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Abstract

The discrete probability density function for the hopcount of the shortest path between two
arbitrary points in the Internet is studied. Similar to complex physical systems, a stochastic
approach to model the Internet is presented. Various topology models are analysed and compared
with Internet data obtained via the trace-route utility. It was found that topologies with constant
link weights hardly fit the data, which suggests that the link weights in Internet vary significantly.
One model, random graphs of the class G,(N) with N nodes, link density p and with exponentially
or, equivalently, uniformly distributed link weights is demonstrated to explain the Internet hopcount

properties surprisingly well. The resulting generating function of the hopcount hp
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is invariant in the link density p and seems robust under other minor changes of the model.

1 Introduction.

This article focuses on the behavior of the probability density function (pdf) of the hopcount of the
shortest path between two arbitrary points in the Internet. In Internet, routers forward IP packets
to the next hop router which is found by routing protocols (such as OSPF) based on a shortest path
algorithm (e.g. the Dijkstra algorithm). The motivation to consider the shortest path between two
arbitrary nodes stems from the facts that (a) the IP address does not reflect a precise geographical
location and (b) that uniformly distributed world wide communication (especially on the web) seems
natural because the information stored in servers can be located in places unexpected and unknown
to browsing users. The Internet type of communication is different from classical telephony since
(a) telephone numbers have a direct binding with physical location and (b) the intensity of average
human interaction rapidly decreases with distance. Finally, the emphasis lies on the hopcount because

it is simple to measure via the trace-route utility, it is an integer, dimensionless and not blurred by
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illusive factors, and the quality of service (QoS) measures (such as packet delay, jitter and packet loss)
depend on the number of traversed routers. The recent introduction of QoS and service differentiation
in Internet has extended the previously ’connectivity only’ forwarding of best effort to end-to-end
QoS constraint routing [14, 22]. Especially real-time services such as telephony on Internet become
unacceptable if the end-to-end delay exceeds 200 ms. Knowledge of the pdf of the shortest path
hopcount enables estimates of end-to-end delay in the Internet [19] and, hence, of the feasibility of
offering service differentiation [3] in the current Internet topology.

In addition to QoS aspects, the results also contribute to our understanding of the Internet topo-
logical structure. Recently, modeling the Internet topology has received increased attention (see e.g.
[27]). Many questions regarding the details of the Internet topology are being posed. Undoubtedly,
so far there are more questions than results which is a general theme in the broad field of networks
as described in the recent book of Watts [25]. When considering the Internet as a growing organism,
similarities with other complex networks appearing in nature evoke more and more interest (see e.g.
[2]). Faloutsos et al. [7] have suggested that many Internet topological properties obey a power law.
Power laws happen to receive much interest due to the seminal work of Mandelbrot [13] and, in com-
munication networks, of Willinger et al. who showed that the nature of Internet traffic is self-similar
(even multi-fractal) and long range dependent (see for references [26]). In spite of the esoteric fasci-
nation for power laws, alternative explanations [24] of the long range dependence as caused entirely
deterministically by TCP, caution to draw conclusions too fast. In [17], we demonstrate that the
observed power law for the multicast efficiency in Internet, coined the Chuang-Sirbu law, holds only
approximately in a limited regime.

We consider random graphs (r.g.) as a model for the Internet. Of course, the Internet topology is
not random. However, the Internet is chaotic and unstructured, and one way to model this chaotic
structure is by introducing randomness. This principle first appeared in physics. When considering
particles in a gas their behavior is completely deterministic. Unfortunately, it is too complex to be
described explicitly. An efficient way to deal with this complexity is to use a stochastic description.
We will use the same approach to model the Internet. However, the above still does not explain how to
model the Internet as a random graph. We will investigate several topology models with different link
weights, both constant as well as variable link weights!. When computing the hopcount distribution
in these models, we test which one fits the available Internet data best. It turns out that the extreme
case where all weights are equal does not describe the hopcount distribution well, and we conclude that
in the Internet the link weights have considerable variability. We also conclude that the structured or
regular graphs do not fit well, and we are lead to random graphs. We finally find one model, random
graphs of the class G(IN) with exponentially or, equivalently, with uniformly distributed link weights,
that describes the measurements remarkably well. A further achievement of this article is the precise
determination of the limiting generating function Hy(x) of the hopcount hpy of the shortest path

between two arbitrary nodes when the number of nodes N — oo in that model,
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from which the average hopcount E[hy], the variance var[hy] and the probability that the hopcount
of the shortest path consists precisely of k£ hops follow as
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where 7 is Euler’s constant (7 = 0.5772156...) and ¢ are the Taylor coefficients of ﬁ listed in [1,
6.1.34]. We argue that this key result is quite universal in that it holds for many classes of random
graphs, it is independent of the precise details of the topology (e.g. of the number of links) but it
is sensitive to the behavior of the distribution of the link metrics w, F,,(z) = Prjw < z], for = | 0.
Moreover, the limit law (4) agrees remarkably well with Internet measurements. We can conclude
that either the limiting distribution (4) is robust under minor changes to the model detailed above,
and that the Internet is a minor change to that model, or that the model we have chosen describes
the hopcount of the shortest path in Internet well.

First, we present Internet measurements of the hopcount, followed by general modelling assump-
tions. Based on these Internet measurements, some topology models with constant link weights for
which the pdf of the hopcount can be computed analytically are discussed in section 4. Section 5
presents observations and properties of the hopcount of the shortest path in r.g.’s with variable link
weights deduced from simulations. These observations are explained in section 6 via a mathematical
analysis. The details of the mathematical derivations and proofs of the theorems are found in a com-
panion paper [18]. The limit law (4) is statistically verified in section 7. Finally, we conclude with a

brief discussion.

2 Internet Measurements.

Recently, Vanhastel et al. [23] have reported measurements of the hopcount (of the shortest path) in
the Internet obtained via the well-known trace-rout utility [15] and performed medio 1998. They found
that the average number of hops was around 18. Also, this number hardly varied over the different
regions in the world, which seems to indicate that the Internet topology is quite homogeneous or
isotropic and, at the same time, chaotic and unstructured.

Paxson [15] has reported both the average and the standard deviation (sdev) of Internet measure-
ments of the hopcount of the shortest path. In his measurement performed in November-December
1994, Elhy]| = 15.6 and sdev = 4.5 (var[hy]| = 20.25), while in the November-December 1995 measure-
ments, he found E[hy]| = 16.2 and also sdev = 4.5 (var[hy] = 20.25). However, in these measurements
Blhn] iy the
varlhn]
first period is 0.77 and 0.8 in the latter. Data from Demeester et al. [23] show that [[h ]] =1.4 and
are plotted in Figure 1 together with our measurements at Delft University of Technology with MTU[L}”\]]]

around 1. The latter two measurements have chosen routers uniformly spread over the continents

the sample size S was rather small (around 30). From these measurements, the ratio

which were being reached from Gent (Belgium) and Delft (The Netherlands), respectively. Although



measured from different locations and at different times, Figure 1 demonstrates a reasonable agree-

ment.
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Figure 1: The pdf of the hopcount in Europe, Asia and Northern America as measured at Delft
University of Technology (August, 2000), whereas that of the world at the University of Gent (medio
1998). The last column gives the sample size S of each data set.

3 Topology Models.

The interconnection pattern of a network with N nodes (routers in the Internet) can be represented?
by a N x N connectivity matriz T' consisting of elements Tj; that are either one or zero depending on
whether there is a link or edge between node 7 and j or not, but for any j, we have that T};; = 0.

Apart from the topological structure specified via the connectivity matrix 7', the link between node
i and j is further characterized by a vector w(i — j), with m positive components, each reflecting
a QoS measure (such as delay, jitter, loss, cost, administrative weight, etc.). Here we confine to one
(m = 1) additive link metric. Hence, the shortest path from A — B is the path P4_,p that minimizes
Yijepap Wt —J).

We assume symmetry in both directions, w(i — j) = w(j — i) and, hence, also end-to-end
symmetry such that the shortest path from A — B equals that from B — A. Although this assumption
seems rather trivial, we point out that in telecommunications, transport of information in up-link and

down-link is, in general, not symmetrical. Via Internet measurements, Paxson [15] found that, in

20ther representations are the adjacency list and the link state table (as in OSPF).



1995, about 50% of the paths from A — B were different from those from B — A. Fortunately, as
explained in section 5, the limiting behavior of the pdf for N — oo of the hopcount of the shortest
path is insensitive to this asymmetry.

Initially in Internet with RIP, all link weights w(i — j) = 1 and both routing and TTL were
using hopcount as metrics. In OSPF today, operators have the freedom? to specify the link metric
w(i — j) > 0 on the interfaces of their routers. We argue that it is realistic to consider different weights
for different links. Conform to our approach, we assume that the link weights are characterized via a
certain distribution Fy,(x) = Pr[w < z|. The difficulty then lies in determining the precise details of
F(x) for the Internet.

Apart from the link weight distribution Fi,(x), also the topological structure of the Internet is
unknown. There are three reasons why hierarchical graphs are not considered, although routing in
Internet consists of two-levels, interdomain and intradomain. First, the measurements of Vanhastel et
al. [23] and ours in Figure 1 show a remarkable degree of homogeneity over the different continents
which is difficult to explain with a hierarchical model since the number of service providers (intrado-
mains) is not so uniformly distributed over the world. Second, regarding the hopcount, there is no
difference between traversing a border gate way router or a interior domain router: both contribute 1
hop. Therefore, when only counting the hops of the end-to-end shortest path, we cannot distinguish
between these two levels. The influence of BGP policy routing can be modeled via the probability
that there is a link between two nodes for the packet under investigation. Policy routing somehow
enhances the randomness and decouples the physical topology from the actual followed path. The
third reason obviously involves the modeling of the hierarchy: Which parameters are enough to de-
termine an Internet hierarchical structure? Even if everybody agrees on the particular hierarchical
structure (as e.g. in PNNI), the next question is how to choose the realistic values of the parameters
that describe that hierarchy. Even for the well-defined PNNI hierarchy, node and link aggregation
quantifiers (see e.g. [20]) remain very difficult to extract from measurements.

Therefore, we will consider homogeneous topology models for which the hopcount can be computed.
We will start analyzing different topology models all with constant link weights equal to 1. Compar-
ing the resulting hopcount behavior with Internet measurements suggests to investigate models with

variable link weights.

4 Constant Link Weights.

In this section, we consider several topological structures in which each link has unit weight. In these
cases, every shortest path between two arbitrary chosen nodes A and B also minimizes the hopcount.
We emphasize that the considered topologies are in general not good models for the Internet topology.

Rather, the purpose of the analysis is to illustrate the highly unlikeliness of constant link weights.

4.1 A d-lattice.

An extremely regular graph is a d-lattice where each nodal position corresponds to a point with integer

coordinates within a d dimensional hyper-cube with size Z. Apart from border nodes, each node has

3 An approach to optimize the OSPF weights to reflect actual traffic loads is presented by Fortz and Thorup [9].



a constant degree (number of neighbors), precisely equal to 2d. Assuming that all link metrics are
equal to one, the probability distribution of the hopcount of the shortest path between two uniformly
chosen points is readily computed. Indeed, in one dimension, the hopcount of the shortest path
between two uniformly chosen points x4 and xp equals the distance between x4 and xp. Thus,

Prlxg —xp| =k] = %lkzo + Z(ZZEIC) li<k<z—1 with corresponding generating function
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Since the nodes are uniformly chosen, all coordinate dimensions are independent and the generating
function of the hopcount of the shortest path in a d-lattice is ¢%(x). Since E[hn] = (¢%)'(1) and

varfhy] = (¢9)"(1) + (¢%)'(1) — [(¢?)'(1)]?, the average number of hops is immediate as E[hy] =
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nodes in the d-lattice is N = Z¢ such that, for large N, we obtain

(7% — 1) and the variance as var[hy] = , while The total number of
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both increasing in d > 1 (for constant N) as in N (for constant d). However uﬂ?}ﬁi] ~ 6N/ is

decreasing and tends for large N to zero (for finite d), which contradicts Internet measurements.

4.2 The k-ary Tree.

Let us consider the k-ary tree of depth* D with the node A at the root (level 0) of the tree and the
node B # A randomly in the k-ary tree. The k-ary tree may be a model for the shortest path tree of
node A. All link weights are equal to one. Since every node at level j < D has precisely k-children

nodes at level j + 1, the total number of nodes satisfies

kP —1
N:1+k+k2+...+kD:ﬁ, (7)
The probability of the hopcount of the shortest path between A and B equals Pr[hy = j| = Nk—il,
for 1 < j < D, and the corresponding generating function is ¢(z) = E {th } = %% After

appropriate differentiation of ¢, (x) we obtain
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For large N, we find with D = {w - 1J ~ logy N +log,(1 — 1/k) + O(1/N), that

log k
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4The depth D is equal to the number of hops from the root to a node at the leaves.



Hence, for hopcount of the shortest path in the k-ary tree we find that, for large N, var [hy] is almost

constant and 2]
var|hy

1)2 .
T (k kl) log;, N, which grows unbounded, contrary to Internet measurements.

4.3 Random Graphs

There exists an astonishingly large amount of literature on properties of random graphs (r.g.’s).
We refer to the book of Bollobas [4] for an excellent discussion, the work of Janson et al. [11] on
evolutionary processes in r.g.’s and the survey paper on recursive trees by Smythe and Mahmoud [16].
The two most frequently occurring models for r.g.’s are G,(N) and G(N, E). The class of r.g.’s denoted
by Gp(IN) consists of all graphs with N nodes in which the edges (or links) are chosen independently
and with probability p. A natural refinement of Gp(IV) is the model G, 3 (IV) where the edges are still
chosen independently but where the probability of © — j being an edge is exactly p;;. The Waxman
graph, investigated in section 5.3, is an example of G, 1(N). The class G(N, E) constitutes the set
of graphs with N nodes and E edges. Bollobas [4, pp. 37] remarks that ’the nearer the r.g. are to
being independent, the easier it is to handle them. This is the reason why Gp(N) is more pleasant to
work with than G(N,E). In Gp(N) the edges are chosen independently, while in the model G(N, E)
the choice of an edge does have a (fortunately small) effect on the choice of another edge’. In the class
Gp(IN) the number of links is not deterministic, but known on average as p Enq, where the maximum
number of links E,4, in a (bi-directional) topology with N nodes is Epq = w = (g) This
situation is coined a full mesh and G1(N) = G(N, Epqz) is called the complete graph Ky. In the
class G(N, E), the number of different network topologies with N nodes and E links we can construct
equals (E’gf””) which corresponds to the number of ways we can distribute a set of E ones in the Epqz
possible places in the upper triangular part above the diagonal of the matrix 7. In constructing a r.g.
in G(N, E), each of the possible E,,4, links has equal probability. Furthermore, there are precisely
E links equivalent to E non-zero elements in the upper triangle of 7. The probability that T;; = 1

equals p = Efw and conversely, the probability that T;; = 0 equals ¢ = 1 — p. In the sequel, we

merely consider the class G,(INV) because, for large N, the total number of links E is close to %2 and
Gp(N) is almost in G(N, #)

From the point of view of telecommunication networks, by far the most interesting graphs are those
with connected topology. This limitation restricts the value of p from below by a critical threshold,
i.e. p > pc, where, for large N, p; ~ % corresponds to the link density leading to disconnectivity in
the r.g.’s. Connectedness of r.g.’s has received considerable attention in the past [4, chapt. 7]. The
properties of Gp(IV) change dramatically below the connectivity threshold p, ~ IHTN The drawback
of the connectivity requirement in G,(N) is that the minimal nodal degree is p.N ~ In N, which
means that the average number of neighboring nodes becomes unbounded as N — oo. Fortunately,

the tendency to this limit is slow: if N ~ 10°, the average number of neighbors is p.N ~In N = 13.8.

4.3.1 The random graph with constant weights

The average degree per node in the Internet, here denoted by A, is a finite number (around 3), which
implies, for large N, that p = % with A > 1. In that case, there is a positive probability that a given
node is not connected to the largest cluster. This largest cluster is of the order N, and we therefore
confine to the situation that both the nodes A and B are in this largest cluster. We claim that the



number of nodes that can be reached in n steps from either of these nodes A or B grows like WA\,
respectively, WpA™, as long as A" is much smaller than N. From the theory of branching processes
[10, p. 150], it follows, for N large, that W, Wg are independent identically distributed random
variables with mean almost equal to 1. Indeed, we can view the number of edges connected to each
node as the offspring in a branching process {Z }r>0. As long as the clusters remain of order smaller
than N, that number of edges has a binomial distribution with the parameters, in leading order, N
and p. For Np? small, the binomial distribution can be approximated by the Poisson distribution
with mean A = N - p. From the martingale convergence theorem [10, p. 309], more specifically from

the example on page 311 of this reference, it follows that W, = where 7, is the number of

—Zn
ElZn]’
individuals in the n-th generation, converges almost surely to a limit[ Wl' In our example the number
of individuals in the n-th generation equals the number of nodes that can be reached in n steps and
E[Z,] ~ A\". This motivates the claim. The generating function of the offspring distribution (or
rather of the approximating Poisson(A) distribution ) is ¢(s) = Y72, Ske’)‘)‘k—f = exp{—A(1—s)}. We
condition the nodes to be in the largest cluster, which effectively conditions on W4, Wg > 0. The
probability that W, = 0, which is called the extinction probability pso, is, for large N, close to the
smallest non-negative root value of the equation s = ¢(s) [10, p. 153] and, hence, pso is close to e™*
for \ large, so that the probability that W4 > 0 is approximately 1 — e~ .

Denote by C'4(1), respectively C'i(1), the set of points that can be reached from A, respectively B,
in [ or less steps. We know that the hopcount is larger than 21 precisely when C4(1) N Cp(l) is empty.
Conditionally on |C4(l)| = C4y, respectively |Cp(l)| = Cp, this happens with probability

(DG (N )N —Ca=2) . (N = Ca =)

DRI, - (N—-1)(N-2)...(N - Cp)

(1- S4H)(1 - 942 (1 — CaiCa)
1-H0-%)...(1-%)

For N large, approximating 1 — % by e~ leads to
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Prlhy > 20||Ca(l)] = Ca, |CB(1)| = CB] =

Hence, we obtain that

Prlhy > 2l ~ E [e——A—LC e

A, B are both in the largest Cluster] .

Noting that [Ca(1)| ~ W4 Sk_o AF ~ WHAFL /(X = 1), and similar for C(1), we have
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Since the same asymptotics also holds for odd values of the hopcount, we finally arrive, for £ > 1, at

[ wywpgakt?
Prlhy > k| ~ E |6~ NO-1? ‘WA,WB >0

Now consider a discrete random variable Yy with support {1,2,..., N — 1} and survival probabilities

k

Pr[Yy > k] = e °¥, k=1,2,...,N—2



The mean value of this random variable equals

N-1 N-2 N-2 K
= > EPrYy=k]=> PrYy>kl=) e °F.
k=1 k=0 k=0

The main contribution of the sum stems from values of k, where \¥ < (N/¢). Indeed, when k runs

through the values 0 up to the largest integer with A* < < (N/c), for large N, the tail probability e_c%
decreases from 1 to the value e~!; when A¥ is significantly larger than N /c (and since A > 1, we only
need a finite number of terms beyond k = [log,(/N/c)] to reach this goal), the tail probability e*c%
is almost 0. This explains that the typical value of E[Yy] is such that \* = N/c, i.e., k ~ log, (N/c).
For this value of k, because of the connection k = 2I, both |C4(l)| and |Cp(l)| are of the order
WaANH /(A = 1) = O(V/N) = o(N) and the initial approximation 1 — —A+_Cﬂ = exp{—gA;—Cﬂ} is

accurate. Hence, we have shown heuristically that

2

> log,(N) — 2log, ((A—il)> ’

where we have used Jensen’s inequality and E[W 4] ~ E[Wpg| ~ 1. For the variance of Yy we take
¢ = 1, because we can rescale N by the transformation N — N/c. Similar to the expression for E[Yy]
we find
N—2 N— K
var[Yn] = > ((2k+1) — E[Yn]) Pr[Yny > k] & Z (2k +1 —log,(N))e 7.
k=0 P

The terms with k > log,(N) only contribute a number independent of N. The terms with k <

(logy N)/2 give a negative contribution which is in absolute value larger than the contribution from
k

the terms with (logy N)/2 < k <log, N, because e N is decreasing. Hence var|Yy] remains bounded
Elhy]
'ua'r[szv ]

when N increases and this indicates that the same is true for var|[hy]. Hence, the ratio increases
unboundedly when /N increases.

The above considerations hold for fixed A and p = % At the other end of the scale consider the
case where p = \/Lﬁ which corresponds to A = ¢ - /N, and the above analysis no longer applies for
such large values of A. Fortunately, in that case, an exact asymptotic analysis is possible. It is not
hard to show that E[hy]| ~ 2—p and var|[hy]| ~ p(1 —p). In fact hy is either 1 or 2 with probability p

or (1—p) (1 — (1 =p?)N _2) respectively, and higher values of hy are extremely unlikely for p ~ \/—%

since Pr{hy >2] = (1—p)[1 — p2]N_2 tends to zero. These results agree with those for fixed A since,
for A\ = c¢- VN, E[hy] = % = ﬁ — 2, as N — oo and the variance is bounded. Intuitively,
for larger A, the number of edges in first approximation is equal to Np and we can compare the model
with the k-ary tree with the parameter k equal to the binomial mean Np = A. If we extrapolate the

results of Section 4.2 for the k-ary tree, then we obtain

k 1
E[hy] =~ log, N = log, N; varlhy| ~ (OB N
Computer simulations with N = 10,000 and various values of A confirm the above sketched picture:
in almost all simulations the hopcount equals [log, (V)] £ 1, indicating that the hopcount is almost
deterministic. The above considerations lead inevitably to the conclusion that r.g.’s of the class Gp(IV)

with constant weights do not fit Internet measurements for the shortest path.



4.4 Conclusion.

Although the analysis above is not exclusive nor decisive, it nevertheless suggests that graphs with
constant link weights are likely to possess different properties than those deduced from Internet mea-

surements. In the sequel, therefore, we will investigate the influence of variations in the link weights.

5 The Shortest Path between A and B: Observations.

In this section, we present - not always intuitively expected - observations from simulations, which will
be explained in section 6 based on a rigorous mathematical analysis. The precise modeling assumptions

are:

1. We confine ourselves to r.g.’s of the class G,(N).

2. Each node in the r.g. in Gp(NV) has on average E[L] = p(NN — 1) links with other nodes and the
variance of the number of links L per node var|L] = (N — 1)p(1 — p) is small compared to the
square of the average, i.e. var[L] << (E[L])?. For the r.g., this condition means that pN >> 1

and it is needed for the coupling argument in the proof (see sec. 6.3).

3. The weight w(i — j) of the link between node i and node j is (a) independent of other links
and (b) described by the same distribution function F,(x) = Prjw < z].

For bi-directional links where w(i — j) and w(j — ) are identical and independent, the shortest
path tree from A — B and that from B — A are identical in distribution. This argument explains

why we further confine to the symmetrical case.

5.1 Simulations in the class G,(N).

We will start presenting results obtained for the class Gp(IN) with uniformly [0,1] distributed link
metrics w, i.e. Fy(z) = Prjw < x] =z, for 0 <z < 1. Clearly, the hopcount hy of the shortest path
is independent from a link weight scaling factor and the confinement to the interval [0,1] does not
affect the generality. Using Prim’s minimum spanning tree algorithm [5], every r.g. is first tested to
assure that the r.g. is connected. Disconnected r.g.’s are removed and a total of one million connected
r.g.’s have been constructed for each simulation. In each r.g. of the class G,(NN), the shortest path
between node 1 and N has been computed with Dijkstra’s algorithm. The number of hops of this
shortest path has been stored in a histogram, from which the pdf of the hopcount hp is deduced. The
special interest in this article lies in the behavior of the pdf of the hopcount Ay of the shortest path
as N increases. For that purpose, the mean E[hy]| and variance var|[hy]| are plotted in Figure 2, for

a same value of p = 0.8, as a function of V.

5.2 Insensitivity of the link density p for large N.

The dependency on the link density p becomes vanishingly small as N grows as illustrated in Figure
3. We observe that the curves for p = 0.2 and p = 0.8 computed for a same number of nodes N tend

to each other when N increases. This means that, for sufficiently large graphs (in practice for N > 50
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Figure 2: The mean E[hy] and the variance var|hy| as a function of N deduced from Ggg(N) with

uniformly distributed link metrics w. The bold line is the theoretical limit law.

in Gp(N)), the behavior of the hopcount of the shortest path only depends on the number of nodes
N in the topology of the class Gp(N). In other words, as long as p > 0 is constant, the precise value

of p is not important in the limit N — oo . This phenomenon is explained in section 6.1.

5.3 The precise details of the topology of the graph are not important.

Waxman graphs are believed to be better representatives of telecommunication networks than r.g.’s of
the class G,(V). The Waxman graph belongs to the family G, . (N) with p;; = f(7; —77j), where the
vector 7; represents the position of a node ¢ and all nodes are uniformly distributed in a hyper-cube of
size Z in the m-dimensional space. The dependence on distance f(7) is a positive, real function of the
m coordinates of the vector 7. For example, the Waxman graphs are specified by f(7) = e~ where
|7 is a norm, denoting a distance from the origin. The idea of relating the probability of a link between
node ¢ and j to some function of the distance between those nodes stems from the correspondence
with realistic telecommunications networks. The farther two nodes lie separated, the smaller the need
for a direct link between them.

From the definition of the link density p = EL, where E denotes the average number of links in

11
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Figure 3: For various values of N, the pdf of the hop count of the shortest path is drawn for p = 0.2

(upper curve) and p = 0.8 (lower curve). The link metric w is uniformly distributed in [0, 1].

the Waxman graph, the decay rate a = aZ of the existence of the link is expressed [21] uniquely in

terms of p as, for a > 0,

p(a) = % [6(1-2e7+¢2) 420 (~4 - 27 +3v2e V) +a? (472 4 1)) +8g;(a) +8952(a)

(8)

with, of course, p(0) = 1 and where

V2
aly) = dg;_;y):/ 2e_ym,/g;2_1da: (9)

1

92(y) = Aﬁey“” V1-1/22dz (10)

Relation (8) shows that the link density p(a) is only a function of the decay rate a (and not of other
parameters as 7). Zegura et al. [27] have considered p;; = nexp(—|r; — 7j|/BL) and were led to the
same conclusion concerning p(a) via extensive simulations.

In Figure 4, the pdf of the hopcount of the shortest path is drawn together with the corresponding
pdfs in Gp(10). Surprisingly perhaps, for identical link densities as computed via (8), there does not

seem to be any significant difference between the shortest path behavior in G)(NN) and the Waxman

12
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Figure 4: The pdf of the shortest path in a Waxman graphs with N = 10 nodes and various link
densities p = {0.2,0.4,0.6,0.8}. In dotted line, we have also added the corresponding pdf’s of G,(10).

graph, even not for small network sizes as N = 10, in spite of their definitely different topologies as
illustrated below. This result indicates that the details of the topological structure of the random

graph become obsolete when using random link measures.

b/
",%-!aa-_h
A

e,

i

A Waxman graph (N =100, a = 11, p = 0.04). The graph G 04(100).
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5.4 The precise details of F,(z) are important.

Apart from uniformly distributed link metrics w, other types such as the exponential F,(z) = 1—e™*,
with # > 0 and polynomial distribution functions Fy,(x) = 2% with = € [0,1] and 0 < a < oo, have
been considered. The uniform distribution is a special case of a polynomial distribution with o =1,
whereas the exponential distribution has the same limit for x | 0 as the uniform distribution. Note
that for a # 1, limg o F,(x) = 0 for @ > 1, while lim, ¢ F},(z) = oo for @ < 1. The parameter « is

known as the extreme value index of the probability distribution of w. Figure 5 shows that the ratio
Elhy]
'ua'r[f]LvN]
uniform (a = 1) and exponential distribution for w lead to nearly identical results, especially for large

— «a for N — oo, which will be explained in section 6.1. Figure 5 further illustrates that a

N. All other polynomial distributions with exponents a # 1, lead to distinctly different behavior for
the hopcount Ay .

The dependence of the hopcount on « is explained intuitively as follows. The shortest path is
most sensitive to small values of w. The more mass the pdf of the distribution of w has around zero
(i.e. the smaller «v), the larger we may expect the hopcount of the shortest path because the shortest
length is hardly changed by including an additional hop. On the other hand, for large «, most of the
link weights have a value around 1 and the shortest path changes roughly by one if an additional hop

is included. Hence, the affinity to include many hops is low.

10 T T T T T T LI | T T T

EhAharlhy]

0. 1 1 1 1 1 1 1 1 M| 1 1 1
10 100

Nurber of NodesN

Elhn]
var|hy|

Figure 5: The ratio versus number of nodes N (logarithmic scale) for various «

More rigorously, the dependence on « is reflected through the distribution of the minimum of the

link weights. Since the link weights w; are independent with distribution F,(z) = «* with = € [0,1],

14



at each hop, the minimum link weight has distribution
Prmin(wy, -+, wp) > x] = Prlwy >z, -+, w, > x| = (Prjw > z])" = (1 — 2%)".

Hence, for large n,

x x*\" a
Pr min(wl,---,wn)>m] = (1—7> —e ”
is a limit distribution with extreme value index «. Thus, a typical minimum link weight is of order

1/a

n~ /% which tends to 1 if @ — 0o, and to 0 if @ — 0. In case Cisco’s suggestion to use OSPF link

weights inverse equal to 10®  where BW denotes the bandwidth of the link in bit /s, is followed by a

BW
majority of network administrators, the relation

108 <108>“

w< —|=[—

x T

indicates that the bandwidth distribution in Internet follows a power law with exponent « close to 1.

1
< —| =
Bw—m] Pr

Pr[BW>a:}:Pr[

6 The shortest path between A and B: theory.

The analysis that leads to the key results derived from (1) is presented. First, the observed indepen-
dence on p is discussed via an order calculus where polynomially distributed link weights are treated.
We then concentrate on the particular and most easy case of the complete graph K, where p = 1 and
where all weights or link metrics are exponentially distributed with parameter 1. Finally, the general
case for the link density p = py = f(IV) is outlined. As mentioned before, the rigorous mathematical

proofs can be found in [18].

6.1 Order calculus

In this section we consider the random graph G, (), with weights chosen independently according to
the distribution function
Fy(x) = 2% 1)() + 11,00y (7), >0, (11)

with corresponding density fi,(7) = az®!, 0 < x < 1. We will give a heuristic argument that the

hopcount hy satisfies the central limit theorem:

lim Pr hy — (InN)/a <z|l= L/ e du, (12)
N—o0 (1nN)/a2 \/ﬁ —0o0

which indicates in particular that for IV large

Elhy] ~ 0 (13)
var|hy| ~ h;—év, (14)

and that the hopcount is (at least asymptotically) independent of the link density p.
For this argument we introduce some notation: we fix the nodes A and B, and denote by I'; the
set of all paths in Gp(N) from A to B, with [ links or hops. A particular path of the set I'; is denoted

15



by ;. The probability that an arbitrary path -, € I'; is present in G,(N) is p!, by independence. We
denote the weight of v by w(~). Let wy be the (random) weight of the shortest path between A and
B in Gp(N) with i.i.d. link weights chosen according to (11). We will focus on the event

{hN S k,wN S Z}
This event implies that there is a path v, € G,(N), I <k, with weight w(y;) < z and, therefore,

k
[hN < k ,WN < Z} < Pr[Ul 1 Ufygpl {w < Z} Z UvEFl < Z}: (15)

where the second inequality follows from Boole’s inequality (Pr[UA;] < " Pr[A;]). Again using Boole’s
inequality and the independence of the link and the link weights,

k k
Y PrlUserw(y) <21 < Y0 ) PrlyeT,w(y) <7
=1 1=1all v
k k
= Y > PrlyeTPrlw(y) <2 =) E[T[]Prlw(y,) < 2]
1=1all v =1
The average number of paths from A to B with [ hops [19] equals E[|I}|] = (Njij_zl)pl. With the
inequality (Nj\iﬁl) < N1, we obtain
k k
Y PriUser,w(y) <21 <Y N Priw(y,) < 2] (16)
=1 =1

Combining (15) and (16) leads to

k
Prlhny < k,wy < 2] < Zlelpl Prlw(y;) < 2].
=1

From this rigorous inequality we infer the heuristic statement
Prlhy = b, wy < 2] ~ N-1pFFEA(2),

where the distribution function F**(2) is the probability that a sum of k independent random variables

each with d.f. F,, is at most z and is given by the k-fold convolution:
By = [ FE G- fa . k22

and where F* = F,,. By induction it readily follows from (11), that for z | 0,

. 2% (al ()"
')~ ok
Hence
Prihy = k,wy < 2] ~ N¥~ 1&%. (17)
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For a typical value of z, the probabilities in (17) should sum to 1, yielding:

)dx

N= aNpF / (aNpT'(«
ak’—{—l =N IMNax+1)

N
1 (aNpI(a)z®)*/> 1 (aNpI(a)z®)k/e
fﬁ/ T(u+1) _EWE: T(k+1)

= —exp{(aNpT(a))"*2}.

Hence a typical value for the weight of the shortest path is the solution of aN = exp{(aNpT'(«a))/*z},
yielding
; In(aN)
(aNpT(a))t/

Substitution of this result in (17) shows that the hopcount probability should satisfy

1 (InanN)eF

Prlhy = k| =~ —
thy =K = S TarT 1

(18)

where the event {wy < z} is deleted because we substitute the typical value of z, so that P{wy < z}
is close to 1.
For a = 1, the right-hand side of (18) equals the probability that a Poisson variable with parameter
(In N) equals k,
1 (InaN)**
NT(ak+1)
so that for « = 1 and N large E[hy]| ~ var|hy] ~ In N. This result has been proven rigorously

e BN (In N)* /!,

in [18] with the wuniformly distributed weights replaced by exponential weights. This replacement is
irrelevant, because, as was pointed out in the introduction to this section, the exponential and the
uniform distribution are in the same minimal domain of attraction. The proof for exponential weights
will be sketched in section 6.3.

For a # 1, a rough first order approximation for the Gamma-function is T'(ak + 1) =~ (ak)®*, and
hence (18) suggests that ak ~ InaN =In N 4+ Ina. To confirm this and to calculate the asymptotic

variance of the hopcount we substitute
1
E=—InN + v, (19)
o

n (18). Using Stirling’s formula (I'(u +1) ~ (%)" v2mu),

i(ln(oz]\f))o"C N <lnN+ln0z>lnN+a” e*?
N T(ak+1) — \InN+av 27(In N + aw)
e InN + av
L expl—(InN n (2T
\/27TlnNeXp{ (o N+ av) n<1HN+1na>}

Now use In(1 + z) = 2 — 22/2, up to second order to obtain

Qv

© e { - Ntav) n (O] aet 02 (210 )25 (o0—(ne)/2)
—————exp{ — . o~ .
VorInN P [ +1lna/(InN) V2r N

To interpret this result properly note that we compared (asymptotically) a discrete probability by a

continuous function in v, whereas (compare (12)), we should approximate the cumulative probabilities
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of the standardized hopcount with the standard normal distribution function. If a random variable

Xy is asymptotically normally distributed, then

— X
Pr [M < w} — L/ e 2 qu,
ON V 21 J—o0

where 1y = E[Xy] and 0% = var[Xy]. This statement almost always (but not necessarily) implies

local convergence of the densities:

6_9”2/2, x € R.

Xn —
on Pr [NU—NuN € [w,m—{—dm)} Jdx —

1
Vim
Now substitution of v = z1/(In N)/a? in (18) and (19) gives
e—7%/2+0((In N)~1/2)

V2rIn N

This indicates that (12) indeed holds with py ~ (In N)/a and 0% ~ (In N)/a?. Hence, we expect also

(13) and (14) to hold. It then follows that the ratio ﬁ% — o for N — o0, as observed in Figure 5.

The statements (12)-(14), for a # 1, although very plausible, seem hard to prove rigorously, because

hN—(lnN)/a Na
Pr [W € [$,$+dI)‘| /d$_

of lack of order between the nodes of the random graph. Classical central limit theory with some kind
of mixing and or the central limit theorem for martingale difference sequences seems therefore hard to
apply. The proof for a = 1 relies on the equivalence of uniform and exponential weights in the shortest

path problem and the theory of continuous time Markov chains, as explained in the next section.

6.2 The complete graph Ky

The previous results point to the independence of the hopcount on p and suggest to consider the
simplest case of the complete graph Ky where p = 1. The problem of finding the shortest path
between two nodes A and B in Ky with exponentially distributed link metrics can be rephrased in
terms of a Markov discovery process. The discovery process evolves as a function of time and stops
at a random time 7" when node B is found. The process is shown in Figure 6.

The evolution of the discovery process can be described by a continuous time Markov chain X (t),
where X (t) denotes the number of discovered nodes at time ¢, because the characteristics of a Markov
chain [8] are based on the exponential distribution and the memoryless property. Of particular interest
here is the property that the minimum of n independent exponential variables each with parameter
«; is again an exponential variable with parameter > ;" ; ;.

The discovery process starts at time ¢t = Ty with the source node A and for the initial distribution
of the Markov chain, we have Pr[X(7) = 1] = 1. The state space of the continuous Markov chain is
the set S consisting of all positive integers n with n < N. For the complete graph K, the transition
rates are given by

Annt1 = (N —n), n € Sy. (20)

Indeed, initially there is only the source node A, hence n = 1. From this first node A precisely N — 1
new nodes can be reached in the complete graph Kp. Alternatively one can say that N — 1 nodes
are competing with each other each with exponentially distributed strength to be discovered and the

winner amongst them, say C, is the one reached in shortest time which corresponds to an exponential
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time

Figure 6: The discovery process as function of time. The time horizon is drawn as a dotted semi-circle

centered at the starting node A. At time T the process stops when B is found.

variable with rate N — 1. After having reached C from A at hitting time 75, n = 2, and the discovery
process restarts from both A and C. Although at time 75 we were already progressed a certain distance
towards each of the N — 2 other, not yet discovered nodes, the memoryless property of the exponential
distribution tells us that the remaining distance to these N —2 nodes is again exponentially distributed
with the same parameter 1. Hence, this allows us to restart the process from A and C' by erasing
the previously partial distance as if we ignore that it were ever travelled. From T5 on, the discovery
process has double strength to reach precisely N — 2 new nodes. Hence, the next winner, say D, is
reached in the minimum time out of 2(N — 2) links. This node D has equal probability to be attached
to A or C because of symmetry. When D is attached to C (the argument below holds similarly for
attachment to A), symmetry appears to be broken, because D and A have only one link used whereas
C has already two links used. However, since we are interested in the shortest path problem, the direct
link from A to D is longer than the path A — C' — D and, thus, we exclude this link in the discovery
process hereby establishing again the full symmetry in the Markov chain. This exclusion also means
that the Markov chain maintains single paths from A to each newly discovered node and this path is
also the shortest path. Hence, there are no cycles possible. Furthermore, similar to Dijkstra’s shortest
path algorithm, each newly reached node is withdrawn from the next competition round guaranteeing
that the Markov chain eventually terminates. Besides terminating by extinction of all available nodes,
after each transition (or newly discovered node), the Markov chain stops with probability equal to
1

~—, since each of the n already discovered nodes has precisely 1 possibility out of the remaining N —n

to reach B and only one of them is the discoverer. The stopping time T is defined as the infimum for
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t > 0 at which destination node B is discovered. In summary, the described Markov discovery process
models exactly the shortest path for all values of N.

Next, since we are merely interested in the hopcount of the shortest path, we need to determine
for each node the smallest number of hops to A. Therefore, we consider an associated tree to the
Markov process with equal number of nodes X(¢) at time ¢ constructed as follows. Just as the
discovery process, the associated tree starts at the root A. After each transition in the continuous
time Markov chain, X (t) — X(t) + 1, an edge of unit length is attached randomly to one of the n
already discovered nodes in the associated tree because a new edge is equally likely to be attached
to any of the n discovering nodes. Hence, by construction of the associated tree, all configurations

are equally likely and the probability pg\];) that a uniformly chosen node in the tree has hopcount k

(k) _ (=)NksE) (k) . . -
[16], is ppy = ——x7—2-, where S}’ is the Stirling number of the first kind [1, 24.1.3]. On the exact
reformulation of the shortest path problem into the Markov discovery process and as shown in the
appendix A, the generating function for the hopcount of the shortest path in the complete graph Ky

18

N (N + x) 1
Av(r) =5 <F(N Oz +1) N) ' (21)

Although exact for all IV, the final step involves the asymptotic behavior for large N which is best
obtained from the Taylor series expansion around x = 0 of the generating function of the hopcount of
the shortest path Hy(x) for large N given by (1).

6.3 Beyond the Complete Graph.

In this section we demonstrate that the result derived for the complete graph, thus assuming p = 1,
still holds for any constant p € (0,1), and moreover for sequences p = py such that py — 0 and
Npny — o0 at a certain rate.

The basic ingredient is again the associated uniform tree as described for the complete graph. The
uniformity of the tree for the complete graph is based on a same deterministic number of (N — n)
outgoing links from each node in the tree of size n. In the random graph G,(N), the corresponding
number of outgoing links per node is a binomial distributed random variable with parameters N —n
and p. Thus, in G,(N), the number of outgoing links is not necessarily the same for each node in the
cluster of size n, but has an average value (N — n)p and variance (N —n)p(1 —p). In [18], it is proven
that for each sequence py € (0,1), with Npy/(InN)3 — oo, the asymptotic behavior for the hopcount
hy still holds. We will give a sketch of that proof here. In the quoted paper it is first shown that the
number of outgoing links from each node in the cluster of size n can, with overwhelming probability,

be sandwiched between the deterministic values

(N = n)py £ /AN —n)py In N,

if A is large. Consecutively, a Markov discovery process X (t), with transition rate

Mipi1 =M ((N —n)py — \/A(N —n)pn 1nN>
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is constructed. This Markov chain generates a (uniform) recursive tree of size N~, where n = N~ is

the largest number for which A, ., is positive. This gives

Aln N
PN

N™~N —

N — co. (22)

The value N~ is the final size of the uniform tree associated with Xj,. The hopcount Ay of Gp, (V)
is then proven to have asymptotically the same distribution as the height of node B in the uniform
tree associated with X y; for this result the technical condition Npy/(InN)? — oo is needed. This
condition is slightly more demanding than the (minimal) condition N~ /N — 1, which as can be seen
from (22) holds iff Npy/In N — oo. The famous asymptotic result of Erdés and Rényi [6] states

that the probability that G(N, [N In N/2+xN]) (of the class G(IV, E)) is connected, is asymptotically

equal to exp(—e~2%). This result suggests that when py < p. = %, the graph G,(N) is with positive
probability disconnected. In other words our result (4) holds, apart from a small technical gap (IHTN
Versus lnjVN ), for all connected graphs of the class Gp(NV).

In order to close the gap between the connectivity threshold p. = % and py, satisfying the

condition %?% — 00, we have simulated the hopcount in G,(N) with py = % for various values
of A from A\, = InN to )\3. For N = 1000 where A\, = 6.90, the values A = 6, A = 7, A = 49 and
A\ = 73 = 343 are simulated.

The simulation reflects the Markov discovery process. We start with an initial node (the source)
at height 0 and simulate a binomially distributed number X; of links with parameters N — 1 and
p= % In each step the number of free links per node, i.e. the number of links to which a new node
can be attached and the height of the node is maintained. The simulation then proceeds as follows.
A randomly chosen free link out of the X; serves as the endpoint for a second node in the cluster at
height 1. The number X; of free links of the root is decreased by one and the number X5 of free links
of the second node is determined as a binomially distributed number with parameters N — 2 and p.
The total number of free links in the cluster discovered so far is equal to X1+ X5 — 1 and one of these
links as attachment for the third node is chosen at random. Proceeding in this way, the k-th node is
uniformly chosen from the X; + ...+ X1 — (k — 2) available free links. This node is supplied with
a binomially distributed number of links (with parameters N — k and p). The height of the new node
is equal to one plus the depth of its ancestor node [ to which it was attached. At the same time, one
of the free links of node [ is removed, i.e. X; — X; — 1. The simulation ends when the total number
of free links is zero or when all nodes are discovered, i.e. when the cluster has N nodes. Observe that
no exponentially distributed random variables are simulated. We use the property that each of the
competing free links is equally likely to have the minimum weight and therefore the link is chosen at
random. This observation simplifies the simulation drastically: only one loop of length N must be
simulated.

We performed 1000 runs with N = 1000 and the three values of A mentioned above. After each
run, one node different from the initial node, was selected at random from the cluster of the initial
node and its hopcount was determined as its height. The mean and the variance of these 1000 runs
were denoted by # and o2, respectively. The theoretical values according to (2) and (3) are denoted
by E[hy] and varlhy], respectively; these values remain constant for varying values of A, as they do

not depend on p. The results are in the table below.
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Elhn] | z |wvarlhy] | o2

A=6 | 6.485 | 6.42 | 5,480 | 5.53
A=T | 6485 | 6.54 | 5,480 | 5.89
A=49 | 6485 | 6.62 | 5,480 | 6.20
A=343 | 6.485 | 6.52 | 5,480 | 6.19

The simulations with merly 1000 runs show convincingly that the hopcount is indeed independent of
pn. Longer simulation (with more runs) approach the theoretical values closer. As long as the graphs
are connected (even below p.), simulations indicate the correctness of the theoretical results.

Finally, we present an alternative argument that E[hy] is, to first order, independent of p. The
transition rates can be written as A, 41 = np(IN — n) + v(n), where v(n) is a stochastic variation
around the mean number of links at each node due to the randomness of the graph. For large NNV,
np(N —n) >> v(n), such that we can neglect this stochastic effect in a first order computation. The
discovery time Ty then equals® YF_, Exp(np(N — n)) 2 %Zszl Exp(n(N — n)) or, the node k is
discovered in the Markov chain corresponding to Gp,(IV) precisely a factor ]—1) later than in the complete
graph. Since a time scaling does not alter the structure of the discovered cluster nor the associated

recursive tree, the argument demonstrates that E[hy] does indeed not depend on p.

7 Statistical Verification of (4).

In order to (statistically) verify that the Internet hopcount distribution fits (4), we have used the
measurements (consisting of 217 datapoints) on the hopcount distribution provided by Demeester and

co-workers. The classical y?-goodness of fit test is based on

. (Ok — ek)2
7, =3 (23)
k=1

where oy, is the observed frequency of a hopcount k; m is the length of the vector o (which is the
number of different values of the observed hopcount) and ey the expected frequency obtained from
(4) as

In/ N

217
_ et L 24
€k = N ;:0 ;! Ck+1—j ( )

This procedure has two drawbacks: (i) the value of N is unknown; (ii) the distribution of T is only
known asymptotically.

Evidently we have to estimate the number of routers N, from the available data, assuming that
the model is true. For this we use the asymptotic expression for the expectation of the hopcount
given by (2) as E|hn] &~ —0.42 +log N. Another complicating matter is that the measurement of the
hopcount performed in Demeester’s laboratory (the sender side) includes 4 proprietary hops of the
private university network that are not part of the (public) Internet. However, the same situation
holds for the receiver side. This inherent disadvantage of trace-route measurements performed from

a computer attached to a private network limits to compute precise numbers of E[hy], var[hy]| and

5For any exponential variable, Exp()\a), with parameter Aa holds in distribution that Exp(Aa) z %Emp(a) for any

a > 0.
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Elhn]
var|hy|’

number of proprietary hops at the receiver side. By inspecting the IP-addresses, the measurements

and is only sufficient to study tendencies as in this paper. Let us denote x as the average

indicated that the average x = 2. Therefore, the average hopcount of 17.84, reported in [23], is

diminished with a total of 4 +x = 6 hops resulting in an estimated number of routers,
N = |exp{17.84 — 6 + 1 — 4} | = 211, 670. (25)

Thus, we estimate the number of public Internet routers in the whole Internet (medio 1998) at about
N = 211,670. As reported in [15], the estimated number of Internet hosts was 6.6 10% in July 1995,
but so far, we did not find reported values on the number of nodes (routers) in the Internet.

To avoid inaccuracies from the assumed normality of the cell quantities (or —ex)//ex, we use the
bootstrap, a computing intensive method which is by now well established [12]. The bootstrap is a
method to obtain the distribution of the test-statistic 7" by simulation. Given the hypothesis Ho: ” the
asymptotic model is correct”, the measurements are obtained from sampling from the distribution (4).
More specifically, the bootstrap generates 1000 samples of size 217 (the size of the data set measured
by Demeester) from the distribution (4), with the value of N = 211,670 as estimated in (25). For

each sample we compute
m

Ty =Y _(0f — ) /e,
k=1
where o}, is the observed frequency of the value k in the bootstrap sample and e}, equals the expected
frequency calculated from the distribution (4) with N = N*, the estimated number of routers obtained
i.e.

from the sample o7, ..., 0

*
yrmo

m
N* =exp (Zjo;f—{—l—’y).

=1

In this way we obtain 1000 bootstrap values:

1, -, tlo00
of the test statistic 775 It is well known that the distribution of 77} gives an adequate representation
of the distribution of 7}, under Hy. Hence we propose to reject Hy when

{7 : t] > 22.55}] N

1000 ’
with a = 0.05 the significance level of the test, and T}y, = 22.55 is the realization of the test statistic
(23) with m = 25. It turns out that t?951) = 79.55 and that the median of the bootstrap samples
1, ..., 000 is m* = 26.19. Hence, we do not reject Hg. Indeed the fit is good as can also be observed

in the table below that shows the shifted observations o, together with the theoretical cell frequencies
ek given through (24) with N = 211670.

k 3 6 7 8 9 10 11 12 13
o |0O[ 0] 2| 2 2 6 | 11 | 12 22 26 19 28 20
A4111 (2715697148198 |23.8|25.8 (255 23.2

€k

k| 14 15 16 | 17 | 18 | 19 | 20 | 21 |22 |23 |24 | 25
op | 18 15 15 6 3 3 41310101070
er | 195152111 |76 |49|29 |17
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8 Discussion and Conclusions.

We have presented an asymptotic expression (4) for the pdf of the hopcount of the shortest path
derived from r.g.’s of the class G,(IN) with exponentially or uniformly distributed link weights. As
important properties, we have shown that, for large NV, the hopcount is independent of the link density
p, insensitive to the precise details of the topology (as the results also hold for Waxman graphs) but
it varies with the link weight distribution. The asymptotic expression (4) has been compared with
Internet measurements and the agreement was surprisingly good.

Although the Internet is not a random graph of the class Gp(N), the results deduced in the way
presented here can be understood as follows. First of all, any graph is a subgraph of the complete
graph, also the graph of the Internet. Next, we have randomly thinned the complete graph in two
different ways: by altering the structure via p and by super-imposing weights on the links. Any graph
where communication takes place between arbitrary nodes using a shortest path algorithm can be
obtained in this way, by erasing from the complete graph the appropriate links that are not present
in the real graph, and putting the right weights on the available links. Next, the focus on the shortest
paths starting from a destination node A towards an arbitrary node B in the network leads us to
consider a shortest path tree. Only links of this shortest path tree matter for the hopcount and a
large number of links in the topology seems superfluous. Thus, by confining to the shortest path, we
filter the actual topology to a tree rooted at A that is dependent on the link weights. This explains
the apparent negligible influence on the details of the topology and underlines the importance of the
link weight distribution. It also shows that information about the hopcount alone is insufficient to
construct the Internet topology: not the number of links from a given node matters but the number
of links with small weights. Hence, previous observations of power laws in Internet [7, 2] cannot be
verified from our analysis.

We conclude that either the limiting distribution (4) is robust under minor changes to the model
detailed above, and that the Internet is a minor change to that model, or that the model we have
chosen describes the hopcount of the shortest path in Internet well. Aside from the simplicity of
our model, the parsimonious parameters involved and the elegant, analytical result may be useful to

enhance our understanding of the complex routing phenomena in the Internet.
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A The hopcount in the tree associated to the discovery Markov

process in the complete graph Ky.

Lemma 1l For N>1and1<k<N -1,

*) 1 N—-1
PN = N Z pgrl:_l)v (26)
m=k

and the corresponding generating function satisfies

_N_l (k) _N i—14+x\ I'(N +x)
"QN(x)_,;p; x’“‘@( 5 >_F(N+1)r(:c+1)‘ (27)

PROOF: Denote by Xj(f) the number of nodes with hopcount k in the associated tree of size N

and by yn the hopcount of a randomly chosen node, possibly equal to the root. Since each vertex has

probability pg\];) of having hopcount k£ we obtain

(k)
EX
Prlyy = K = py) = NN :

(28)

If the size of the associated tree grows from m to m + 1, each node at hopcount k£ from the source

node generates a node at hopcount k + 1 with probability 1/m. Hence, for k > 1,

N—1 (k—1)
EXP =3
m
m=k

which, together with (28), proves (26).

Since only the root can be accessed in zero steps, pg\(; =« and

1 N-1 W . 1 1 N-1N-1 A
on(z) = =+ pyat==+=> > plx
N k=1 N N k=1 m=k
1 1 N—-1 m 1 T N—-1
= Sty o L Ve =S5 Y o)
N Nm:l k=1 " N Nm:l "

Taking the difference of (N + 1)@y, 1(2) and Ny (x) yields the recursion

(N + Dena(x) = (N +2)pn (). (29)
Generating function (27) is easily verified from (29) and ¢;(x) = 1.

The explicit form of the generating function shows that the average hopcount yy in a tree of size
N equals
N1
Ely] = ¢hy(1) =Y 7. (30)
1=2
Also note from (21) that

k) (_1)n—k5](\l;)
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where Sj(\lf) denotes the Stirling number of the first kind [1, 24.1.3]. The above results are known [16],

but derived in a different way.

Finally, we are interested in the hopcount yy excluding the event yn = 0. Thus, for 1 <k < N—-1,

Prlyny = k,yn # 0]

Prlhy =k] = P =k 0] =
rlhn = K] rlyn = klyn # 0] Prlyn 2 0
N N (—1)" sy
Nt =R = e
with corresponding generating function,
N—1 N N
Hy(x) = Z Prlhy = k] 2* = N1 Z Prlyy = k] 2* — N1 Prlyn = 0]

k=1 k=0

- 7 (@ -5)-
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