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Abstract

For any network topology, we investigate a complex variant of the Kuramoto model, whose real
part formally reduces to the original Kuramoto model for coupled oscillators when the coupling
strength k is imaginary. The major attraction of the complex variant lies in its exact solution,
because it obeys a linear set of differential equations. The entire spectrum (eigenvalues and eigen-
vectors) can be deduced from a generalized Laplacian. We show that the formal resemblence to the
original Kuramoto model is deceptive and that forcing the complex variant to coincide with the
original one, leads to inconsistencies. Moreover, the complex variant is unstable for most graphs
(except for trees) when k is imaginary. The positive news is that the linear complex variant for real
Kk is expected to be close “on average” to the repulsive, non-linear cosine-variant of the Kuramoto
model.

1 Introduction

We consider a dynamic process on a connected graph G with N nodes and L links that is described

by the set of differential equations

dz, (t)
dt

N
=(— K/Zakjei(zj(t)_zk(t)) 1<k<N (1)
=1

where zj, (t) and (; = wg+ ink are a complex function of the real parameter ¢ (time) and a complex
number, respectively, associated to node k, where the adjacency matrix element! arj = L{link k—j exists}
and where k = ge!7 is a complex number. An important assumption is that the adjacency matrix

A is symmetric, i.e. a;; = aj; and A = AT, which means that the graph G is undirected. We use

the following notation?. If x is a vector with components z1, ¥, ..., Z,, then f () is the vector with
components f (x1), f (z2),..., f (zy), for any function f. The matrix representation of this z-process
is g (¢

iz i ) — ¢~ wding (eficz;c(t))) A0 )
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where diag(y;) is a diagonal matrix with diagonal elements y1, %o, ...,yn. An attractive feature of the
z-process is that this system (2) is exactly solvable as shown in Section 2.

The motivation to study this dynamic process arises from the observation that, for k = ig and g
real, the real part of (1) formally equals the Kuramoto equations for the phases of coupled oscillators
in a network. The governing equations of the Kuramoto model — presented in [2, Section 5.4], but we
follow the notation of [7] — are

N

ék:wk+gZakjsin(9j—9k) 1§]€§N (3)
j=1

where 6, denotes the phase of oscillator k£ and wy, its natural (time-independent) frequency and where

ék = %ﬁ. The coupling strength g is a real number. Usually, one defines the mean of the natural

frequencies as
N
k=1
The “original” Kuramoto model was proposed for the complete graph Kn, where ag; = 1(;;,. Many

collective synchronization processes (see e.g. [7],[8] for a rather impressive list of examples) can be

studied by the Kuramoto model. The cosine-variant of the Kuramoto model,

N
ék:wk—gZakjcos(Gj—Hk) I1<kE<N (4)

j=1
is formally recognized as the real part of (1) for k = g. Physically, the cosine-variant (4) is repulsive in
contrast to the Kuramoto model because phase differences that approach zero are decreased (if g > 0).
Unfortunately, the formal resemblance of the complex process (1) with the Kuramoto model (3)
is deceptive as we will show in Section 5, that explores the relation between the complex and original
Kuramoto model in more depth. Only for real x and {; = wg, the linear, complex z-process may serve
as a reasonable, in some mean sense as explained in Section 3, approximation to the cosine-variant

(4) of the Kuramoto model.

2 Exact solution of the z-process

Since the inverse of the matrix diag(e‘izk) always exists (for finite z;) and equals diag(eizk), after

left-multiplying both sides of (2) by this inverse matrix, we obtain
. iz dz . iz iz
diag (e ’“) i diag (e ’“) ¢ — KkAe

Further, using diag(e'**) % = %%eiz and diag(e'*) ¢ = diag((x) €%, we have

4
dt

Introducing the generalized Laplacian, defined earlier in [10],

e =i(diag () — kA) €

Q (q) = diag (gx) — A (5)
= diag (qx — di) + Q



where @ is the Laplacian of the graph and d}, is the degree of node k and letting s = e'*, we arrive at
d
d—j =ik <diag <%> A) s =1kQ <Ck> (6)

s (1) = 7% 5 (0)

The general solution is

where 5 (0) = (9 is the initial vector at t = 0.

Since Q (gx) is symmetric by our assumption that A = AT there holds [3] that
Q = Xdiag (u) X

where the matrix X is orthogonal, i.e. X7X = XX” =T and X has as k-th column the eigenvector
xy, of Q belonging to the eigenvalue py. For any function f (z) with a converging Taylor series within

a disk around zero with radius larger than the largest absolute value of the eigenvalues, we know that
£(Q) = Xdiag (f ( Z f (k) weaf,

Applied to the matrix Q <%> and transforming back to s = e'* yields the general solution
eiz(t) = Xdiag (eintuk) XTeiz(O) (7)

When working out the matrix multiplications in (7), we find

N
§ :emt’uk$k$T iz(0) _ § :e—(sm"/Reuk—&-covamuk)gt (el(cosyRep,k—sm'yImpk)gtwkxgelz(())) (8)

k=1

Of course, all the details of the linear z-process lie hidden in the generalized Laplacian Q <%> and its

spectrum, which needs to be investigated in detail. If x and (; = wy, are all real, then Q (%) =Q (%)

is a real symmetric matrix, whose eigenvalues and eigenvectors are real. If % is complex, then Q (%)

is a complex symmetric matrix, whose eigenstructure is considerably more complex.

2.1 Properties of the z-process

We write (8) for one function z;, 1 < j < N,

17 (1) i\[: o~ (siny Re uj+-cos y Im ) gt (ei(coszeuksin’yImuk.)gt iV: (xka:g)jl eizl(0)>
k=1 =1
Since the term between brackets is bounded for any ¢, we observe that, in order to have a finite solution
for the vector function e*® for all ¢ > 0, there must hold that &, = siny Re pu;; 4+ cosy Im 1, > 0 for
all k£ € [1, N], otherwise the complex z-process is called unstable. The case where £ = 0 is obvious
from (1): z (t) = 2(0) + (t. At kK = g = 0, the z-process is considered as stable for all 73 > 0, because
() is bounded (although limy . z (t) = 00). When % is real, which is equivalent to tany = gﬁ for
all k € [1, N] (see Appendix A), the z-process is always bounded, hence, stable. Only, if there are

eigenvalues satisfying &, = 0, then the solution for ¢ — oo is a non-zero.



The scalar product v (t) = (eiz(t))T et = (eiz(*t))T () equals, using (7) and the orthogonality
relation X7X = X X7 =1,

. . T . .
v(t) = (Xdiag (emt’“"“) XTelz(O)) Xdiag (e_mt“’“) XT¢i#(0)
. T . . . . T .
_ <610(0)) Xdiag (emtuk) XTXdiag (e—mtuk) XTelz(O) _ <elZ(0)> e12(0) —w (O)
which shows that v (t) is a constant of motion (i.e. independent of time t). If the initial vector
z(0) =0, then v (¢) = N and, thus, real.

The steady-state, that is usually defined as lim;_,o s (t) and for which % = 0, does generally not
exist. Indeed, the requirement that % = 0 in (6) implies that Q (%) s = 0. A non-zero solution s # 0
requires that det Q (%) = 0, which means that Q (%) must have a zero eigenvalue for all coupling
strengths k. For a connected graph and provided not all (j are zero, det Q (%) = 0 only if %’“ = dy,
in case Q (%) = @, the Laplacian of the graph. Except for those cases, the matrix Q (%) does not

possess a zero eigenvalue and is always invertible. The non-existence of such defined steady-state is a
property of oscillators; also the harmonic oscillator does not possess a steady-state because the phase

portrait are circles (see [6]).

3 The coupling strength « and (;, = w; are all real

Since each eigenvalue py and its corresponding eigenvector zy, is real, the general solution (8) consists
of a linear combination of purely periodic functions with frequencies equal to gu for 1 < k < N for
any coupling strength g. Moreover, consider the norm Heiz(t)H; = Z;V:1 }eizﬂ'(t)f = <(eiz(t))*)T ez(t)
then, using (7) and the orthogonality relation X7 X = X X7 = I, we have

|

et = (Xdiag (e*igt”’“) XTe*iZ(0)> ’ Xdiag (eigt“’“) XTi#(0)

= (eiiz(o)) ’ Xdiag (e*igt“k) X7 X diag (eigt“’“) XTeiz(0) — ?

£1#(0) H
2
which shows that the norm Heiz(t)H2 is, beside? v (t), also a constant of motion (i.e. independent of
time t) for all g. When the initial vector z (0) is real, then N = Heiz(o)H; = Heiz(t)H; and, hence, each
function z; () is real for all ¢.
Since all z; (t) and (; = wy, and k = g are real, the real part of (1) leads to cosine-variant (4) of

the Kuramoto model, while the imaginary part gives

N
Zakj sin (0; — 6) =0

J=1

Although this additional constraint that appears in the z-process is not physically meaningful in the
cosine-variant (4) of the Kuramoto model, it is correct “on average” as follows from (23), where the
average is over the total ensemble of oscillators. In this sense, we expect that the complex z-process

with real coupling strength x = g may be close to the original physical system (4), that is non-linear.

2 . w\ T .
= ((e”(t)) ) e*® because *(H =
2

Xdiag(eiigt“’*') X7Te#0) g different from (eiz(t)) = Xdiag(eiigt“’*') XTem 20 except if z (0) = 0.

. T . .
3The constant of motion v (t) = (e‘z(ft)) e*® is different from ||e*(®)
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4 At least one % is complex

The critical coupling strength g () of the complex z-process with complex coupling strength xk =

ge' is the highest value of g = || (as a function of ) for which the z-process is still stable.

Theorem 1 Provided H = % Zszl Nk = 0 and v # 0 nor v # 7, the critical coupling strength gec ()
s bounded by

0 § Gee (7) S \/VCW’ [W]E,_[d]var [77] - 2C0t ’7% (9)

At gee (77)+¢€ for arbitrary smalle > 0, eigenvalues of Q (%) occur that satisfy the instability condition
siny Re g + cosyIm pg < 0.

Proof: The exact solution (8) shows that instability occurs when there are eigenvalues of the

generalized Laplacian Q ( ) that satisfy & = siny Re pg + cosyIm pur < 0. Now,

N N N N
Zgi:siHQVZ{(Re,uk (Tm g, }+Z Im py,) +81n272Re,ukIm,uk
k=1 k=1 k=1

from which

N N

N
Y G- (Imp)® =sin*y ) {(Re p)” — (Im ﬂk)Q} +sin2y ) Repy Im gy,
k=1

k=1 k=1 k=1

=z

and, after substituting (19) and (20),

N N N N sin 2
Zg,% — Z (Im ,uk)2 = sin? v {QL — ? (Var [w] — Var [n] + 02— H2)} + %E [wn] (10)
k=1 k=1

For sufficiently large g, (10) indicates that there are non-zero . It follows from (17) and (18) that

N
Z = —H (11)

Since H = 0 by assumption, the sum (11) tells us that both positive and negative & must occur.
We will now show that there exists a coupling strength g-interval [0, g.. ()] in which all £ = 0 for
1<k <0. Ifall & =0 in (10) and siny # 0, then

_ [sin? v (Var [w] — Var [n] + Q2 — H?) — sin 2yE [wn)]
% Zszl (Im,uk) + E[d] sin2 y
where E [d] = % is the average degree in G. Invoking the Cauchy-Schwarz inequality N Z]kvzl (Im ,uk)Q >
2
<Zf€v:1 |Im Mk‘) together with ST | [Tm | > Sp, Tm 1, and (18) demonstrates that

N

1

g (Tm 1) > — (H cosy — Qsiny)?
g

N



Using also siny # 0 and H = 0, such that F [wn] = Cov|w,n] (see e.g. [9]), yields

2 - (Var [w] — Var [] + Q%) — 2 coty Cov [w, 7]
g = T2+ Ed]
Solving the inequality for g gives the tight upper bound in (9). O

The maximum g.. () occurs when v = 7 — ¢ (if Covw,n] > 0) or v = ¢ (if Cov[w,n] < 0) and
when Var[n] = 0, given that E'[n] = H = 0. Theorem 1 underlines the necessity of “complex” natural
frequencies 7, to enhance the stability of the z-process for non-real x (i.e. 7 # 0 nor y # ). For, if

all 7y = 0, then gee (7) < /3 for all v € (0,7) U (m, 27).

4.1 The coupling strength x = ig and (;, = w;, are all real

With the settings k = ig and ( = wy, the z-process is formally most close to the Kuramoto model

(3) as shown in Section 1.

Theorem 2 The critical coupling strength ge. (g) in the complex z-process with imaginary coupling

strength k = ig and all ny =0 for 1 < k < N s zero when the graph has a triangle.

™

Proof: When Ag > 0, v = § and all ny = 0, we have that § = sinyRe py + cosyIm px = Re py.
Relation (21) then demonstrates that not all eigenvalues can have a zero real part. This means that
Jee (%) =0, i.e. there must be eigenvalues with non-zero real part for g > 0. O

Since most graphs, except for trees, have triangles, Theorem 2 implies that the complex z-process
with imaginary coupling strength « = ig and all n; = 0 is unstable for most graphs. Only if Ag =0,
the relations (17) and (20) show, for the first pair (k,[) of eigenvalues with Re ur, = — Re iy # 0, that
Im gy, = Im g;. Theorem 2 is deemed difficult to extend to other values of v € (0, 7).

Recall that the phase transition in the Kuramoto model occurs approximately, as shown by Re-

strepo et al. [4], at
2

9 = 770 (0) Anax (A)

where f, (x) is the probability density function of the natural frequency distribution. This results

assumes a rotating coordinate frame such that the mean frequency €2 is set to zero (see Appendix B).
Pr[—4Z<w<4z

The general formula for £, (0) = limaz—o T*ﬂ (see e.g. [9]) does not provide much physical
12
insight. For a Gaussian random variable with zero mean, f, (z) = 271m e <2”3>, the quantity

fu (0) = \/%0_ is related to the square root of the variance and

N 2v/20,, ~16 Var [w]
I e (A) 7 Nune (A)

Since the largest eigenvalue of the adjacency matrix obeys Amax (A) > E[d], it seems likely from

(9) that the critical value of g at which instability occurs in the complex z-process with imaginary

coupling strength x = ig is given by g.c (%) ~ )\Zii[(ﬂ). Comparison — for trees only by Theorem 2 —

then would suggest that g. >~ \/Amax (A)gec. For the case of N = 2 oscillators that can be computed
exactly for the Kuramoto model, we find indeed that gec (5) = ge (because Amax (A) = 1).



5 Relation between the z-process and the Kuramoto model

The set (1) of the complex z-process is rewritten by expliciting the complex nature of the “phases” as
N
Re <zk) +ilm (zk> =wp+ing—g Z akjel{Re(Zj*Zk)ﬂ}e* Im(zj—2)
j=1
Taking the real and imaginary part yields

N
Re <Zk> =wp—g E akje_lm(zf_z’“) cos (Re(zj — 2z1) + )
j=1

N
Im (zk> =, — gz ap;e” m(z=2k) sin (Re (zj — zk) +7)
j=1

where the argument 7 of the complex coupling strength x = ge'? introduces a constant phase shift.

Clearly, the Kuramoto equations (3) are retrieved in the first equation provided v = 7 and

Im (2 — z) = c; for all j and k, where ci; is independent of time ¢. Moreover, wy; = gcpjag;
can be interpreted as the coupling strength of the link between the oscillators k& and j. Substituting

zr, — Ok, we arrive at the governing equations

. N
m (ek) — e — 3wy cos (Re (6; — 6,) (12)

j=1

) N
Re <9k> =wp + Zwkj sin (Re (0; — 6%)) (13)

j=1
The requirement Im (§; — ) = cx; to map the complex z-process with imaginary coupling strength
k = ig to the Kuramoto model (3) implies that Im <9k> = Im <9j> for any pair j and k. In fact,
that mapping requirement introduces N additional constraints, that may lead to inconsistencies. For,

letting Im <9k> =Im (91) the equations (12) become

) N
Im (91> =1 — Zwlj COS (Re (QJ — 91))

j=1
and for 2 < k < N,
. N
Im <91> =1, — Zwkj cos (Re (0; — 6k))
j=1
When subtracting the first differential equation from all others, the last N — 1 equations become

non-linear equations without derivatives

N N
Zwkj cos (Re (0; — 6k)) — Zwlj cos (Re(0; —61)) =m — mx

Jj=1 Jj=1

that specify Re (6, (t)) for j > 1 and any time ¢, while Re (6; (¢)) can be determined from the first

equation.



The above equation introduces, for each time t, a constraint for the phases 6,,, for 1 < m < N. This
additional constraint is not part of the Kuramoto equations (3). Even worse, since also the Kuramoto
equations (13) determine all N phases Re (6; (t)) for any time ¢, given an initial condition Re (¢; (0))
for 1 < j < N, the two sets of solutions may be inconsistent. The inconsistency is very likely to
appear unless the set of additional constraints reduces to identities. Unfortunately, in general, the set
of additional constraints do not lead to identities as readily verified for small N (or numerically).

The conclusion is that, although one set of the complex equations can be modified to appear
formally identical to the Kuramoto equations as in (13), the dual set of imaginary parts (12) causes
inconsistencies. Hence, beside its unstable nature by Theorem 2, the complex z-process with imaginary

coupling strength k = ig can, in general, not describe Kuramoto’s coupled oscillator model.

5.1 Short review of Roberts’ approach

Roberts [5] has proposed an approach that linearizes the Kuramoto equations (by introducing some
tuning parameter 1), but his approach suffers (even in the steady-state for which he has introduced the
tuning parameter) from the same additional algebraic constraint on the phases. He starts by stating

the linear equations

. N
Yy, = (wk —n) vk +9Y_ ar

=1

After introducing the non-linear transform 1y, (t) = Ry, (t) €% we obtain
Ry, (1) €0 4+ Ry, (¢) %Mi0y, () = (iwg, — ) Ry (¢) %) 1 ¢ Z ariR; (t) el ()
j=1

Roberts divides both sides by Ry, (t) e (®) thereby implicitly assuming that ¢y, (t) or Ry, (t) is never

zero, and finds, after taking the real and imaginary part,

. N
B o> T cos 0,0 - 00 1)

Jj=1

000 =+ 93 any i sin 05 (6~ 04 0)

J=1

He now chooses 7 such that Ry (t), for each k, tends to a steady-state where lim;_, Rk (t) = 0 and
(t)

. R, .
lim; 0 #(t) = ¢j. Thus, using wji = gajicjk,

N
0=-n+ Zwkj cos (0; — 6)
j=1

. N
0y, (t) = wi + Z W sin (9j — Qk)
j=1
These equations are special cases of (12) and (13) where all 6; are purely real. In [5], Roberts
neglects the first relations that expresses the additional constraint imposed to the phases, but dwells
on his tuning parameter 7 needed for stability reasons as shown in Lemma 1. In summary, his linear

formulation of the Kuramoto model is, as shown above by forcing lim_. %}% = cji for all k, defective.

8



6 Conclusions

The proposed, complex but linear z-process (1) is shown to be only stable for relatively small values
of the coupling strength g = |k|, except when « is real. In that case, the z-process seems a promising
linearization of the cosine-variant (4) of the Kuramoto model. We conjecture that this cosine-variant
(4) does not possess a phase transition, as opposed to the original Kuramoto model (3) and that it,
therefore, describes another, though related, physical phenomenon. In the other cases where v € (0, 7),
the formal resemblence of the z-process with the Kuramoto model, in particular for the almost always
unstable v = 7 case, is deceptive. We explain why and show where former work [5] is erroneous.
Acknowledgement We are grateful to Steven Strogatz for the many and illuminating discussions

while at Cornell University.
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A Spectrum of the generalized Laplacian O (%)

Here, we present some general properties of the spectrum of Q (%) = Q (ug + ivg), where

~ Re(yRer+Im(pImr  wgcosy + mgsiny
= 5 =
g g

Uk

and

~ Im(gRex —Re(pImr  mpcosy —wgsiny
g 9
Gerschgorin’s Theorem [11, p. 71-75] indicates that the eigenvalues of Q (uy, + ivg) = diag(uy + ivg)—

Vk

A are centered around ug+ ivi, with radius equal to the degree di, i.e. an eigenvalue p of Q (uy + ivg)

lies in a disk | — uj +ivj| < d; for some 1 < j < N.



Lemma 1 The z-process is surely stable if

miny <;j<n (1)

— dmax [siny + cosy| > 0
g

and definitely unstable if
maxi<j<n (1)

P + dmax [siny + cosy| < 0

Proof: The general solution (8) shows that a necessary condition for stability of the z (¢)-process
with ¢ > 0 entails that siny Re p1, +-cos yIm p, > 0 for all 1 < k£ < N. Gerschgorin’s Theorem provides

the lower bound for any k,

siny Re pg + cosy Im py, > 1E}i<nN (sinyu; + cosyvj — d; (siny + cos))

. Ui .
= 1g}1§nN (; — d; (sin~y + cos 7))

min <<y (1)
g

- dmaX |Sin7 + COS’Y|
and, similarly, the upperbound for any k,

siny Re p, + cosyIm py, < 1r<r;a<)§v (sinyuj + cosyvj + d; (siny + cos 7))
< maxi<j<n (1)

g

+ dmax [siny + cos |

This demonstrates Lemma 1. O

Since [sin~y 4 cosvy| < V2, Lemma 1 states that we can always make the z-process stable by chosing

mm1§+§”(nj) > \/ﬁdma)(‘

In the kK = 0 case, the eigenvalues of lim,_,g K Q (%) = diag((y) are equal to ug = ¢ for 1 <k < N.

A.1 The sum of powers of eigenvalues

For each integer value of m, we invoke the general relation (see e.g. [9, Appendix A])

frace (Qm <%>> _ é i (16)

For m =1 in (16), we obtain
N

N N
DT SINE) it
k=1 1 k=1

which shows, in terms of the mean = % Zévzl wg and H = & ij:l Nk, that

N .
ZReﬂk:Ncos*yQ_i_NsmfyH (17)
P g (Y
and
N cos N si
T i — 08y, Nsiny, (18)
1 g g

10



Using
trace (Q2 (gi)) = trace (A2) + trace (diag (qf))

we have for m = 2 in (16) that

N N N N
Dk =2L4> Uil =Y vp+2) w
k=1 k=1 k=1 k=1

Substituting (14) and (15), we obtain, after taking real and imaginary parts,

N N

N 2 2N sin 2
Z (Re pui)* — (Im i) = 2L + % (Var [w] — Var [] + 0?2 — H2) + %E [wn] (19)
k=1 k=1 g
and N
Nsin 2 N cos?2
Z Re pg Im py, = 2—927 (Var [] — Var [w] + H? — Q%) + TWE [wn] (20)
k=1

One computational step further for m = 3 in (16) gives

trace (Q3 (gi)) = trace (diag (qf)) + 2trace (diag (inQ)) + trace (Adiag (¢;) A) — trace (A3)

where
N
trace (diag (qf)) = Z q;:’
k=1
trace (diag (inQ)) = trace (Adiag (¢;) Z qrdg
N N N
trace A3 = Z Z Z AR5 Ak
k=1 1=1 s=1

In particular, trace (A?’) is the number of closed walks of length 3 and equals 6 times the number of

triangles in the graph, which we denote here by Ag. Thus, we obtain

N N N N N N
uz = —06Ag + Zui — 32’%”1% +3Z’ukdk + 3inkdk — in,‘Z +3i2u%vk
k=1 k=1 k=1 k=1 k=1 k=1

After introducing (14) and (15) and taking the real and imaginary part, we find

N N . N
cos 3 sin 3 3sin 3y
E Re pug <(Re uk)Q —3(Im Mk)2> = —6Ag + TV E w}ij — 9—37 E 77,?; 7 E wknk

N

k=1

k=1 k=1 k=1 k=1
3 cos 3y al 3cosy N Jsin-y al
- i+ > wrdy + > mwdy (21)
g = 9 = 9 =
and

N sm 37 cos 37 3cos 3’y N

> Im (3 (Reuk)2—(1muk)2> =3 Z wp — Z S win,
k=1 k= k=1

3sin 3 3 sin 3 cos
+ ! Zwmk . Zwkdk == Zﬁkdk (22)
g = 9 k=1 9 k=1

11



B The constant of motion in the Kuramoto model

We compute the constant of motion in the Kuramoto model (3) for any undirected graph. Summing

the first m < IV equations in (3) yields

Zﬁk Zwk+gZZakjs1n (0; —0k)
k=1

k=1 j=1
m N
_Zwk+gZZak]sm )+Z Z aijin(gk_ej)
k=1 j=1 k=1j=14+m

Let us now change k£ — j and j — k in the first double sum, then

ZZakJsm 9 —0) = Zzajksnl (0 —0 )

k=1 j=1 j=1k=1

We invoke the symmetry in ay; = aji, but the oddness of sin (6 — 0;) = —sin (6; — 6;), and reverse
the order of summation such that

m m m m

Z Z Qafj sin (9] — Hk) = — Z Z Qaj sin (9] — Qk)

k=1 j=1 k=1 j=1
and conclude that this sum vanishes (because a number that obeys 2 = —z can only be zero). The
total mutual interaction between a subset of m nodes (oscillators) in the network precisely cancels.
The arguments show that this total mutual cancellation holds for any odd coupling function f (z) =
—f (=), and not only for the sinus. Thus, provided A = AT and 1 < m < N, there holds for any
odd coupling function that

i iakjf (0; —0x) =0 (23)

k=1 j=1
Hence, for any odd coupling function f, we arrive at

Zﬁk—zwk—FZ Z ajrf (Or — 0;)

k=1j=14m
where the last sum reflects the interactions that the group of m oscillators experience from the other

oscillators in the network. When m = N, we deduce that

N N
S =Y &
k=1 k=1

which leads to

N
> 0 (t) = NQt+c (25)
k=1

where the constant ¢ = Y27, 6 (0) is the initial sum of all phases. The transform O = O + Qt yields

d (&~
— 0] =0
7 (xa)
k=1
This means that the aggregate of all oscillator phases with respect to the mean frequency €2 does not

change over time. As Strogatz [7] remarks, we can set 2 = 0 due to the rotational symmetry in the

model and 6, is the frequency of oscillator k in a rotating coordinate frame at frequency §2.
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