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Abstract. The ”bi-directional search method” used for unicast routing
is briefly reviewed. The extension of this method unicast QoS routing is
discussed and an exact hybrid QoS algorithm HAMCRA that is partly
based on bi-directional search is proposed. HAMCRA uses the speed of a
heuristic when the constraints are loose and efficiently maintains exact-
ness where heuristics fail. The performance of HAMCRA is simulated.

1 Introduction

One of the classical shortest path algorithms was proposed by Dijkstra [6]. Ever
since, many variations of shortest path algorithms have been proposed in the
literature [8], [2], mainly based on different proposals for a priority queue [3].
Nearly all proposed shortest path algorithms are designed to find a shortest
paths tree rooted at the source to all other nodes. In practice, these algorithms
are often only used to find a path between a single source-destination pair. This
particular use may be inefficient. The idea to improve the Dijkstra algorithm for
source-destination routing was provided in 1960 by Dantzig [4] and concretized
in 1966 by Nicholson [14]. Their bi-directional search idea consisted of building
two shortest path trees alternating between the source and the destination. Bi-
directional search can lead to significant savings in time, but unfortunately seems
to have been overshadowed by classical shortest path routing. We briefly revisit
the concept of bi-directional search and evaluate its application to Quality of
Service (QoS) routing.
One of the key issues in QoS routing is how to determine paths that satisfy

multiple QoS constraints such as constraints on bandwidth, delay, jitter, and
reliability. We focus on this so-called multi-constrained path problem and assume
that the network-state information is temporarily static, has been distributed
throughout the network and is accurately maintained at each node. Before giving
the formal definition of the multi-constrained path problem, we first describe the
notation that is used throughout this paper.
Let G(N,E) denote a network topology, where N is the set of nodes and E is

the set of links. With a slight abuse of notation, we also use N and E to denote
the number of nodes and the number of links, respectively. The number of QoS
measures is denoted by m. Each link is characterized by an m-dimensional link
weight vector, consisting of m non-negative QoS weights (wi(u, v), i = 1, ...,m,



(u, v) ∈ E) as components. The vector L represents the set ofm QoS constraints.
The QoS measure of a path can either be additive (e.g., delay, jitter), in which
case the weight of that measure equals the sum of the QoS weights of the links
defining that path, or the weight of a QoS measure of a path can be the min-
imum(maximum) of the QoS weights along the path (e.g., available bandwidth
and policy flags). Constraints on min(max) QoS measures can easily be treated
by omitting all links (and possibly disconnected nodes) that do not satisfy the re-
quested min(max) QoS constraints. Constraints on additive QoS measures cause
more difficulties. Multiplicative QoS measures can be transformed into additive
measures by taking their logarithm. Hence, without loss of generality, we as-
sume all QoS measures to be additive. The multi-constrained path problem can
be defined as follows:
Definition 1 Multi-Constrained Path (MCP) problem:

Consider a network G(N,E). Each link (u, v) ∈ E is specified by m additive
QoS weights wi(u, v) ≥ 0, i = 1, ...,m. Given m constraints Li, i = 1, ...,m, the
problem is to find a path P from a source node A to a destination node B such

that wi(P )
def
=
P
(u,v)∈P wi(u, v) ≤ Li, for i = 1, ...,m.

A path that satisfies all m constraints is often referred to as a feasible path.
There may be multiple different paths in the graph G(N,E) that satisfy the
constraints. According to Definition 1, any of these paths is a solution to the
MCP problem. In some cases it might be desirable to retrieve the path with
smallest length l(P ) from the set of feasible paths. This more difficult prob-
lem is called the multi-constrained optimal path (MCOP) problem. In general,
MCP, irrespective of path optimization, is known to be an NP-complete prob-
lem [9]. This explains why the lion’s share of proposed QoS routing algorithms
are heuristics [11].
The rest of this paper is structured as follows. In Section 2 we discuss multi-

constrained bi-directional search. In Section 3 we propose an exact QoS routing
algorithm HAMCRA that is partly based on bi-directional search and discuss
its complexity. In Section 4 we present the simulation results of HAMCRA and
we end in Section 5 with the conclusions.

2 Multi-Constrained Bi-directional Search

The basic idea behind bi-directional search originated after observing that the
Dijkstra algorithm examines a number of ”unnecessary” nodes. Especially when
the shortest (sub)path grows towards the destination, it can make an increasingly
number of unnecessary scans. To reduce the number of unnecessary scans, it is
better to start scanning from the source node as well as from the destination
node1. In that case a large part of the topology will not be scanned, resulting in
a higher efficiency.
When the shortest path has an odd number of hops, the simple idea of

alternating between two directions and meeting in the middle is not enough to
1 In case of a directed graph, the scan-procedure from destination B towards A should
proceed in the reversed direction of the links.



find the shortest path. We also need to keep track of the minimum path length
found sofar. Since we execute the Dijkstra algorithm from two sides, we need
two queues QA and QB . The bi-directional Dijkstra algorithm extracts a node
u by alternating between QA and QB. If a node u has been extracted from
QA and from QB and if the end-to-end path length is smaller or equal to the
shortest discovered (but not extracted) shortest path sofar, then we have found
the shortest path and can return it by concatenating the two sub-paths from A
to u and u to B.
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Fig. 1. Example of bi-directional search in two dimensions. The links represent paths,
with their corresponding path weight vector.

Extending bi-directional search from m = 1 to m > 1 dimensions is not
a trivial task. The complicating factor is the necessity of a non-linear length
function for exact QoS routing [15]. A non-linear length causes that subsections
of shortest paths in m > 1 dimensions are not necessarily shortest paths them-
selves. If two shortest paths (one originating in source node A and the other in
destination node B) in m > 1 dimensions meet at an intermediate node, the
resulting complete path is not necessarily the shortest path from A to B. We
must keep track of the minimum length of the complete paths found sofar. Even
if a new complete path exceeds the length of a previously found complete path,
that new path cannot be discarded as illustrated in Fig. 1. We use the non-linear
path length l(P ) = maxi=1,...,m(

wi(P )
Li

). The arrows indicate the order of arrival
of these sub-paths at node i. Once the first two sub-paths have arrived at node
i, we have our first complete path with weight vector w(P ) = (7,4). If the con-
straints are L = (10,10) then the length of this path equals 0.7. Once the third
path arrives at node i, it makes a complete path with the second path, with total
length 0.8. However, we cannot remove this sub-path, because combined with
path 4, it forms the shortest path with link weight vector (5,6) and length 0.6.
This example also indicates that we will have to connect at each intermediate
node with k ≥ 1 paths (even if they violate the constraints), where k can grow
exponentially with the number of nodes N .



These problems in multiple dimensions complicate the determination of an
efficient stop criterion for the MCOP problem. The bi-directional search inm > 1
dimensions has more potential for the MCP problem, where the routing algo-
rithm can stop as soon as a complete path obeys the constraints. Unfortunately,
when no feasible path is present in the graph, bi-directional search may require
twice the time of uni-directional search. Again, an efficient stop criterion that
foresees that there is no feasible path present seems difficult to find.

3 A Hybrid QoS algorithm

In the previous section we have argued that the use of bi-directional search has
a higher potential for MCP than for MCOP. This need not be a disadvantage.
When the constraints are loose and many feasible paths exist, then optimization
is not very important and precious CPU time could be wasted in computing the
optimal path. In a heavily loaded network, the need for optimization increases.
Fortunately, under heavy load, the number of feasible paths is expected to be
small, in which case the MCP problem approximates the MCOP problem.
Although applying bi-directional search to the MCP problem is possible, find-

ing a clear stop criterion when no feasible paths are present is still problematic.
This difficulty suggests to deviate from the alternating bi-directional search to
a hybrid algorithm that uses concepts of bi-directional search. We have named
our hybrid QoS algorithm HAMCRA, the Hybrid Auguring Multiple Constraints
Routing Algorithm. HAMCRA is exact in solving the MCP problem, but is not
always exact in solving the MCOP problem. The rest of this section will present
HAMCRA, give its worst-case complexity and show that it is indeed exact in
solving the MCP problem.

3.1 HAMCRA

HAMCRA is composed of the exact algorithm SAMCRA, the Self-Adaptive
Multiple Constraints Routing Algorithm, [15] and its heuristic predecessor TAM-
CRA, the Tunable Accuracy Multiple Constraints Routing Algorithm, [5]. Both
SAMCRA and TAMCRA are based on three fundamental concepts:

1. In order for any QoS algorithm to be exact, we must use a non-linear length
function, such as

l(P ) = max
i=1,...,m

µ
wi(P )

Li

¶
(1)

where wi(P ) is the i-th weight of path P and Li is the i-th constraint. If
l(P ) > 1 then path P is not feasible.

2. If a non-linear length function like (1) is used, then the subsections of shortest
paths in multiple dimensions are not necessarily shortest paths themselves.
It may therefore be necessary to store in the computation more (sub-)paths
then just the shortest. SAMCRA and TAMCRA use the k-shortest path



approach [7], where in TAMCRA k is predefined by the user and in SAM-
CRA k is adapted in the course of the computation to assure that the exact
shortest path is found.

3. Both TAMCRA and SAMCRA only consider non-dominated paths, where a
path P is called non-dominated if there2 does not exist a path P ∗ for which
wi(P

∗) ≤ wi(P ) for all link weight components i except for at least one j
for which wj(P

∗) < wj(P ).

Since HAMCRA is composed of SAMCRA and TAMCRA, it is also based
on their three concepts. In HAMCRA, first the TAMCRA algorithm is executed
with a queue-size k = 1 from the destination node to all other nodes in the
graph. This is the similarity with bi-directional search, because we also scan
from the destination node. However we do not alternate between the source
and the destination. We can use TAMCRA with k > 1, which will lead to a
better accuracy at the cost of increased complexity (of TAMCRA). The running
time of TAMCRA with k = 1 is comparable to that of the Dijkstra algorithm.
At each node, the path weight vector found by TAMCRA from that node to
the destination is stored. These values will later be used to predict the end-to-
end path length. If TAMCRA has found a path within the constraints between
the source and the destination, HAMCRA can stop and return this path. If
TAMCRA does not find a feasible path, HAMCRA continues by executing the
SAMCRA algorithm from the source node. The difference between HAMCRA
and SAMCRA is that HAMCRA uses the information obtained by TAMCRA
and only stores predicted end-to-end lengths in the queue instead of the real
lengths of the sub-paths. The idea for using predictions was originally presented
in [10]. The predicted end-to-end length is found by summing the real weights
of a path from source A to the intermediate node u with the weights of the
TAMCRA path from u to the destination B. The algorithm continues searching
in this way until a feasible path from A to B is found or until the queue is empty.
HAMCRA uses a fourth concept to reduce the search-space, namely that of

lower bounds (LB) [13]. The LB concept uses the property that if
Pm

i=1 αiwi(P ) >Pm
i=1 αiLi, αi ≥ 0, then path P is not feasible. By computing the shortest,

according to the linear length function l(P ) =
Pm

i=1 αiwi(P ), paths P ∗B→n

rooted at the destination B to each node n in the graph G(N,E), we ob-
tain the lower bounds wi (P

∗
B→n). These lower bounds can be used to check

if a path PA→n from source A to node n can possibly obey the constraints: ifPm
i=1 αi (wi(PA→n) + wi (P

∗
B→n)) >

Pm
i=1 αiLi, then path PA→n need not be

considered further. For the simulations we have chosen to compute via Dijkstra
the shortest path tree rooted at the destination to each node n in the graph
G(N,E) for each of the m link weights separately. For measure j, the Dijkstra
shortest path agrees with

Pm
i=1 αiwi(P ), where αi = 0 for i = 1, ...,m except

2 If there are two or more different paths between the same pair of nodes that have
an identical weight vector, only one of these paths suffices. We therefore assume one
path out of the set of equal weight vector paths as being non-dominated and regard
the others as dominated paths.



αj = 1. Hence, for each of the m link weight components, the lowest value from
the destination to a node n ∈ N is stored in the queue of that node n.
Note that the LB concept is also based on (lower bound) predictions for the

end-to-end path length. We could therefore also use the LB predictions instead
of the TAMCRA predictions. Because HAMCRA uses TAMCRA to predict the
end-to-end path length, this prediction (if erroneous) could be larger than the
real end-to-end path length. It may then happen that HAMCRA extracts a
non-shortest path first. Therefore HAMCRA using TAMCRA cannot guarantee
a solution to the MCOP problem. If lpredicted(P ) ≤ lactual(P ) as is the case
with LB predictions, a solution to MCOP can be guaranteed. Unfortunately,
simulations (see Fig. 3) have shown that such predictions are usually not as
good as the TAMCRA predictions, leading to an increased running time.

3.2 Worst-case complexity of HAMCRA

The total worst-case complexity of HAMCRA is constructed as follows. Ex-
ecuting heap-optimized Dijkstra m times leads to mO(N logN + E) and m
times computing a length of a path leads to mO(mN). Executing TAMCRA
with k = 1 requires O(N logN + mE). The search from the destination adds
O(mN logN +mE +m2N), which is polynomial in its input. The "SAMCRA"
search from the source adds O(kN log(kN)+k2mE) [15]. Combining these con-
tributions yields a total worst-case complexity of HAMCRA with k = kmax of
O(mN logN +mE +m2N + kN log(kN) + k2mE) or

CHAMCRA = O(kN log(kN) + k2mE) (2)

where m is fixed and m ≤ k = kmax and kmax is an upper bound on the number
of paths in the search-space. For a single constraint (m = 1 and k = 1), this
complexity reduces to the complexity of the Dijkstra algorithm CDijkstra =
O(N logN + E). For m > 1, the complexity becomes NP-complete, since k can
grow exponentially with N .

3.3 Proof that HAMCRA is exact

The proof that HAMCRA is exact in solving the MCP problem depends on the
validity of the search-space reducing techniques. Obviously, if TAMCRA finds a
feasible path at the beginning, then the MCP problem is exactly solved. For the
case that this first step fails, we summarize the different steps in HAMCRA:

1. Paths with length l(P ) > 1 need not be examined.
2. If in the k-shortest path algorithm the value of k is not restricted, HAMCRA
returns all possible paths ordered in length between source and destination.

3. If, for all i, wi(P1) ≤ wi(P2), then wi(P1) + ui ≤ wi(P2) + ui for any ui.
For all definitions of length l(.) satisfying the vector norm criteria (such as
(1)) there holds that l(w(P1) +u) ≤ l(w(P2) +u) for any vector u. Hence,
we certainly know that P2 will never be shorter than P1. Hence, dominated
paths need not be stored in the queue.



4. If
Pm

i=1 αi (wi(PA→n) + wi (P
∗
B→n)) >

Pm
i=1 αiLi, then sub-path PA→n can

never be complemented with a path P ∗B→n to satisfy the constraints L.
Hence, the sub-path PA→n should not be considered further.

5. Finally, the insertion/extraction policy of the nodal queues uses a predicted
end-to-end length instead of the real length of a (sub)-path. However, since
the predicted end-to-end length and the real end-to-end length of a complete
path between source and destination are the same, this path is returned if
l(P ) ≤ 1 or removed if l(P ) > 1. Thus, only feasible end-to-end paths will
be examined and exactness is guaranteed.

4 Performance Evaluation of HAMCRA

In this section a performance evaluation of HAMCRA is presented based on
simulation results. We have simulated on three classes of graphs, namely the
class of random graphs Gp(N) [1] with link-density p = 0.2, the class of Internet-
like power law graphs with power τ = 2.4 in the nodal degree distribution
Pr[d = k] = k−τ and the extremely regular class of square two-dimensional
lattices. We have performed two types of simulations.
The first type of simulations consisted of generating, for each simulation

run, 104 graphs with all link weights independent uniformly distributed in the
range (0,1]. In each graph, based on multiple constraints, we computed a path
between two nodes (A and B) in the graph and stored the maximum queue-size
k that was used. In all classes of graphs, the source A and destination B were
randomly chosen. For the class of two-dimensional lattices, we also simulated
with A chosen in the upper left corner and B in the lower right corner. We refer
to this ”worst-case” setting as Lattice 2 and to the case where the source and
destination nodes are chosen randomly as Lattice 1. The constraints are chosen
very strict, such that only one path can obey these constraints. In this case the
MCP problem equals the more difficult MCOP problem.
The second type of simulations consisted of generating only one two-dimensional

lattice with A chosen in the upper left corner and B in the lower right corner
and then finding a path in this graph, subject to different constraints. To exam-
ine the influence of the constraints, we simulated with 104 different constraint
vectors per topology.

4.1 Simulation type 1

Fig. 2 presents the results as a function of the number of nodes N . The expected
queue-size E[k] and the variance in queue-size var[k] are very close to one for
the class of random graphs. Similar results were also obtained with SAMCRA
[15], suggesting that exact QoS routing in the class of random graphs with uni-
formly distributed link weights is easy. The class of power law graphs also has
a moderate E[k], although the variability var[k] is larger than in the class of
random graphs. This was expected because the power law graphs are less ran-
dom than the random graphs. The class of two-dimensional lattices gives the
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Fig. 2. The queue-size k for different topologies as a function of the number of nodes
N .

worst performance, especially when the source and destination nodes are fur-
thest apart. The two-dimensional lattices have a large expected hopcount and
many paths between source and destination, making this class of graphs hard to
solve. This was also observed and motivated in [12]. Finally, we have simulated
the performance of HAMCRA as a function of the number of constraints m.
The (undisplayed) results show that the queue-size k increases with m, but that
this increase diminishes if m gets large enough. In fact, if m→∞, E[k] will be
exactly one as proved in [15].

4.2 Simulation type 2

In this subsection we present the results for the class of two-dimensional lattices
with A chosen in the upper left corner and B in the lower right corner. We be-
lieve that this class of two-dimensional lattices represents worst-case topologies.
We have simulated on a single lattice topology with 100 values for constraint
L1 and 100 values for constraint L2, leading to a total of 104 computations per
simulation. With our choice of the constraints it can occur that no feasible path
exists. We have performed simulations for different levels of link correlation ρ.
We only observed a high complexity for an extremely negative correlation. The
results indicate that the values of the constraints and the correlation between
the link weights can have a serious impact on the complexity. If the link weights
are negatively correlated and the constraints are close to the weights of the m-
dimensional shortest paths, the complexity is highest. The impact of correlation
and constraints on the complexity of QoS routing has been discussed in [12]. Fig.
3 presents our results for HAMCRA with different predictive length functions.
Our results show that HAMCRA with TAMCRA predictions has a good com-
plexity if a feasible path is present and if the constraints are not too strict. The
complexity is better than with Dijkstra lower bound predictions. Unfortunately,
the complexity may be large if no feasible path is present or if only one path can
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Fig. 3. The expected queue-size as a function of the constraints L1 and L2, whit
ρ = −1, N = 49. (left) queue-size HAMCRA with TAMCRA predictions (right) queue-
size HAMCRA with Dijkstra predictions.

obey the constraints. In the worst-case scenario with ρ = −1, it is possible to
reduce the complexity by including lower bounds based on 1

m

Pm
i=1

wi(P )
Li
≤ 1.

In this case we could have verified in polynomial time if a feasible path existed.
If exactness for MCOP is required, we recommend to use the linear length func-
tion (see Section 3.1) l(P ) = 1

m

Pm
i=1

wi(P )
Li

for search-space reduction as well as
end-to-end path length prediction (instead of TAMCRA).

5 Conclusions

In this paper we have revisited the use of bi-directional search in unicast routing.
This method is powerful in (one-dimensional) unicast routing. To our knowledge
an extension of one-dimensional bi-directional search towards multiple dimen-
sions has never been examined. We have filled that gap in this paper and have
shown that such an extension is not trivial. Some difficulties appear especially
when the multi-dimensional shortest path is needed or when no feasible path is
present. To avoid these difficulties, we have proposed and evaluated HAMCRA.
This hybrid algorithm exactly solves the multi-constrained path (MCP) prob-
lem and is composed of the exact QoS algorithm SAMCRA and the heuristic
QoS algorithm TAMCRA. HAMCRA uses TAMCRA to quickly follow a feasible
path and uses SAMCRA to maintain its exactness for the MCP problem. Sim-
ulations with HAMCRA show that HAMCRA quickly finds a feasible path for
nearly the entire range of feasible constraints. The complexity of HAMCRA can
only be high when the constraints are closely situated around the weights of the
multi-dimensional shortest paths, the link weights are negatively correlated and



we have a specific topology (like the two-dimensional lattice). We believe that
in practice this situation is unlikely to occur and that HAMCRA is expected to
have a low complexity. If our assumption holds, then it is pointless to consider
heuristics for QoS routing that cannot even guarantee QoS requirements to be
met.
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