Papa-
giannaki et al. [19]. In this article, we mainly focus on the
stochastic delay Ds based on the RIPE NCC measurement
data, while the deterministic delay Dd is discussed else-
where [5]. Because of our conÞnement to separated, Þxed
paths, the stochastic delay Ds can be Þltered satisfactorily
from the total end-to-end delay D by subtracting the min-
imum end-to-end delay denoted by m experienced by the
probe-packets during the day.
In Section II we Þrst describe the RIPE NCC measure-

ment conÞguration and present histograms of the total end-
to-end delay D. In Section III, the stochastic delay DT
caused by Internet traffic (also called the queueing delay)
is modeled by one or more renewal processes while the pro-
cessing delay seems well modeled by a Gaussian. A sta-
tistical analysis on one particular, representative data set
which outlines the method is given in Section IV. Results
on various other paths by applying the analysis method
of Section IV are presented in Section V. The appendix
contains a mathematical proof.

II. Measurement data

RIPE NCC, the Network Coordination Centre of the
Réseaux IP Européen, is continuously measuring the delay
and the hopcount of IP-packets transmitted between Þxed
measurement boxes in some part of the Internet. At this
moment (summer 2001), about 40 measurement boxes are
scattered mainly over Europe. Between each pair of mea-
surement boxes, small IP packets of a Þxed length (100
bytes), called probe-packets, are transmitted with interar-
rival times of about 40 seconds, resulting in a total of about
2160 probe-packets per day. The sending measurement box
generates an accurate time-stamp synchronized via GPS in
each probe-packet, while the receiving measurement box
reads the GPS-time of the probe-packet upon arrival. The
end-to-end delay or one-way transit time of probe-packets
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is deÞned as the difference between these two time-stamps
and has an accuracy of 10µs. At regular times, path infor-
mation (the number of hops, IP addresses of intermediate
routers) between each pair of measurement boxes is ob-
tained from the trace-route utility. The speciÞc details of
the RIPE NCC measurement conÞguration are described
in [17].

In this article, we focus on end-to-end delay D of probe-
packets on Þxed paths between two measurement boxes.
SpeciÞcally, by choosing a certain date of a day and two
boxes, all end-to-end delays of probe-packets that follow
precisely the same path between the boxes during that day
are stored in a data set. From the large number of empiri-
cal delay distributions, the majority (over 80%) resembles
the shape as illustrated in Figure 1, which we further coin
as a typical delay distribution. Other, non-typical delay
distributions are shown and discussed in a companion pa-
per [5]. The total delay of probe-packets lies for the typical
RIPE NCC measurements between 10 to 400 ms. Figure 3
shows that the average end-to-end delays lie around 20 ms
to 40 ms. Non-typical delay distributions may broadly ex-
ceed 400ms with high probability making VoIP over these
paths fairly impossible. In this article, only typical delay
distributions will be analysed and modelled. To explain
the various steps in the modeling, we will refer through-
out this paper to the typical distribution of March 3, 2001
illustrated in Figure 1.
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Fig. 1. The histogram of a typical delay, measured from box A to
box B during a day. The number of samples N is found in the
legend.

In this illustrative example, a total of 2154 probe-packets
were transmitted over a Þxed path between measurement
box A and box B (the precise Internet Exchanges are conÞ-
dential), showing a well-determined minimum transmission
time of 5.11 ms, which justiÞes that the stochastic delayDs
is accurately obtained by subtracting this minimum trans-
mission time from the end-to-end delay D. Furthermore,
the histogram of the end-to-end delay D in Figure 1 has
been plotted on a log-lin scale to show the remarkably long
tail.

Since many articles report power law behavior for ob-
servables in Internet, we have analysed the data on log-log
scale and found, indeed, that in an intermediate region, the
normalized histogram (or the empirical probability density
fD(x) of the end-to-end delay D) can be Þtted reasonably
well by a line of the form log fD(x) = βr log x+ δr, where
the subscript refers to �raw�. The Þtted values of the power
βr (from an intermediate region only) are shown in Figure
2, together with the error bars.
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Fig. 2. The power βr versus the hopcount of the Þxed path for 38

typical paths, with average βr = −1.78 and standard deviation
sβr = 0.53.

Figure 2 illustrates that the power βr seems indepen-
dent of the hopcount h (number of traversed routers in
the Þxed path). Furthermore, the logarithm of the same
measured histogram fD(x) of the end-to-end delay D has

been Þtted by log (fD(x)) = ar |x− cr|br + kr in some re-
gion where the Þt eyed good. This type of Þt inspires a
Weibull-distribution rather than a polynomial distribution
as suggested in [19]. We observed that cr is close to the
minimum delay D as illustrated in Figure 3. As also ob-
served from Figure 1, the �shape� parameter br was always
negative (while ar > 0) in discrepancy with the Weibull
probability density function (11). Further, the parameter
ar and br seem correlated; a curve Þt of br versus ln(ar) sug-
gests a linear correlation br = −0.22 − 0.166 lnar. Again,
it is very unlikely that the shape parameter br (nor ar, cr)
is correlated with the hopcount h as illustrated in Figure
4.
The inspection of the �raw� end-to-end delay data on var-

ious plotscales does not convincingly lead to insight in the
tail behavior. An accurate estimate of the tail behavior
or Pr [D > x] is desirable, especially in the deployment of
real-time service in Internet. This motivates a more de-
tailed study of the (stochastic) end-to-end delay D(Ds).

III. Modeling the end-to-end stochastic delay
over a fixed path.

At Þrst glance, the stochastic end-to-end delay Ds over
a Þxed path of h hops may be modeled as a sum of the
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Fig. 3. The Þt parameter cr together with the minimum and average
delay of the end-to-end delay D per measurement.
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Fig. 4. The shape parameter br versus hopcount h for 31 paths with
average br = −1.02 and sbr = 0.36

stochastic delay Ds;j incured per router j along that path,

Ds =
hX
j=1

Ds;j (1)

One may further assume to a good approximation that all
Ds;j are statistically independent such that the probabil-
ity density function of Ds reduces to a convolution of the
probability densities of these independent Ds;j . The delay
per router Ds;j can be described by various single server
queueing models, with as simplest one an M/M/1-queue.
This approach has been followed earlier in [20]. Although
physically sound, when comparing the resulting probabil-
ity density function derived from this model to the Internet
measurements, two important discrepancies arose. First,
the traffic intensity turned out to be very low and second,
perhaps more interesting, the Internet data did not show
a clear correlation with the hopcount h which contradicts

the convolution model derived from (1). The seemingly in-
dependence of the end-to-end delay on the hopcount h as
illustrated in Figure 2 and Figure 4 necessitates another
approach. In fact, as discussed in Section III-C, we dis-
tinguish two components in the stochastic delay Ds: (a)
the router processing delay which is additive as in (1) and
(b) the delay caused by Internet traffic DT which does not
seem to reßect the additive structure.
In this article, we assume that the stochastic end-to-

end delay of IP packets along a Þxed path from a source
to a destination is mainly caused by Internet traffic on or
crossing the path. The idea is sketched in Figure 5 and
is analogous to the delay experienced by travelling from A
to B along a route with h intersections (or traffic lights).
Indeed, depending on the cars (traffic) interfering with us
and on the signs of the h traffic lights, the total time from
A to B equals the end-to-end delay. The phenomenon of
the disturbance by Internet traffic can be accurately mod-
eled by renewal theory, which we present in this section.
We model the lengths of epochs without Internet traffic on

source target

Internet
traffic

Internet
traffic

Fig. 5. The inßuence of Internet traffic

the Þxed path by open times having a distribution func-
tion denoted by F and the lengths of epochs with Internet
traffic by closure-times speciÞed by distribution function
G. During closure times the probe-packet experiences a
delay untill the path opens, whereas during the open times
the probe-packet travels without interference of other In-
ternet traffic and incurs no stochastic delay. On top of
the stochastic delay caused by Internet traffic, modeled by
one or a concatenation of renewal processes, our probe-
packet experiences additional stochastic delay caused by
the scheduling of tasks within routers.
We will Þrst compute the stochastic delay due to one In-

ternet traffic stream, followed by a concatenation. Finally,
these delays are augmented by the additional stochastic
delay due to processing (scheduling and inßuence of lower
layer technologies).

A. One renewal process

We consider two i.i.d. sequences: the sequence
X1,X2, . . . representing the lengths of intervals during
which our speciÞc path is open (for the probe-packet) and
the sequence Y1, Y2, . . . during which our speciÞc path is
closed (or blocked). The two sequences are also assumed
to be independent of one another. The probability distri-
bution function of Xj (Yj) is denoted by F (G).
Now deÞne on the postive real axis the renewal epochs:

X1 + Y1, . . .,
P
i≤j(Xi + Yi), . . ., as indicated in Figure 6.

A probe-packet that arrives at time t during a closed (Y )
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Fig. 6. An alternating renewal process: During the periods with
length Xj the path is open; during the periods with lengths in-
dicated by Yj the path is closed.

interval experiences a stochastic delay of magnitude

X
i≤j
(Xi+Yi)−t, if t ∈

 X
i≤j−1

(Xi + Yi) +Xj ,
X
i≤j
(Xi + Yi)


(2)

while probe-packets that arrive during open (X) intervals
are not delayed by Internet traffic.
Let N(t) be the number of renewals of X + Y ,

N(t) = max{j ≥ 0 :
X
i≤j
(Xi + Yi) ≤ t} (3)

The stochastic delay βt of a probe-packet arriving at time
t due to Internet traffic then equals

βt = 0,

if
PN(t)
i=1 (Xi + Yi) < t <

PN(t)
i=1 (Xi + Yi) +XN(t)+1 and

βt =

N(t)+1X
i=1

(Xi + Yi)− t,

if
PN(t)
i=1 (Xi + Yi) +XN(t)+1 < t <

PN(t)+1
i=1 (Xi + Yi).

In the appendix we prove
Theorem 1: For non-arithmetic distributions F and G,

lim
t→∞Pr [βt > u] =

R∞
u
[1−G(x)] dx
µF + µG

, (4)

where µF = E [X] =
R∞

0 [1− F (x)] dx, is the average open
time and µG = E [Y ] =

R∞
0 [1 − G(x)] dx is the average

closure time.
For the illustrative example in Figure 1, the total delay

lies roughly between 5 and 11ms. The stochastic delay cov-
ers roughly the interval from 0 to 6 ms. These values are
small compared to the time between probe-packets, which
is of the order of 40 s. Hence, if the Internet traffic on
the path can be modeled by an alternating renewal pro-
cess, it is reasonable to assume that we sample from the
distribution given in Theorem 1.
The probability that the stochastic delay equals zero is

1− lim
t→∞Pr [βt > 0] = 1− 1

µF + µG

Z ∞

0

[1−G(y)] dy

=
µF

µF + µG
,

and is proportional to the mean durations µF and µG. If β
denotes the steady state limit of the stochastic delay, then
Theorem 1 can be rephrazed as

Pr [β ≤ u] = 1−
R∞
u
[1−G(x)] dx
µF + µG

= p+ qGR(u), (5)

where GR(u) = (µG)
−1
R u

0
[1−G(x)] dx is the residual dis-

tribution of G and p = µF/(µF +µG), while q = 1−p. The
form (5) exhibits the two components: the atom at u = 0
with magnitude p, the probability that the probe-packet is
not delayed, and a residual distribution function qGR(u),
effective for u > 0.

B. More than one renewal process

In the preceding section the delay caused by Internet
traffic was modeled by one alternating renewal process.
It is more realistic to assume that different links of the
path are used by various other Internet streams and that
our probe-packet is possibly delayed by one or more Inter-
net traffic streams. We assume that the different Internet-
streams can be modeled as independent renewal processes
as sketched in Figure 5.
Let us Þrst concentrate on the stochastic delay modeled

by two independent renewal processes, β(1)+β(2). Assume
that for i = 1, 2,

Pr
h
β(i) ≤ u

i
= pi + (1− pi)G(i)

R (u),

and where β(1) is taken statistically independent of β(2).
We Þnd that

Pr
h
β(1) + β(2) ≤ x

i
=

Z x

0
Pr
h
β(2) ≤ x− u

i
dPr

h
β(1) ≤ u

i
= p1 Pr

h
β(2) ≤ x

i
+Z x

0
(p2 + q2G

(2)
R (x− u)) q1

µG1

(1−G1(u)) du

= p1p2 + p1q2G
(2)
R (x) + p2q1G

(1)
R (x)

+
q1q2

µG1
µG2

Z x

0
G

(2)
R (x− u)(1−G1(u)) du.

Hence the atom at 0 is p1p2 and the density part equals

p1q2[1−G2(x)]

µG2

+
p2q1[1−G1(x)]

µG1

+
q1q1

µG1
µG2

Z x

0

(1−G2(x− u)) (1−G1(u)) du.

We observe that, for both one and two (indepedent) re-
newal processes, the stochastic delay leads to an atom at
zero and a continuous part on (0,∞). By mathematical
induction, the stochastic delay of a concatenation of three
or more independent renewal processes remains a mixed
distribution of the form (5).

C. Router processing delay

As mentioned in the introduction the delayD of a probe-
packet consists of different components. In the previous
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subsection we have modeled the stochastic delay caused by
Internet traffic. In this subsection we will derive a model
for the probability density ϕ of the total end-to-end delay
D, which also yields the density model for Ds by shifting
the density ϕ over the minimum delay m towards zero.
As observed in [5], over 80 % of the delay histograms of

the RIPE NCC data are Gamma-shaped (they are close to
a Gamma probability density function, in Þrst order). If
the delay D consisted only of a deterministic component
together with the random delay caused by Internet traffic,
the RIPE data histograms would be identically equal to
zero up to this deterministic length and then exhibit an
atom at this position. This is clearly not the case and a
reasonable explanation is as follows. Due to other com-
putational tasks in the routers and the variable processing
time which depends on speciÞc layer technologies (IP over
SDH/optics, IP over ATM, etc.), for each router a random
(continuous) delay should be added on top of the stochas-
tic delay caused by Internet traffic. In the terminology of
queueing theory, the processing delay in each router can be
interpreted as the (stochastic) service time of the router.
Figure 7 displays two histograms obtained from a sim-

ulation. In the left hand side histogram we have simu-
lated the delay , which originates from one renewal process
with exponential on and exponential off times shifted over
m = 5.11. One clearly identiÞes the atom at 5.11 ms with
magnitude p = 9/16. The right hand side histogram shows
the convolution of the stochastic delay modeled by the same
renewal process and a uniformly distributed processing de-
lay, which indeed resembles a Gamma-shape.
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Fig. 7. Simulated delays (number of repetitions is 1598); left plot
only renewal delays, right plot renewals plus a random shift

Summarizing, on top of the a stochastic delay caused by
Internet traffic with distribution function of the form (5),
the routers (all together) cause an additional �processing�
delay with probability density ϕ2 which includes the min-
imum deterministic delay m. The independent sum of the
minimum deterministic delay m, the Internet traffic delay

and router processing delay has probability density func-
tion

ϕ(t) = pϕ2(t) + qϕ1 ∗ ϕ2(t), t ≥ 0, (6)

with ϕ1 ∗ ϕ2(t) =
R t

0
ϕ2(u)ϕ1(t− u) du.

The validity of the above approach can be further jus-
tiÞed using the illustrative data set from the RIPE data
and by lab-measurements on isolated routers. During this
day a total of 2130 IP-packets1 were sent over a Þxed path
from source box A to target box B. Analyzing the delay
over periods of two hours the delay measurements during
night-hours (from 2.00 AM to 8.00 AM) are found to be
strikingly different from the remaining hours as illustrated
in the table below

0-2 2-4 4-6 6-8 8-10 10-12
mean delay (ms) 5.45 5.35 5.34 5.35 5.51 5.64
variance (ms)2 0.21 0.05 0.03 0.04 0.41 0.57
minimum (ms) 5.17 5.14 5.15 5.14 5.11 5.17

12-14 14-16 16-18 18-20 20-22 22-24
mean (ms) 5.76 5.83 5.59 5.65 5.57 5.49
var (ms)2 0.80 0.85 0.50 0.44 0.37 0.26
min (ms) 5.18 5.18 5.15 5.18 5.18 5.19

The variance of the delay during the night (< 0.05 (ms)2)
is approximately 10 percent of the variance during the
day. We therefore separated the delay measurements into a
night and day period. The night period (from 2.00 AM-8.00
AM) contains 532 data-points, the remaining 1598, data-
points (not between 2.00 AM and 8.00 AM ) form the data
for the day period. In Figure 8 we display the histograms
of the total delay D.
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Fig. 8. Normalized histograms of delays; left during daytime right
delay during night-time

During the night hours there is hardly any Internet traf-
Þc. Indeed, inspection of the (night-)histogram indicates

1We have removed 24 outliers whose value could be clearly shown
as due to experimental errors.
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that the density during the night hardly reßects Internet-
delay, except perhaps for some values in the right tail be-
yond2 5.5 ms. If night-delays with values larger than 5.5
ms are ignored, a bell-shaped density remains that can be
well approximated by a Gaussian density with the mean
µ = 5.30 ms and standard deviation σ = 0.078 ms.
The total delay measured with 1, 2 and 3 routers between

two similar boxes as used in the RIPE data, but under
lab conditions and on a physical negligible distance, gave
similar results (cf. [5]). It is impossible to compare the
mean router processing delay with the path mean µ = 5.30,
because the latter includes the unknown physical delay m.
However the measured delay under lab conditions exhibits
a symmetric density. Moreover, if we extrapolate the lab-
measured standard deviation of σ = 0.014 ms for 1 router
to the above path, containing h = 10 routers, we obtain
σh ≈ σ

√
h or σh ≈ 0.044 ms, which is of the same order of

magnitude as our estimated value of 0.078 ms.
In summary the end-to-end delay D of a Þxed path can

be modeled by a density ϕ(t) of the form (6). Apart from
the delay caused by Internet traffic, which is modeled by
the mixture p+(1−p)ϕ1(t), we identiÞed that the process-
ing delay (of all routers together) can be well approximated
by a Gaussian density,

ϕ2(t) =
1

σ
√
2π
e−

(t−µ)2

2σ2 (7)

where µ includes the minimum deterministic delay m.

IV. Statistical analysis of the end-to-end delay
data.

In Willinger et al [22], an extensive study was made
to asses the distributions of on- and off-periods for In-
ternet traffic between Þxed source and destination pairs.
Quite convincingly they showed that the off-period follows
a power law. However, from their log-log plot of the com-
plementary distribution of the on-period, it is in our opin-
ion less clear that this distribution exhibits a power law.
Recall that the on-periods are the periods during which our
probe-packet is blocked, if Internet traffic happens to use
(partly) our Þxed path.
The three proposed parametric models for the stochas-

tic delay caused by Internet traffic DT , (a) the exponen-
tial model, (b) the Weibull model and (c) the polynomial
(or Pareto) model, all exhibit discrepancies with the data.
Hence, parameter curve Þtting or maximum likelihood es-
timation to unravel the Internet traffic from end-to-end
delay measurements leads to poor tail results in the pres-
ence of a dominating processing delay component. There-
fore, we have included a focused deep tail analysis while
subsection IV-E concentrates on a deconvolution technique
which yields a non-parametric maximum likelihood estima-
tor (NPMLE) for DT .

2The choice of the threshold 5.5 ms may seem arbitrary but can in
fact be taken equal to the mean 5.34 ms of the night-data augmented
with the difference between the mean 5.34 ms and the minimum 5.14
ms. The resulting threshold is then 5.54 ms.

A. An exponential density for ϕ1(t)

In this subsection the delayDT caused by Internet traffic
is modeled by one alternating renewal process with expo-
nential closure periods (the closure periods correspond to
the periods where the Internet traffic has an on-period).
Hence

ϕ1(t) = λe
−λt, t ≥ 0,

where λ−1 models the mean length of the closure period.
The density (6) of the end-to-end delay can be evaluated
exactly as

ϕ(t) = pϕ2(t) + λ(1− p)
Z t

−∞
e−λ(t−s)ϕ2(s) ds. (8)

Assuming that µ and σ are known, the parameters λ and
p can be estimated by the method of maximum likeli-
hood. We deÞne the log-likelihood L, given the observations
t1, t2, . . . , tn,

L(λ, p) = log

(
nY
i=1

ϕ(ti)

)

=
nX
i=1

log

½
pϕ2(ti) + λ(1− p)

Z ti

−∞
e−λ(ti−s)ϕ2(s) ds

¾
To Þnd the arguments �λ and �p that maximize the likelihood
or equivalently the log-likelihood we calculate the partial
derivatives of Lwith respect to p and λ, and put them equal
to 0. Using identity (8), these equations are equivalent to

nX
i=1

ϕ2(ti)

ϕ(ti)
= n, (9)

λ2
nX
i=1

R ti
−∞(ti − s)e−λ(ti−s)ϕ2(s) ds

ϕ(ti)
= n. (10)

Given the values of µ and σ in (7) the equations (9) and

(10) can be solved numerically, to obtain λ = �λ and p = �p,
the ML-estimates.
We subsequently apply the model (8) to the realisations

t1, t2, . . . , tn of the n = 1598 delay-measurements between
the boxes A and B, during the day period of March 3,
2001. The parameters µ and σ for the router processing
delay in (7) are extracted from the night data, as indicated
in Section III-C.
The ML-estimates obtained from (9) and (10) are

�p = 0.580 and �λ = 1.39

The Þt of the density ϕ speciÞed by (8) using the above
estimates for µ, σ, p, λ, with the normalized histogram of
the data is good, except in the tail as observed from the
Figure 9.

B. A Weibull density for ϕ1(t).

A Weibull density is considered as model for ϕ1(t),

ϕ1(t) = abtb−1e−at
b

, (11)Z t

0

ϕ1(u)du = 1− e−atb ,
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Fig. 9. Internet end-to-end measurements (dots) Þtted with expo-
nential closure times, i.e. model (8) in full line.

with expectation and varianceZ ∞

0

tϕ1(t)dt =
Γ
¡
1+ 1

b

¢
a1/b

= ν,Z ∞

0

(t− ν)2 ϕ1(t)dt =
Γ
¡
1+ 2

b

¢− Γ2
¡
1+ 1

b

¢
a2/b

.

The ML optimization is best if p = 0.30, a = 2.12 and b =
0.51. Both Þt and normalized histogram data are shown in
Figure 10.

0.01

0.1

1

φ
(t

)

1211109876

t [in ms]

 Normalized histogram
 φ1(t) : Weibull

Fig. 10. Both measurement data and the optimal Weibull-Þt

C. A Polynomial (Pareto-like) density for ϕ1(t)

We now assume that the entire probability density (and
not only the tail) of the closure period behaves polynomi-
ally, as a Pareto law, with

ϕ1(t) =
α

τ

µ
1+

t

τ

¶−α−1

, t ≥ 0, (12)

where an additional parameter τ is introduced to Þt the
Internet traffic for intermediate values of t. Observe that

R∞
0 tϕ1(t)dt =

τ
α−1 , implying that α > 1 in order for the

mean to exist. As shown previously, the parameters µ and
σ of the normal density ϕ2 in (7) are estimated using the
night-data. The Þnal three parameters p, τ and α are again
estimated by the ML method. For different τ with τ =
0.252 the overall optimum, we Þnd

p τ α
0.49 1 2.59
0.45 0.5 1.72
0.38 0.25 1.21
0.39 0.27 1.25

where in the last row α = 1.25, the Hill estimate obtained
in sec. IV-D.2 below, has been Þxed.
These Þts are shown in Figure 11.
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φ
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)
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 N o rm alized his to gram  data
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 p  =  0 .3 8 5  τ  =  0 .2 5   α  =  1 .2 1
 p =  0 .4 9 4  τ  =  1   α  =  2 .5 9  
 deep ta i l

Fig. 11. Both measurement data and the polynomial model on a
log-log scale. Clearly, the deep tail coincides with the overall
optimum.

D. The tail analysis

In this subsection we apply three different methods to
investigate the tail-behavior of our delay measurements:
(i) the mean excess, (ii) the Hill estimator and (iii) the
α-stable method. We focus on the same data as before,
consisting of the n = 1598 measurements during the day-
period of March 3, 2001, between the boxes A and B.
As before we consider these measurements as realisations

t1, t2, . . . , tn of a statistical sample T1, T2, . . . , Tn from the
density (6). The minimum delay will be denoted by m (its
realisation equals 5.11 ms.); we will denote the mean of the
sample by Tn, the mean of the data (the realisation of Tn)
is denoted by tn and is equal to 5.61 ms.
Since the Gaussian density ϕ2 has a light tail, ϕ1 ∗ϕ2(t)

has the same tail behavior as ϕ1, if ϕ1 exhibits a heavy
tail. SpeciÞcally (cf. [3]), if

ϕ1(t) ∼ c1 · t−(1+α), t→∞, (13)

then
lim
t→∞ t

1+αϕ1 ∗ ϕ2(t) = c2, (14)

for some unspeciÞed constant c2. We conclude that poly-
nomial tail behavior of the density ϕ1, which models the
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stochastic delay DT caused by Internet traffic, implies that
also the total stochastic delay modeled by (6) has such
tail behavior with the same parameter α. Therefore, for
a tail analysis, we can concentrate directly on the data
t1, t2, . . . , tn.

D.1 The mean excess method

The mean excess function of a random variable X, with
right end point +∞ is for u > 0 deÞned by

me(u) = E [X − u|X > u]

For a Pareto random variable with density speciÞed in (12),
the function me(u) is linear, with positive slope 1

α−1 (for
α > 1). Indeed, if the complementary distribution function
of the Pareto is deÞned as

1−Φ1(t) =

µ
1+

t

τ

¶−α
, t > 0,

then we obtain for a Pareto random variable,

me(u) =
1

1−Φ1(u)

Z ∞

u

(1−Φ1(y)) dy

=
τ

α− 1 +
u

α− 1 .

One can consult Figure 6.2.4 of Embrechts et al. [9] for
the form of the mean excess function for other standard
distributions.
The mean excess function is a graphical tool to decide

between different tail behaviour. In Figure 12, we plot the
mean excess for 20 simulations (each of size n = 1598)
of the Pareto distribution with (the optimal) parameters
α = 1.25 and τ = .27, together with the empirical mean
excess obtained from the data. The empirical mean excess
function is obtained from the formula

men(u) =
1

1−Φn(u)
Z ∞

u

(1−Φn(x)) dx,

where Φn is the empirical d.f. of t1−m, t2−m, . . . , tn−m,
the raw data diminished with the minimum delay m. If we
Þt a straight line in a linear region of the empirical mean
excess, that is the region not inßuenced by the normal dis-
tribution (the segment between 1 and 5 ms) as illustrated
in the insert in Figure 12, we Þnd 1.55−0.23t, and hence a
negative slope. It is difficult to draw conclusions from this.
As observed from the wide variability in the mean excess
of the 20 simulations in Figure 12, we feel that the mean
excess plot is doubtful to provide a reliable (or meaningful)
estimate of the heavy tail parameter α.

D.2 The Hill estimator.

A reliable method to estimate the tail index in the pres-
ence of a heavy tail is the Hill estimator. Suppose again
that the tail of the Internet delay density ϕ1(t) satisÞes
(13). The extreme value index γ = 1/α, can be estimated
with the Hill estimator [12]:

�γ =

"
1

k

kX
i=1

log
¡
t(n−i+1) −m

¢− log ¡t(n−k) −m
¢#
,

20

15

10

5

m
ea

n 
ex

ce
ss

543210

delay t [in ms]

1.2

1.0

0.8

0.6

0.4
543210

t [in ms]

Fig. 12. Mean excess for 20 simulations of a Pareto distribution (12)
with α = 1.25 and τ = 0.27 in dotted line and the data in bold
line. The insert shows mean excess of the data versus delay t.
The linear Þt satisÞes 1.55-0.23t.

where t(1), t(2), . . . , t(n) are the order statistics of the data
(the sorted data) and, where k is the number of highest
order statistics that are used. If the Hill estimator �γ(k)
stabilizes for increasing k to a consistent value �γ, as is the
case with our data (see Figure 13), this value �γ (here equal
to 0.8) provides an estimate for the power α = 1

γ , thus herebα = 1.25. However, as discussed in [6], if the underlying
process does not obey a pure power law, the Hill estimator
may not be adequate. This is indeed questionable if we
inspect the log-log plot of the complementary distribution
function as shown in full line in Figure 14. Figure 13 shows

8

7

6

5

4

3

2

1

1/
γ

(k
)

100806040200

k [in %]

Fig. 13. The behavior of γ(k) as function of k where k is expressed
in %, i.e. k = 100% implies that all n = 1598 data samples are
used.

that over a large range �α = 1.25, which is consistent with
the polynomial Þt that led to α = 1.21, as demonstrated
in Section IV-C. Finally, the Hill-estimator �γ = �γn,k is
known to be consistent (meaning that if the sample size
n increases the estimator �γ will converge in probability to
the true value γ, cf. [15]).
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D.3 The α−stable method
In a recent paper [6], Crovella and Taqqu describe a pro-

cedure to determine the tail index α for distributions of the
form

Pr [X > x] = x−αL(x),

where L is a slowly varying function at inÞnity, i.e.,

lim
t→∞

L(tx)

L(t)
= 1,

for each Þxed x ≥ x0.
The procedure estimates α by aggregating the centered

data u1 = t1 − t̄n, u2 = t2 − t̄n, . . . , un = tn − t̄n. More
precisely it gives estimates for α, based on u

(k)
1 , . . . , u

(k)
nk ,

for k = 1, 21, . . . , 2d, where

u
(k)
i =

ikX
j=(i−1)k+1

uj .

Figure 14 displays for d ≤ 5 the tails of the empirical
complementary distributions on log-log scale. For an α-

-6

-5

-4

-3

lo
g(

Pr
[D

-E
[D

] >
 x

])

3.02.52.01.51.00.5

log(x)

 raw data
 d = 0
 d = 1
 d = 2
 d = 3
 d = 4
 d = 5

Fig. 14. The α-stable method where 10% of the largest delay data
has been used.

stable law these plots should all be parallel with slope
−α. Comparison with the plots given in Crovella and
Taqqu [6] learns that the centered end-to-end delay data
u1, u2, . . . , un does not satisfy a clean α-stable law, not
even in the tail. If one would insist on an estimate of α,
curve Þtting gives α = 2.99, based on k = 2 (d = 1) and
k = 4 (d = 2), which run more or less parallel. This value
is not comparable with the value obtained from the Hill
estimator αHill = 1.25.

E. Non-parametric maximum likelyhood estimation

If we assume that the processing delay ϕ2 is speciÞed
by a Gaussian probability density (7) with mean µ and
variance σ2, the distribution of the stochastic end-to-end
delay DT caused by Internet traffic can be obtained by
deconvolution. We Þrst subtract from the delay sample

T1, T2, . . . , Tn the known mean µ to obtain the translated
sample

Z1 = T1 − µ,Z2 = T2 − µ, . . . , Zn = Tn − µ.

According to (6), Z1, . . . , Zn is a sample from the density

pgσ(z) + (1− p)(ϕ1 ∗ gσ)(z), (15)

where gσ(z) =
exp(−x2/2σ2)

σ
√

2π
is a Gaussian density with

zero mean and variance σ2. Let us denote the cumu-
lative distribution function (c.d.f.) of DT by H(t) =

p + (1 − p) R t0 ϕ1(u) du, then equation (15) reads (using
Lebesgue-Stieltjes integrals)Z

gσ(z − x) dH(x), (16)

where the unknown H is concentrated on the interval
[0,∞). Groeneboom and Wellner [11, Chapter 2] have
presented a method to Þnd a non-parametric maximum
likelihood estimator (NPMLE) �Hn for the unknown c.d.f.

H. These authors show that �Hn satisÞes the so-called �self
consistency equation� [11, Eq. (2.4)],

�Hn(t) =
1

n

nX
i=1

R
[0,t] gσ(zi − x) d �Hn(x)R

[0,∞) gσ(zi − x) d �Hn(x)
, (17)

where the sample Z1, . . . , Zn assumes the values z1, . . . zn.

To calculate �Hn, one can use the EM (expectation-
maximization) algorithm [11, Chapter 3] which is known
to converge to the NPMLE [23]. Since our variance σ2 is
small, the EM algorithm converges rather quickly. In our
case the EM algorithm is equivalent to iterating the self
consistency equation (17),

�H(k+1)
n (t) =

1

n

nX
i=1

R
[0,t]

gσ(zi − x) d �H(k)
n (x)R

[0,∞)
gσ(zi − x) d �H(k)

n (x)
,

where �H
(k)
n is the k-th iterative approximation of �Hn. As a

result we obtain the NPMLE �Hn, especially the estimators
for the probability p (no Internet traffic) and estimators of
the quantiles of c.d.f. H.

From Figure 15 we Þnd estimates for p = 0.55, the prob-
ability that there is no Internet traffic on the current path
and for the quantiles. For instance, with probability 0.95
the end-to-end delay caused by Internet traffic does not ex-
ceed 1.92 ms, while with probability 0.99 that delay does
not exceed 3.75 ms. The power of this non-parametric
method lies in the fact that no model for ϕ1 needs to be
proposed. Moreover, it is more stable than a deconvolution
process based on transforms. Observe, however, that the
NPMLE �Hn has a Þnite endpoint. More precisely [11, p.

55], �Hn(z(n)) = 1, where z(n) = t(n) − µ = Dmax is the
largest data point.
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Fig. 15. The c.d.f of the various presented models.

F. Comparison of the different models.

Four different estimates for the delay due to Internet
traffic have been investigated,
(i) Exponential, with parameter λ,
(ii) Pareto, with parameters τ and α,
(iii) Weibull, with parameters a and b,
(iv) NPMLE (the non-parametric maximum likelihood es-
timator).
Figure 15 summarizes the results of these various models.

Each of these estimates consists of a density function ϕ1

and a probability p. Using our model assumption (6), with
the normal density ϕ2, the above cases give an estimate of
the density ϕ of the total delay D. For any interval [s, t],
an estimate e[s,t] for the expected number of data points of
the total n that are contained in the interval [s, t] yields

e[s,t] = n

Z t

s

ϕ(u) du

= np

Z t

s

ϕ2(u) du+ n(1− p)
Z t

s

ϕ1 ∗ ϕ2(u) du,

This allows us to compare the above established model esti-
mates for the Internet traffic with the RIPE data. For each
of the 4 choices (with for each parametric case the optimal
parameters), we have calculated the expected frequency ei
of a given cell i, and have compared this frequency with the
observed frequency oi of the data on the Þxed path from
box A to box B. For these two boxes all data is between 5
and 12 ms and the width of a cell was chosen equal to 0.02
ms. For instance for case (i), we took λ = 1.39 and p = .58
and have calculated for cells ci in the range from 5 to 12
ms, the expected value as

ei = n

Z
ci

½
pϕ2(u) + λ(1− p)

Z u

−∞
e−λ(u−v)ϕ2(v) dv

¾
du.

Here n = 1598, since this is the total number of packets sent
during day time, and for the normal density ϕ2 we used the
parameters µ = 5.30 ms and σ = 0.078 ms. A statistically
sound procedure consists of calculating the χ2-statistic

χ2 =
kX
i=1

(ei − oi)2/ei, (18)

where k is the total number of cells with positive expected
value ei. Here, the number k =

12−5
0.02 +1 = 351, because all

4 models are continuous, and hence, all cells between 5 and
12 have positive expectation. The table below presents the
results

Expon. Pareto Weibull NPMLE
χ2 901 516 531 302

The best Þt (lowest χ2) is reached by the NPML esti-
mator. The expectation of a χ2-statistic based on k cells
equals k− 1, its standard deviation is given by p2(k − 1).
The χ2-statistic with k large can be approximated by a nor-
mal distribution, with the same mean and variance, which
directly supplies the probabilities for the goodness of the
Þt. It evidences against the correctness of the paramet-
ric models. Only the NPMLE is in accordance with the
expected value.

V. Analysis on other fixed paths.

According to the methodology explained in previous sec-
tions, the end-to-end delay of other paths has been anal-
ysed and the stochastic delay DT due to Internet traffic
has been extracted using the non-parametric method. The
results are summarized in the table below.

pathID h µ [ms] σ [ms] p 95% 99%
1 10 5.30 0.078 0.55 1.92 3.75
2 16 19.45 0.116 0.43 4.98 9.16
3 12 24.97 0.075 0.01 77.0 95.2
4 15 19.09 0.077 0.64 1.65 2.85
5 7 0.98 0.050 0.00 5.20 12.1

The last two columns give the delay value in ms corre-
sponding with 95% and 99% quantile, respectively. The
standard deviation σproc of the processing delay per router
equals σproc =

σ√
h
, which yields for the path under consid-

eration,

pathID σproc [µs]
1 25
2 29
3 22
4 20
5 19

The measured σproc at RIPE NCC equals 10 µs with one
router and 14 µs per router, when measured in a conÞg-
uration with two routers. Papagiannaki et al. [19] report
closely agreeing values of σproc ranging from 13µs to 24µs.
Figure 16 compares the distribution Pr [DT < xDmax]

(where x ∈ [0, 1]) for these paths and illustrates a large
variety in the behavior. For small values of x, the prob-
ability p that the probe-packet is not delayed is deci-
sive. Small values of p may hint towards fairly loaded
paths, while high values of p towards non-congested or
over-dimensioned paths. Figure 17 shows in essence the
same information as in Figure 16 on different scales. Es-
pecially the intermediate region of Pr [DT > xDmax] = 1−
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Fig. 16. The c.d.f of the random delay due to Internet traffic for 5
different paths versus the normalized delay x = d

Dmax
.

Pr [DT < xDmax] is observed to be reasonably linear. Af-
ter Þtting in the largest possible region where the function
ln (Pr [DT > xDmax]) = a1x+ a2 is appearently linear, we
found for the different paths the following results
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Fig. 17. The logarithm of Pr[DT > xDmax] versus x for the Þve
paths.

pathID a1 a2

1 -5.49 -1.3
2 -5.93 -1.1
3 -2.53 -1.0
4 -22.8 -1.0
5 -4.51 -1.6

Clearly, Pr [DT > xDmax] for paths 1, 2 and 5 behave
fairly well exponentially with rate around −5. The expo-
nential behavior of path 3 and 4 seems less pronounced.
Finally, the deep tail is not exponential for any of these
paths. Only the tail of path 4 was sufficiently linear on
ln (Pr [DT > xDmax]) versus lnx plot with slope -1.34. The
other paths were not convincingly linear on that plot. In
summary, there does not seem to exist a single, simple
shape for the delay caused by Internet traffic on Þxed paths.

We may conclude that either much more measurements
(than about 2150 in our case) are needed to determine the
tail region or that the end-to-end delay measurements on
a Þxed path are not the best way to detect the underlying
physical (long range or self-similar) mechanisms.

VI. Conclusions

The stochastic end-to-end delay of IP probe-packets on
Þxed paths has been investigated between various measure-
ment boxes scattered over mainly a European part of the
Internet. That stochastic end-to-end delay was found to
consist of two components: (i) a router processing delay
and (ii) queueing delayDT caused by Internet traffic. From
lab-measurements presented elsewhere [5], we succeeded in
identifying the distribution of the router processing delay
as the independent sum of symmetric shaped delay vari-
ables, which are satisfactorily approximated by a Gaussian
distribution.
The queueing delay DT due to Internet traffic was mod-

eled by on/off processes to explain the blocking of the IP
probe-packet over the Þxed path. The combination of both
router processing delay and queueing delay lead to the ba-
sic model (6) for the total delay.
For the queueing delay DT , represented by ϕ1(t) in the

basic model (6), we have proposed to examine the expo-
nential, the Pareto and the Weibull distribution. Using
the maximum likelihood method, best Þt parameters were
obtained that, unfortunately, seem to lead to poor rep-
resentation of the orginal data. One explanation may be
sought in the limited number of intermediate or �tail� obser-
vations. Another suggestion is that neither of the proposed
models seems to capture the speciÞc tail behavior accu-
rately enough. At last, the analysis has implicitly assumed
that the Internet traffic was stationary (or in steady state),
characterized by one distribution function ϕ1(t) during the
measurement period.
On the other hand, we succeeded in deconvolving the

stochastic end-to-end delay to obtain a non-parametric
maximum likelihood estimate (NPMLE) of the distribu-
tion function of the delay DT caused by Internet traffic.
The interest of the NPMLE lies in the accurate estimate
of the probability p that a probe-packet is not delayed by
Internet traffic. This performance measure p of the path
between the two boxes also reßects the probability that
the path is unloaded. The quantiles of the NPMLE give
pre-designed probabilities bounds for the queueing delay
caused by Internet traffic. These bounds are valuable to
deploy quality real-time services on Internet, in particular
the well-studied and basic telephony over Internet service.
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VII. Appendix

Proof of Theorem 1: Consider the case where X1 = x
and Y1 = y are given. If X1 + Y1 = x+ y happens before
time t, so if x + y < t, then the Þrst renewal of occurs
before time t and the event {βt > u|X1 + Y1 = x+ y} has
the same probability as the event {βt−x−y > u}, because
the renewal process starts from scratch at time x + y. If
on the other hand x + y > t, the residual closure time βt
is contained in the Þrst renewal interval [0, x+ y]. In this
case we can only have βt > u if t > x and x + y − t > u
hold simultaneously. Hence,

Pr [βt > u|X1 = x, Y1 = y] = Pr
£
βt−x−y > u

¤
,

if x+ y < t and

Pr [βt > u|X1 = x, Y1 = y] = I(t > x) · I(x+ y − t > u),
if x+ y > t.
Denoting for u Þxed, Z(t) = Pr [βt > u] we obtain:

Z(t) =

Z
x

Z
y
Pr [βt > u|X1 = x, Y1 = y] f(x)g(y) dxdy

=

Z Z
x+y<t

Pr
£
βt−x−y > u

¤
f(x)g(y) dxdy

+

Z
x<t

Z
y>t+u−x

f(x)g(y) dydx

or equivalently, with the notation:

C(t) = F ∗G(t) =
Z t

0

F (t− s)dG(s)

=

Z t

0

F (t− s)g(s) ds,

Z ∗C(t) =

Z t

0

Z(t− s)dC(s)

=

Z t

0

Z(t− s)[
Z s

0

f(s− v)g(v) dv] ds,

the renewal equation:

Z(t) = z(t) + Z ∗ (F ∗G)(t),
where

z(t) = Pr [X < t, Y > t+ u− x]
=

Z
x<t

Z
y>t+u−x

f(x)g(y) dydx.

By the key-renewal theorem:

lim
t→∞Pr [βt > u] =

1

µF + µG

Z ∞

0
z(t) dt

=
1

µF + µG

Z ∞

0

Z t

0
f(s)[1−G(u+ t− s)] ds dt

=
1

µF + µG

Z ∞

0
f(s)

Z ∞

s
[1−G(u+ t− s)] dt ds

=
1

µF + µG

Z ∞

0
f(s)

Z ∞

0
[1−G(u+ y)] dy ds

=
1

µF + µG

Z ∞

u
[1−G(y)] dy.

This proves Theorem 1. ¤


