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Abstract

We study first passage percolation on the random graph Gp(N) with exponentially
distributed weights on the links. For the special case of the complete graph this problem
can be described in terms of a continuous time Markov chain and recursive trees. The
Markov chain X(t) describes the number of nodes that can be reached from the initial
node in time t. The recursive trees, which are uniform trees of N nodes, describe the
structure of the cluster once it contains all the nodes of the complete graph. From these
results the distribution of the number of hops (links) of the shortest path between two
arbitrary nodes is derived.

We generalize this result to an asymptotic result, as N → ∞, for the case of the
random graph where each link is present independently with a probability pN as long as
NpN

(logN)3 →∞. The interesting point of this generalization is that (i) the limiting distribution
is insensitive to p and (ii) the distribution of the number of hops of the shortest path between
two arbitrary nodes has a remarkable fit with shortest path data measured in the Internet
(cf. [6]).
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1 Introduction

The main result in this paper is Theorem 2.1. This theorem contains a first passage result on the
random graph Gp(N), where the probability p = pN of an open edge tends to zero as N → ∞,
in such a way that NpN →∞. More specifically, to the open edges we attach weights given by
independent exponential random variables each with mean 1, and ask for the number of edges
(hops) HN of the shortest path between the nodes 1 and N . The shortest path is the a.s. unique
path from 1 to N that minimizes the sum of the weights on the edges of the path.

Given a condition on the speed with which NpN →∞ (see Theorem 2.1), we prove that the
hopcount HN can be coupled (in a asymptotic sense) to a random variable RN , with generating
function

E(zRN ) =
N

N − 1

(
ϕN(z)− 1

N

)
, (1)

where ϕN is the generating function

ϕN(z) =
Γ(z +N)

Γ(N + 1)Γ(z + 1)
=

N z−1

Γ(z + 1)
(1 +O(N−1)), (2)

and where Γ(z), denotes the Gamma function (cf. [1], 6.1.1). We also show that:

E(HN) ∼ logN + γ − 1, if NpN/(logN)6 →∞ (3)

Var(HN) ∼ logN + γ − π2/6, if NpN/(logN)9 →∞, (4)
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where γ ≈ .5772, is Euler’s constant.
This theorem is a generalization of scattered known results for the complete graph KN (the

graph with N nodes and all
(
N
2

)
edges present) and results for the uniform recursive tree. For

KN this theorem seems to be part of the folklore of epidemic theory, although we did not find a
precise reference to the result that on the complete graph with exponential weights the hopcount
HN is connected with the height LN of a uniform recursive tree and

E(zLN ) = ϕN(z),

with ϕN given by (2) (cf. Smythe and Mahmout [5]).
The question arises why this generalization to Gp(N) is interesting. Recent measurements,

both at Delft University of Technology [6] and the University of Gent [7], of the number of
hops that have to be traversed between two arbitrary nodes in the Internet show a remarkable
fit between this data and the distribution with generating function (2) (cf. [6]). It is known
that the IP packets in the Internet are routed according to a shortest path algorithm (the
so-called Dijkstra algorithm), where the weights between the routing machines are set by the
operators 1. We therefore model the Internet as a graph with weights on the edges. Since many
details of the Internet are unknown and the Internet seems rather chaotic in structure we choose
a random graph with random weights as a model. As far as we know, the result is the first
closed-form expression for the hopcount of the Internet, which according to [8], Section. 2.2.2,
has remained impregnable.

The complete graph KN is obviously not a good choice to model the Internet, because the
number of edges extending from each node (router) equals N − 1 whereas in reality this number
is restricted (in most cases by 32). However, every graph with N nodes and hence also the graph
representation of the Internet is a subgraph of KN . We therefore randomly thin the number of
edges on the complete graph as far as we could (see Theorem 2.1) by erasing links in an i.i.d.
fashion and prove that the hopcount in the random graph Gp(N) still has the same (asymptotic)
distribution as the hopcount of KN as long as NpN/(logN)3 → ∞. Moreover, simulations of
the hopcount of the random graph with pN = λ/N , where λ = 10, and with exponential weights
on the edges, show that the simulated distribution still resembles a distribution with generating
function (2) (see [6]). The number λ = NpN , which equals the average number of outgoing links
in Gp(N) is close to the genuine number of ports of a router in the Internet.

Our next point is the explanation of the choice of the exponential weights. First note that
exponential weights are comparable with uniform [0, 1] weights, because the exponential distri-
bution and the uniform distribution are both in the same minimal domain of attraction: for
both exponential and uniform (i.i.d.) random variables X1, X2, . . . we have that

n min
1≤k≤n

Xk

converges to a random variable with extreme value distribution given by 1 − e−x, for x > 0
(cf. [4]). We only have a statistical motivation to use exponential (or uniform weights); other
weights (constant weights or i.i.d. weights with distribution function F (x) = xα, x ∈ [0, 1], with
α 6= 1) do not fit the data (see [6]). For pN = λ/N and weights constantly equal to 1, we have
that the shortest path uses the minimal number of hops. In this case, it can readily be seen
that E(HN) ∼ logN/ log λ and that Var(HN) is bounded for N → ∞ (see [6]). Hence, our
result can be formulated as the statement that for the Internet there is a great variability for
the link weights. In any case the weights2 are surely not all equal to 1 as it initially was with
RIP (Routing Information Protocol).

1The actual values are kept confidential by the Internet operators.
2In Cisco’s OSPF implementation, it is suggested to use weights which are inverse proportional to the band-

width of the link.
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To explain the method of proof of our result for the random graph we return to the complete
graph with exponential weights on the edges. For the complete graph KN the proof of (1) -
(4) is as follows. Consider a continuous time Markov chain {X(t)}t≥0, which is a pure birth
process with state space {1, 2, . . . , N} and birth rate λn = n(N −n). The random variable X(t)
represents the number of nodes that can be reached from node 1 in a travel time less than or
equal to t. The process {X(t)}t≥0 starts at time 0 with one particle (node) and will eventually
be absorbed in state N , when all the nodes can be reached.

Observe that the process that describes the number of distinct nodes (including node 1)
that can be reached in KN over the exponential edges starting from 1 within time t is indeed
equal in distribution to the process {X(t)}t≥0. This follows from the memoryless property of
the exponential distribution and because when n nodes are reached, each of these n nodes can
be connected to the set of N −n remaining nodes over N −n different edges, which explains the
rate λn = n(N − n). When X(t) = n, the (not previously used) edges between the n nodes can
be omitted. These edges do not belong to the shortest path, otherwise they would have been
selected at an earlier time.

Geometrically, the evolution of the above birth process can be visualized by a (random)
recursive tree, which is a uniform tree of N nodes. Indeed, each birth in the Markov process
corresponds to connecting an edge of unit length to one of the existing nodes in the associated
tree. It follows from the Markov property that the new edge is connected randomly to one of
the existing nodes of the tree which implies that this tree is a uniform tree. The hopcount is
hence equal to the height LN of a uniformly chosen particle in the tree. It is well known (cf. [5])
that the height of an arbitrary point (including the root) has generating function (2). In our
problem, N cannot be the root so that the result (1), with RN = HN , for the complete graph
follows.

Using the above description, one can also compute the generating function of the total weight
WN of the shortest path. Since the tree is uniform each of the N − 1 possibilities of positions
for node N is equally likely; furthermore the generating function of the (independent) sum
X1 + . . .+Xk, where Xi is exponentially distributed with parameter i(N − i), equals:

E

(
et(X1+...+Xk)

)
=

k∏
i=1

i(N − i)
i(N − i)− t

.

Hence,

E(etWN ) =
1

N − 1

N−1∑
k=1

k∏
i=1

i(N − i)
i(N − i)− t

. (5)

In the next section we extend the results (1) - (4) to the class Gp(N), where p = pN is chosen
such that

NpN
(logN)3

→∞. (6)

This is a technical condition. From the famous connectivity theorem of Erdös and Rényi, it
follows that the random graph is with large probability disconnected when NpN/ logN < 1,
whereas it is with large probability connected when NpN/ logN > 1 (see [2]). Therefore, pN =
logN/N is called the connectivity threshold. Since the Internet is connected, we can restrict
ourselves to the case where NpN/ logN > 1. Moreover, the percolation threshold on the complete
graph is pN = 1

N
. Hence, for NpN > 1, the largest cluster is of the order N , whereas for

NpN < 1 the largest cluster is of order logN . Hence, we see that for pN such that NpN → ∞,
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the probability that the source and the destination are in the largest cluster converges to 1. We
expect that our limit laws in (1-4) remain valid even in this regime, when we condition the source
and the destination to be in the largest cluster. Therefore, we believe our results to remain valid
below the connectivity threshold. Simulations with NpN = 10 and N = 210, 000 do confirm
this.

For the random graph Gp(N), each node has a random number of links. The above proof for
the complete graph was based on the fact that from each node in a cluster of size n there are a
constant number (N−n) of outgoing links (i.e., edges going to nodes outside the present cluster).
Now, for the random graph, for each node in the cluster of the root when this cluster has size n,
the number of outgoing links is binomial with parameters p and N −n. These binomial random
variables can be sandwiched in between two constant numbers of outgoing links in each node of
the cluster of size n equal to

d(N − n)pN ±
√
A(N − n)pN(1− pN) logNe, (7)

which is defined to be zero when (7) becomes negative and where A is a positive number to be
determined later. To each of this constant number of outgoing links, there belong continuous
time Markov chains X±(t), which is a pure birth process with state space {1, 2, . . . , N±} where

N± = dN (1± A(1− pN) logN/(NpN))e, (8)

and with birth rates λ±n given in (7). Observe that the size N± equals the smallest value of n for
which λ±n ≤ 0. We next show that with high probability the hopcount of the shortest path of
the uniform tree belonging to the Markov chains X−(t) and the hopcount of the shortest path
of the random graph Gp(N) are the same. Hence (1) - (4) hold when logN− = logN + o(1),
which implies that NpN/ logN → ∞. In fact, in the technical part of the proof, we need that
NpN/(logN)β →∞, where the value of β depends on whether we wish to couple the respective
random variables, prove convergence of the mean or convergence of the variance.

The result for the hopcount of the random graph and the insensitivity with respect to the
value of p can also be explained intuitively. From (2) it is seen that the law of RN is close to
the Poisson law with parameter logN . This can be explained as follows. The probability that
there is a path of k edges that has a sum of exponentials not exceeding L is approximately equal
to the number of such paths times the probability that the sum of k i.i.d. exponential variables
with mean 1 is less than L. The number of paths of length k from 1 to N is, for N large, roughly
equal to Nk−1. The probability that the sum of exponential weights is less than or equal to L

is roughly equal to Lk

k!
. Multiplying out, we find that P(HN = k,WN ≤ L) ≈ (LN)k

Nk!
. These

probabilities have to sum up to 1 when L is the typical size of the weight of the shortest path,

so that L has to be equal to logN
N

. Substitution of this value gives P(HN = k) ≈ (logN)k

Nk!
, in

accordance to (2). For the random graph Gp(N) where edges of the complete graph are present
or absent independently with probability p and 1− p, respectively, the weight WN has to be of
the order logN

NpN
, i.e., the value of p merely serves as a scale factor. The reason for this is that p

only decreases the number of links, which means that we take the minimum over less exponential
random variables. Now, for integer Np, the minimum over Np exponential random variables
has the same distribution as 1/p times the minimum over N exponential random variables. This
explains that p only serves as a scale factor. The limiting distribution of the hopcount remains
unchanged. The insensitivity with respect to p of the law of the hopcount can be understood by
adapting the above heuristic to the case where WN ≈ logN/NpN and where the number of paths
of lengths k is replaced by the expected number of paths of length k which is equal to pkNN

k−1.
We see that the factors of pN cancel out, and we find that the asymptotics of the hopcount is
independent of pN .
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The next section which contains the full proof of our main result is organized as follows. We
start with the statement of the theorem. Then in the Lemmas 2.2 and 2.3 we show with large
deviation theory that the hopcount HN is bounded with overwhelming probability by a large
multiple of logN . Lemma 2.4 is used in the proof of our main theorem to show that we can
assume that the number of outgoing links is between a fixed upper and lower bound to obtain a
uniform tree. We finally couple the height LN of nodes of this uniform tree to the hopcount of
the random graph in Lemma 2.5.

2 The random graph

In this section we investigate the hopcount of the random graph Gp(N) with exponential travel
times on the edges. We always assume that we are dealing with sequences pN satisfying
lim supN pN < 1, so that the random graph is truly random. The main result is the follow-
ing theorem:

Theorem 2.1 There exists a probability space on which the hopcount HN of Gp(N) and a ran-
dom variable H−N can be defined simultaneously, and where the marginal distribution of H−N has
generating function (1) with N = N− given by (8), such that

(i) If NpN/(logN)3 →∞, then P(HN 6= H−N) = o(1),

(ii) If NpN/(logN)6 →∞, then E(HN) = logN + γ − 1 + o(1),

(iii) If NpN/(logN)9 →∞, then Var(HN) = logN + γ − π2/6 + o(1).

The proof is divided in a number of different steps. We first sketch these steps and then
formulate and prove them in a series of lemmas. Finally, we prove Theorem 2.1.

1. As indicated by the results (3) and (4), we expect that the probability that the hopcount
HN exceeds a large multiple of logN is small. This result is important for the proof of our
theorem, because it gives an upper bound on the number of nodes we have to deal with.

If the hopcount HN is bounded by a multiple of logN , then the exponential weights
over the shortest path are likely to be bounded by another multiple of logN times the
typical weight over each edge of the shortest path. These typical weights are of order
(NpN)−1. The size of a typical weight of an edge belonging to the shortest path follows,
because each node has on the average NpN edges and the minimum of NpN independent
exponentials each with weight 1 has expectation (NpN)−1. In Lemma 2.2 we will show
that P(NpNWN > B logN) ≤ N−δB, for some δ > 0. We prove this lemma with the help
of Cramérs theorem (cf. [3] p. 26).

2. Using Lemma 2.2, we prove that the bound HN ≤ B2 logN holds with overwhelming
probability. This will be shown in Lemma 2.3.

3. For a binomial random variable XN with parameters kN and p = pN such that
logN/(kNpN(1− pN))→ 0,

P

(
XN /∈ [kNpN −

√
AkNpN(1− pN) logN, kNpN +

√
AkNpN(1− pN) logN ]

)
≤ 4N−A.

This will be proven in Lemma 2.4.

5



4. We couple HN with a random variable H−N , which is the number of hops of a uniformly cho-
sen point in a uniform tree of sizeN− < N , whereN− = dN (1− A(1− pN) logN/(NpN))e.
Let

AN = {HN = H−N}.

The main ingredient to the proof is that P(AcN)→ 0 at a certain rate that depends on how
NpN →∞. The random variable H−N has generating function

E(zH
−
N ) =

N−

N− − 1

(
ϕN−(z)− 1

N−

)
, (9)

where ϕN is the generating function in (2). Hence, the ratio of the generating functions

E(zH
−
N ) and ϕN(z) tends to one as long as NpN

logN
→∞.

5. The asymptotic expressions for P(HN 6= H−N), E(HN) and Var(HN) then follow.

We start with Step 1. Let WN denote the sum of the exponential weights along the shortest
path from 1 to N in the graph Gp(N).

Lemma 2.2 There exists constants δ > 0 and B such that for NpN large,

P(NpNWN > B logN) ≤ N−δB. (10)

PROOF: The idea behind this proof is that starting from node 1 we build a binary tree by
choosing at each node the two shortest edges (shortest with respect to the exponential weights).
The size of this tree grows as 2k, where k is the depth of the tree. Hence within k = logN/ log 2
steps we have reached all N nodes. However if k ≈ logN/ log 2, the number of nodes which
are not yet in the binary tree approaches 0 and therefore the weight of the minimal edges has
expectation almost 1 which is large compared to (NpN)−1. Therefore we grow two binary trees:
one with root 1 and a second with root N . If we grow both trees until they reach size

√
N , then

there are still N − O(
√
N) nodes not in these trees which implies that all weights in the trees

are of order (NpN)−1. Moreover the number of connections between the two trees is of order√
NpN ·

√
NpN = NpN and hence the minimal weight of the connecting edges is of the same

reciprocal order (NpN)−1.
Indeed, in Gp(N) we denote the exponentially distributed weights on the edges incident with

node i by Ei
k if the edge (i, k) is present. Furthermore,

Ei
(1) < Ei

(2) < . . .

are the ordered weights of the edges incident with i. Define a binary (random) subtree B1 ⊂
Gp(N) of depth k in the following way: start at node 1 and take the two edges with weight E1

(1)

and E1
(2). Let i and j denote the endpoints of these two edges. From the collection of edges

incident to i (j) we remove the edge (1, i) = (i, 1) ((1, j) = (j, 1)) and from the remaining set of
edges incident with i (j) we take the two shortest ones. Proceeding this way we grow a binary
tree with depth:

k =

⌈
log
√
N

log 2

⌉
, (11)

where dxe is the smallest integer larger than x. If N /∈ B1, grow a binary tree of depth k starting
from node N , without using any of the nodes in tree B1.
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For i ∈ {1, 2, . . . , N} and with Xi the number of remaining edges incident to i,

Ei
(1) = min

j
Ei
j
d
=
E1

Xi

, Ei
(2)

d
=
E1

Xi

+
E2

Xi − 1
,

by properties of the exponential distribution. Hence, if Xi ≥ 1
2
NpN + 1, then

Ei
(1) ≤

2E1

NpN
, Ei

(2) ≤
2E1 + 2E2

NpN
, (12)

where as before E1 and E2 are independent exponential random variables with mean 1.
From (12) and the fact that the minimal weight of the connecting edges can also be bounded

by 2E1+2E2

NpN
we conclude that WN ≤ 2S4k+1/NpN , where Sn is the sum of n independent expo-

nentials with mean 1. Hence

P(NpNWN ≥ B logN) ≤ P
(
S4k+1 ≥

B logN

2

)
.

Now apply Cramér’s theorem to S4k+1 with k given in (11).

As a Corollary to Lemma 2.2 we have

Lemma 2.3 There exists constants δ > 0 and B such that for NpN sufficiently large,

P(HN > B2 logN) ≤ 2N−δB.

Moreover, the same bound holds for RN , which is the number of hops of a uniform chosen point
in a uniform tree of size N .

PROOF: Intersect the event {HN > B2 logN} with the event {NpNWN > B logN} and its
complement to obtain

P(HN > B2 logN)

= P(NpNWN > B logN,HN > B2 logN)

+P(NpNWN ≤ B logN,HN > B2 logN)

≤ P(NpNWN > B logN) + P
(
NpNWN ≤ B logN,HN > B2 logN

)
≤ N−δB + P

(
SdB2 logNe ≤ B logN

)
≤ 2N−δB,

where P
(
SdB2 logNe ≤ B logN

)
≤ N−δB by Cramér’s theorem.

To see that the same bound also holds for RN , the random variable with generating function
(2) use that

P(RN > B logN) ≤ min
t>0

P(etRN > N tB) ≤ 2 min
t>0

N−tB
N et

Γ(et + 1)
,

where we use the asymptotic expression in (2) for N large enough. Pick t = logB to get

P(RN > B logN) ≤ N−B(logB−1) 2

Γ(B + 1)
.

This bound is in fact sharper than the upper bound for P(HN > B2 logN).
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Lemma 2.4 For a binomial random variable XN with parameters kN and pN satisfying
(logN)/(kNpN(1− pN))→ 0, uniformly in kN and pN for large N ,

P

(
XN /∈ [kNpN −

√
AkNpN(1− pN) logN, kNpN +

√
AkNpN(1− pN) logN ]

)
≤ 4N−A.

PROOF: For A > 0, define
CN = σN

√
A logN,

where σ2
N = kNpN(1− pN). Then

P(XN > kpN + CN) ≤ inf
t>0
P(etXN > etkpN+CN ) ≤ inf

t>0

{
e−t(kNpN+CN ) (φ(t))kN

}
,

where φ(t) = 1− pN + pNe
t. For kN(1− pN) > CN we find that the argument tN of the infimum

satisfies:

etN =
σ2
N + CN(1− pN)

σ2
N − CNpN

.

From this we obtain

P(XN > kpN + CN) ≤
(

1 +
CN

σ2
N − CNpN

)−(kNpN+CN )(
1 +

CNpN
σ2
N − CNpN

)kN
Hence for CN/σ

2
N → 0 or equivalently (logN)/σ2

N → 0, as N →∞

P(XN > kpN + CN) ≤ 2 exp(−C2
N/(σ

2
N − CNpN)) ≤ 2N−A.

To treat P(XN < kpN − CN), define YN = kN −XN , then YN has a binomial distribution with
parameters kN and 1− pN and

P(XN < kNpN − CN) = P(kN − YN < kNpN − CN) = P(YN > kN(1− pN) + CN).

The result follows from repeating the above argument with XN replaced by YN and pN by 1−pN .

Lemma 2.5 There exists a probability space on which the hopcount HN of Gp(N) and a ran-
dom variable H−N can be defined simultaneously, and where the marginal distribution of H−N has
generating function (1) with N = N− given by (8), such that for NpN →∞ and lim sup pN < 1,

P(HN 6= H−N) = O

(
logN

[NpN ]
1
3

)
. (13)

Moreover,

E(zH
−
N ) = ϕN(z)(1 + o(1))

as long as NpN
logN

→∞.

PROOF: The method of proof is described in step 4 at the beginning of this section.
Define kN = O((N logN)/(NpN)1/3) (this choice of kN will become clear at the end of the

proof) and check that NpN →∞ together with lim sup pN < 1 imply

(logN)/((kNpN(1− pN))→ 0,

as N → ∞. This is the condition of Lemma 2.4 that guarantees that the binomial random
variable XN with parameters kN and pN is with probability larger than 1 − 4N−A in between
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the bounds kNpN ± CN . Take node 1 of Gp(N). The number of edges incident to node 1 is a
Bernoulli variable X1 with parameters N −1 and pN . We erase edges from node 1 until we reach
the nearest integer of (N − 1)pN −

√
A(N − 1)pN(1− pN) logN . The edges that we erase are

called ghost edges.
Now take the smallest edge extending from node 1 and form the tree which consists of these

two nodes. We now proceed with the induction step. Suppose that the uniform tree contains
n ≥ 2 nodes. In the original graph Gp(N) each of these n nodes has a binomial distributed
number of edges to the N − n remaining nodes. The parameters of these (in total n) marginal
distributions are N−n and pN . Assume that all these binomial random variables are in between
(N − n)pN ±

√
A(N − n)pN(1− pN) logN . Then erase edges in graph Gp(N) in a uniform way,

until each of the n nodes has precisely

b(N − n)pN −
√
A(N − n)pN(1− pN) logNc (14)

outgoing links. Draw the link to the node which carries the smallest exponential weight. Since
this link is connected to any of the nodes of the cluster of size n with equal probability, it
gives rise to a uniform tree of size n + 1. This advances the induction. Furthermore, the above
construction also produces a continuous time Markov chain X−(t) with birth rate given by (14).
Here X−(t) is the number of points in the cluster where the sum of the weights is less than or
equal to t. We continue until this Markov chain is in the absorbing state, which is precisely
when the cluster contains N− points. To this Markov chain there is associated a uniform tree of
size N−. Hence, the random variable H−N , which is the number of hops in this uniform tree, has
generating function given by (9).

We now introduce three events that will be used to bound the probability P(HN 6= H−N).
Define the event:

DN = {node N is reached when X−(t) = N − kN}.
Since the probability for any order of connections of the N − 1 nodes other than the root 1 is
equally likely, the probability that the node N has not been connected to the tree of Gp(N)
when this tree has size N − kN is kN/(N − 1). Hence, we have

P(Dc
N) = O(kN/N). (15)

Now consider the tree of Gp(N), when its size is equal to N−kN . Let Xij, 1 ≤ i ≤ N−kN , j ≤
i be the number of outgoing links from node j when the cluster contains precisely i ≤ N − kN
nodes, i.e., the number of links to the N − i nodes not in the tree at that moment. Then, for
every j, the marginal distribution of Xij is binomial with parameters N − i and pN . Let

EN =

N−kN⋂
i=1

⋂
j≤i

{Xij ∈ IN,i}, (16)

where

IN,i = [(N − i)pN −
√
A(N − i)pN(1− pN) logN, (N − i)pN +

√
A(N − i)pN(1− pN) logN ].

According to Lemma 2.4 and Boole’s inequality,

P(Ec
N) ≤

N−kN∑
i=1

4i ·N−A ≤ 2N2−A. (17)

Finally, we set
FN = {|HN | ≤ B2 logN},
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so that by Lemma 2.3

P(F c
N) ≤ 2N−δB. (18)

This estimate holds in the random graph Gp(N). From (15), (17) and (18),

P(HN 6= H−N) (19)

= P
(
HN 6= H−N , DN ∩ EN ∩ FN

)
+ P

(
HN 6= H−N , (DN ∩ EN ∩ FN)c

)
≤ P

(
HN 6= H−N , DN ∩ EN ∩ FN

)
+ P(Dc

N) + P(Ec
N) + P(F c

N)

≤ (2B2 logN)

√
AkNpN logN

kNpN
+O

(
kN
N

)
+ 2N2−A + 2N−δB

= O

(
kN
N

)
+O

(
(logN)3/2

√
kNpN

)
,

where the second inequality follows from Boole’s inequality, using that the shortest path has at
most B2 logN nodes, and from the probability that any given link in the shortest path in GN(p)
is one of the edges that have been erased for H−N is bounded by the number of edges that have
been erased divided by the total number of edges extending from the node. This ratio is bounded
above by 2

√
AkNpN logN
kNpN

, when all the binomial random variables are in between the bounds given

in (16). The choice kN = O((N logN)/(NpN)1/3) follows from optimizing the right hand side of
(19) over kN .

PROOF OF THEOREM 2.1: The proof of (i) is immediate from the previous lemma. We
only prove statement (ii), the proof of (iii) being similar. As before AN = {HN = H−N}. Then

E(HN) = E(HN1AN ) + E(HN1AcN ) = E(H−N1AN ) + E(HN1AcN ).

We have that

E(H−N1AN )− E(H−N) = E(H−N1AcN )→ 0, and E(HN1AcN )→ 0. (20)

Indeed, let F = {max(HN , H
−
N) ≤ B2 logN}

E(HN1AcN ) ≤ E(HN1F c) + E(HN1AcN1F ) ≤ CN1−δB + (B2 logN)P(AcN)

and similarly for E(H−N1AcN ). From this we see that it is necessary to have

P(AcN) = o

(
1

logN

)
.

This can be obtained from Lemma 2.5 by taking NpN
(logN)6 →∞ which is the condition in part (ii)

of the theorem. Moreover, it is easy to check from the explicit formula in (1) that the expectation
of H−N is asymptotically equal to the r.h.s. of (3) as long as NpN

logN
→∞.

Acknowledgement: We thank Yuval Peres for pointing us at the connection to birth processes.

References

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, 1968.

[2] B. Bollobas, Random Graphs, Academic Press, 1985.

10



[3] A.Dembo and O.Zeitouni, Large deviations Techniques and Applications, Jones and
Barlett Publishers, England, 1992.

[4] M.R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties
of Random Sequences and Processes. Springer, New York, 1983.

[5] R.T. Smythe and H.M. Mahmoud, A survey of recursive trees, Theor. Probability and
Math. Statist. 51,1-27, 1995.

[6] P. Van Mieghem, G. Hooghiemstra and R. van der Hofstad, A scaling law for the
hopcount, report 2000125 (http://wwwtvs.et.tudelft.nl/people/piet/teleconference.html)

[7] S. Vanhastel, B. Duysburg and P. Demeester Performance measurements on the
current internet in 7th IFIP ATM&IP Workshop, Antwerp (Belgium) session 2:1-11, June
28-30, 1999.

[8] D. J. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness.
Princeton University Press, Princeton, New Jersey, 1999

ITS ITS
Department of Mathematics Department of Electrical Engineering
Delft University of Technology Delft University of Technology
Mekelweg 4 Mekelweg 4
2628 CD Delft, the Netherlands 2628 CD Delft, the Netherlands
E-mail: R.W.vanderHofstad@its.tudelft.nl E-mail: p.vanmieghem@its.tudelft.nl
G.Hooghiemstra@its.tudelft.nl

11


