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Abstract

For any network topology, we investigate a complex variant of the Kuramoto model, whose real
part formally reduces to the original Kuramoto model for coupled oscillators when the coupling
strength κ is imaginary. The major attraction of the complex variant lies in its exact solution,
because it obeys a linear set of differential equations. The entire spectrum (eigenvalues and eigen-
vectors) can be deduced from a generalized Laplacian. We show that the formal resemblence to the

original Kuramoto model is deceptive and that forcing the complex variant to coincide with the
original one, leads to inconsistencies. Moreover, the complex variant is unstable for most graphs
(except for trees) when κ is imaginary. The positive news is that the linear complex variant for real
κ is expected to be close “on average” to the repulsive, non-linear cosine-variant of the Kuramoto
model.

1 Introduction

We consider a dynamic process on a connected graph G with N nodes and L links that is described

by the set of differential equations

dzk (t)

dt
= ζk − κ

NX
j=1

akje
i(zj(t)−zk(t)) 1 ≤ k ≤ N (1)

where zk (t) and ζk = ωk+ iηk are a complex function of the real parameter t (time) and a complex

number, respectively, associated to node k, where the adjacency matrix element1 akj = 1{link k−j exists}
and where κ = geiγ is a complex number. An important assumption is that the adjacency matrix

A is symmetric, i.e. aij = aji and A = AT , which means that the graph G is undirected. We use

the following notation2. If x is a vector with components x1, x2, . . . , xn, then f (x) is the vector with

components f (x1) , f (x2) , . . . , f (xn), for any function f . The matrix representation of this z-process

is
dz (t)

dt
= ζ − κdiag

³
e−i(zk(t))

´
Aei(z(t)) (2)

∗Faculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031, 2600 GA Delft, The Nether-

lands; email : P.F.A.VanMieghem@tudelft.nl. Currently, on leave at Cornell University, USA.
1The indicator function 1x equals 1 if the event or condition x is true, otherwise it is zero.
2We remark that this notation is unambiguous only for vectors, but it does not apply to matrices.
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where diag(yj) is a diagonal matrix with diagonal elements y1, y2, . . . , yN . An attractive feature of the

z-process is that this system (2) is exactly solvable as shown in Section 2.

The motivation to study this dynamic process arises from the observation that, for κ = ig and g

real, the real part of (1) formally equals the Kuramoto equations for the phases of coupled oscillators

in a network. The governing equations of the Kuramoto model — presented in [2, Section 5.4], but we

follow the notation of [7] — are

·
θk = ωk + g

NX
j=1

akj sin (θj − θk) 1 ≤ k ≤ N (3)

where θk denotes the phase of oscillator k and ωk its natural (time-independent) frequency and where
·
θk =

dθk(t)
dt . The coupling strength g is a real number. Usually, one defines the mean of the natural

frequencies as

Ω =
1

N

NX
k=1

ωk

The “original” Kuramoto model was proposed for the complete graph KN , where akj = 1{k 6=j}. Many

collective synchronization processes (see e.g. [7],[8] for a rather impressive list of examples) can be

studied by the Kuramoto model. The cosine-variant of the Kuramoto model,

·
θk = ωk − g

NX
j=1

akj cos (θj − θk) 1 ≤ k ≤ N (4)

is formally recognized as the real part of (1) for κ = g. Physically, the cosine-variant (4) is repulsive in

contrast to the Kuramoto model because phase differences that approach zero are decreased (if g > 0).

Unfortunately, the formal resemblance of the complex process (1) with the Kuramoto model (3)

is deceptive as we will show in Section 5, that explores the relation between the complex and original

Kuramoto model in more depth. Only for real κ and ζk = ωk, the linear, complex z-process may serve

as a reasonable, in some mean sense as explained in Section 3, approximation to the cosine-variant

(4) of the Kuramoto model.

2 Exact solution of the z-process

Since the inverse of the matrix diag
¡
e−izk

¢
always exists (for finite zk) and equals diag

¡
eizk
¢
, after

left-multiplying both sides of (2) by this inverse matrix, we obtain

diag
¡
eizk
¢ dz
dt
= diag

¡
eizk
¢
ζ − κAeiz

Further, using diag
¡
eizk
¢
dz
dt =

1
i
d
dte

iz and diag
¡
eizk
¢
ζ = diag(ζk) eiz, we have

d

dt
eiz = i (diag (ζk)− κA) eiz

Introducing the generalized Laplacian, defined earlier in [10],

Q (qk) = diag (qk)−A (5)

= diag (qk − dk) +Q
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where Q is the Laplacian of the graph and dk is the degree of node k and letting s = eiz, we arrive at

ds

dt
= iκ

µ
diag

µ
ζk
κ

¶
−A

¶
s = iκQ

µ
ζk
κ

¶
s (6)

The general solution is

s (t) = e
iκtQ ζk

κ s (0)

where s (0) = eiz(0) is the initial vector at t = 0.

Since Q (qk) is symmetric by our assumption that A = AT , there holds [3] that

Q = Xdiag (μk)X
T

where the matrix X is orthogonal, i.e. XTX = XXT = I and X has as k-th column the eigenvector

xk of Q belonging to the eigenvalue μk. For any function f (x) with a converging Taylor series within

a disk around zero with radius larger than the largest absolute value of the eigenvalues, we know that

f (Q) = Xdiag (f (μk))X
T =

NX
k=1

f (μk)xkx
T
k

Applied to the matrix Q
³
ζk
κ

´
and transforming back to s = eiz yields the general solution

eiz(t) = Xdiag
¡
eiκtμk

¢
XT eiz(0) (7)

When working out the matrix multiplications in (7), we find

eiz(t) =
NX
k=1

eiκtμkxkx
T
k e
iz(0) =

NX
k=1

e−(sin γReμk+cos γ Imμk)gt
³
ei(cos γReμk−sin γ Imμk)gtxkx

T
k e
iz(0)

´
(8)

Of course, all the details of the linear z-process lie hidden in the generalized Laplacian Q
³
ζk
κ

´
and its

spectrum, which needs to be investigated in detail. If κ and ζk = ωk are all real, thenQ
³
ζk
κ

´
= Q

³
ωk
g

´
is a real symmetric matrix, whose eigenvalues and eigenvectors are real. If ζkκ is complex, then Q

¡
ωk
κ

¢
is a complex symmetric matrix, whose eigenstructure is considerably more complex.

2.1 Properties of the z-process

We write (8) for one function zj , 1 ≤ j ≤ N ,

eizj(t) =
NX
k=1

e−(sin γReμk+cos γ Imμk)gt

Ã
ei(cos γReμk−sin γ Imμk)gt

NX
l=1

¡
xkx

T
k

¢
jl
eizl(0)

!

Since the term between brackets is bounded for any t, we observe that, in order to have a finite solution

for the vector function eiz(t) for all t ≥ 0, there must hold that ξk = sin γReμk + cos γ Imμk ≥ 0 for
all k ∈ [1, N ], otherwise the complex z-process is called unstable. The case where κ = 0 is obvious

from (1): z (t) = z (0) + ζt. At κ = g = 0, the z-process is considered as stable for all ηk ≥ 0, because
eiz(t) is bounded (although limt→∞ z (t) =∞). When ζk

κ is real, which is equivalent to tan γ = ηk
ωk
for

all k ∈ [1,N ] (see Appendix A), the z-process is always bounded, hence, stable. Only, if there are
eigenvalues satisfying ξk = 0, then the solution for t→∞ is a non-zero.
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The scalar product v (t) =
¡
eiz(t)

¢T
eiz(−t) =

¡
eiz(−t)

¢T
eiz(t) equals, using (7) and the orthogonality

relation XTX = XXT = I,

v (t) =
³
Xdiag

¡
eiκtμk

¢
XT eiz(0)

´T
Xdiag

¡
e−iκtμk

¢
XT eiz(0)

=
³
eiθ(0)

´T
Xdiag

¡
eiκtμk

¢
XTXdiag

¡
e−iκtμk

¢
XT eiz(0) =

³
eiz(0)

´T
eiz(0) = v (0)

which shows that v (t) is a constant of motion (i.e. independent of time t). If the initial vector

z (0) = 0, then v (t) = N and, thus, real.

The steady-state, that is usually defined as limt→∞ s (t) and for which ds
dt = 0, does generally not

exist. Indeed, the requirement that ds
dt = 0 in (6) implies that Q

³
ζk
κ

´
s = 0. A non-zero solution s 6= 0

requires that detQ
³
ζk
κ

´
= 0, which means that Q

³
ζk
κ

´
must have a zero eigenvalue for all coupling

strengths κ. For a connected graph and provided not all ζk are zero, detQ
³
ζk
κ

´
= 0 only if ζk

κ = dk

in case Q
³
ζk
κ

´
= Q, the Laplacian of the graph. Except for those cases, the matrix Q

³
ζk
κ

´
does not

possess a zero eigenvalue and is always invertible. The non-existence of such defined steady-state is a

property of oscillators; also the harmonic oscillator does not possess a steady-state because the phase

portrait are circles (see [6]).

3 The coupling strength κ and ζk = ωk are all real

Since each eigenvalue μk and its corresponding eigenvector xk is real, the general solution (8) consists

of a linear combination of purely periodic functions with frequencies equal to gμk for 1 ≤ k ≤ N for

any coupling strength g. Moreover, consider the norm
°°eiz(t)°°2

2
=
PN

j=1

¯̄
eizj(t)

¯̄2
=
³¡
eiz(t)

¢∗´T
eiz(t),

then, using (7) and the orthogonality relation XTX = XXT = I, we have°°°eiz(t)°°°2
2
=
³
Xdiag

¡
e−igtμk

¢
XT e−iz(0)

´T
Xdiag

¡
eigtμk

¢
XT eiz(0)

=
³
e−iz(0)

´T
Xdiag

¡
e−igtμk

¢
XTXdiag

¡
eigtμk

¢
XT eiz(0) =

°°°eiz(0)°°°2
2

which shows that the norm
°°eiz(t)°°

2
is, beside3 v (t), also a constant of motion (i.e. independent of

time t) for all g. When the initial vector z (0) is real, then N =
°°eiz(0)°°2

2
=
°°eiz(t)°°2

2
and, hence, each

function zj (t) is real for all t.

Since all zj (t) and ζk = ωk and κ = g are real, the real part of (1) leads to cosine-variant (4) of

the Kuramoto model, while the imaginary part gives

NX
j=1

akj sin (θj − θk) = 0

Although this additional constraint that appears in the z-process is not physically meaningful in the

cosine-variant (4) of the Kuramoto model, it is correct “on average” as follows from (23), where the

average is over the total ensemble of oscillators. In this sense, we expect that the complex z-process

with real coupling strength κ = g may be close to the original physical system (4), that is non-linear.

3The constant of motion v (t) = eiz(−t)
T

eiz(t) is different from eiz(t)
2

2
= eiz(t)

∗ T

eiz(t) because eiz(−t) =

Xdiag e−igtμk XT eiz(0) is different from eiz(t)
∗
= Xdiag e−igtμk XT e−iz(0), except if z (0) = 0.
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4 At least one ζk
κ is complex

The critical coupling strength gcc (γ) of the complex z-process with complex coupling strength κ =

geiγ is the highest value of g = |κ| (as a function of γ) for which the z-process is still stable.

Theorem 1 Provided H = 1
N

PN
k=1 ηk = 0 and γ 6= 0 nor γ 6= π, the critical coupling strength gcc (γ)

is bounded by

0 ≤ gcc (γ) ≤
s
Var [ω]−Var [η]

E [d]
− 2 cot γCov [ω, η]

E [d]
(9)

At gcc (γ)+ε for arbitrary small ε > 0, eigenvalues of Q
³
ζk
κ

´
occur that satisfy the instability condition

sin γReμk + cos γ Imμk < 0.

Proof: The exact solution (8) shows that instability occurs when there are eigenvalues of the
generalized Laplacian Q

³
ζk
κ

´
that satisfy ξk = sin γReμk + cos γ Imμk < 0. Now,

NX
k=1

ξ2k = sin
2 γ

NX
k=1

n
(Reμk)

2 − (Imμk)
2
o
+

NX
k=1

(Imμk)
2 + sin 2γ

NX
k=1

Reμk Imμk

from which

NX
k=1

ξ2k −
NX
k=1

(Imμk)
2 = sin2 γ

NX
k=1

n
(Reμk)

2 − (Imμk)
2
o
+ sin 2γ

NX
k=1

Reμk Imμk

and, after substituting (19) and (20),

NX
k=1

ξ2k −
NX
k=1

(Imμk)
2 = sin2 γ

½
2L− N

g2
¡
Var [ω]−Var [η] +Ω2 −H2

¢¾
+

N sin 2γ

g2
E [ωη] (10)

For sufficiently large g, (10) indicates that there are non-zero ξk. It follows from (17) and (18) that

NX
k=1

ξk =
N

g
H (11)

Since H = 0 by assumption, the sum (11) tells us that both positive and negative ξk must occur.

We will now show that there exists a coupling strength g-interval [0, gcc (γ)] in which all ξk = 0 for

1 ≤ k ≤ 0. If all ξk = 0 in (10) and sin γ 6= 0, then

g =

s
sin2 γ (Var [ω]−Var [η] +Ω2 −H2)− sin 2γE [ωη]

1
N

PN
k=1 (Imμk)

2 +E [d] sin2 γ

whereE [d] = 2L
N is the average degree inG. Invoking the Cauchy-Schwarz inequalityN

PN
k=1 (Imμk)

2 ≥³PN
k=1 |Imμk|

´2
together with

PN
k=1 |Imμk| ≥

PN
k=1 Imμk and (18) demonstrates that

1

N

NX
k=1

(Imμk)
2 ≥ 1

g2
(H cos γ − Ω sin γ)2

5



Using also sin γ 6= 0 and H = 0, such that E [ωη] = Cov[ω, η] (see e.g. [9]), yields

g2 ≤
¡
Var [ω]−Var [η] +Ω2

¢
− 2 cot γ Cov [ω, η]

1
g2
Ω2 +E [d]

Solving the inequality for g gives the tight upper bound in (9). ¤
The maximum gcc (γ) occurs when γ = π − ε (if Cov[ω, η] > 0) or γ = ε (if Cov[ω, η] < 0) and

when Var[η] = 0, given that E [η] = H = 0. Theorem 1 underlines the necessity of “complex” natural

frequencies ηk to enhance the stability of the z-process for non-real κ (i.e. γ 6= 0 nor γ 6= π). For, if

all ηk = 0, then gcc (γ) ≤
q

Var[ω]
E[d] for all γ ∈ (0, π) ∪ (π, 2π).

4.1 The coupling strength κ = ig and ζk = ωk are all real

With the settings κ = ig and ζk = ωk, the z-process is formally most close to the Kuramoto model

(3) as shown in Section 1.

Theorem 2 The critical coupling strength gcc
¡
π
2

¢
in the complex z-process with imaginary coupling

strength κ = ig and all ηk = 0 for 1 ≤ k ≤ N is zero when the graph has a triangle.

Proof: When NG > 0, γ = π
2 and all ηk = 0, we have that ξk = sin γReμk + cos γ Imμk = Reμk.

Relation (21) then demonstrates that not all eigenvalues can have a zero real part. This means that

gcc
¡
π
2

¢
= 0, i.e. there must be eigenvalues with non-zero real part for g > 0. ¤

Since most graphs, except for trees, have triangles, Theorem 2 implies that the complex z-process

with imaginary coupling strength κ = ig and all ηk = 0 is unstable for most graphs. Only if NG = 0,

the relations (17) and (20) show, for the first pair (k, l) of eigenvalues with Reμk = −Reμl 6= 0, that
Imμk = Imμl. Theorem 2 is deemed difficult to extend to other values of γ ∈ (0, π).

Recall that the phase transition in the Kuramoto model occurs approximately, as shown by Re-

strepo et al. [4], at

gc '
2

πfω (0)λmax (A)

where fω (x) is the probability density function of the natural frequency distribution. This results

assumes a rotating coordinate frame such that the mean frequency Ω is set to zero (see Appendix B).

The general formula for fω (0) = lim∆x→0
Pr[−∆x

2
≤ω≤∆x

2 ]
∆x (see e.g. [9]) does not provide much physical

insight. For a Gaussian random variable with zero mean, fω (x) = 1√
2πσω

e
− x2

2σ2ω , the quantity

fω (0) =
1√
2πσω

is related to the square root of the variance and

gc '
2
√
2σω√

πλmax (A)
' 1.6

p
Var [ω]

λmax (A)

Since the largest eigenvalue of the adjacency matrix obeys λmax (A) ≥ E [d], it seems likely from

(9) that the critical value of g at which instability occurs in the complex z-process with imaginary

coupling strength κ = ig is given by gcc
¡
π
2

¢
'
q

Var[ω]
λmax(A)

. Comparison — for trees only by Theorem 2 —

then would suggest that gc '
p
λmax (A)gcc. For the case of N = 2 oscillators that can be computed

exactly for the Kuramoto model, we find indeed that gcc
¡
π
2

¢
= gc (because λmax (A) = 1).
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5 Relation between the z-process and the Kuramoto model

The set (1) of the complex z-process is rewritten by expliciting the complex nature of the “phases” as

Re
³ ·
zk

´
+ i Im

³ ·
zk

´
= ωk + iηk − g

NX
j=1

akje
i{Re(zj−zk)+γ}e− Im(zj−zk)

Taking the real and imaginary part yields

Re
³ ·
zk

´
= ωk − g

NX
j=1

akje
− Im(zj−zk) cos (Re (zj − zk) + γ)

Im
³ ·
zk

´
= ηk − g

NX
j=1

akje
− Im(zj−zk) sin (Re (zj − zk) + γ)

where the argument γ of the complex coupling strength κ = geiγ introduces a constant phase shift.

Clearly, the Kuramoto equations (3) are retrieved in the first equation provided γ = π
2 and

Im (zj − zk) = ckj for all j and k, where ckj is independent of time t. Moreover, wkj = gckjakj

can be interpreted as the coupling strength of the link between the oscillators k and j. Substituting

zk → θk, we arrive at the governing equations

Im
µ ·
θk

¶
= ηk −

NX
j=1

wkj cos (Re (θj − θk)) (12)

Re
µ ·
θk

¶
= ωk +

NX
j=1

wkj sin (Re (θj − θk)) (13)

The requirement Im (θj − θk) = ckj to map the complex z-process with imaginary coupling strength

κ = ig to the Kuramoto model (3) implies that Im
µ ·
θk

¶
= Im

µ ·
θj

¶
for any pair j and k. In fact,

that mapping requirement introduces N additional constraints, that may lead to inconsistencies. For,

letting Im
µ ·
θk

¶
= Im

µ ·
θ1

¶
, the equations (12) become

Im
µ ·
θ1

¶
= η1 −

NX
j=1

w1j cos (Re (θj − θ1))

and for 2 ≤ k ≤ N ,

Im
µ ·
θ1

¶
= ηk −

NX
j=1

wkj cos (Re (θj − θk))

When subtracting the first differential equation from all others, the last N − 1 equations become
non-linear equations without derivatives

NX
j=1

wkj cos (Re (θj − θk))−
NX
j=1

w1j cos (Re (θj − θ1)) = η1 − ηk

that specify Re (θj (t)) for j > 1 and any time t, while Re (θ1 (t)) can be determined from the first

equation.
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The above equation introduces, for each time t, a constraint for the phases θm for 1 ≤ m ≤ N . This

additional constraint is not part of the Kuramoto equations (3). Even worse, since also the Kuramoto

equations (13) determine all N phases Re (θj (t)) for any time t, given an initial condition Re (θj (0))

for 1 ≤ j ≤ N , the two sets of solutions may be inconsistent. The inconsistency is very likely to

appear unless the set of additional constraints reduces to identities. Unfortunately, in general, the set

of additional constraints do not lead to identities as readily verified for small N (or numerically).

The conclusion is that, although one set of the complex equations can be modified to appear

formally identical to the Kuramoto equations as in (13), the dual set of imaginary parts (12) causes

inconsistencies. Hence, beside its unstable nature by Theorem 2, the complex z-process with imaginary

coupling strength κ = ig can, in general, not describe Kuramoto’s coupled oscillator model.

5.1 Short review of Roberts’ approach

Roberts [5] has proposed an approach that linearizes the Kuramoto equations (by introducing some

tuning parameter η), but his approach suffers (even in the steady-state for which he has introduced the

tuning parameter) from the same additional algebraic constraint on the phases. He starts by stating

the linear equations
·
ψk = (iωk − η)ψk + g

NX
j=1

akjψj

After introducing the non-linear transform ψk (t) = Rk (t) e
iθk(t), we obtain

·
Rk (t) e

iθk(t) +Rk (t) e
iθk(t)i

·
θk (t) = (iωk − η)Rk (t) e

iθk(t) + g
NX
j=1

akjRj (t) e
iθj(t)

Roberts divides both sides by Rk (t) e
iθk(t), thereby implicitly assuming that ψk (t) or Rk (t) is never

zero, and finds, after taking the real and imaginary part,
·
Rk (t)

Rk (t)
= −η + g

NX
j=1

akj
Rj (t)

Rk (t)
cos (θj (t)− θk (t))

·
θk (t) = ωk + g

NX
j=1

akj
Rj (t)

Rk (t)
sin (θj (t)− θk (t))

He now chooses η such that Rk (t), for each k, tends to a steady-state where limt→∞
·
Rk (t) = 0 and

limt→∞
Rj(t)
Rk(t)

= cjk. Thus, using wjk = gajkcjk,

0 = −η +
NX
j=1

wkj cos (θj − θk)

·
θk (t) = ωk +

NX
j=1

wkj sin (θj − θk)

These equations are special cases of (12) and (13) where all θj are purely real. In [5], Roberts

neglects the first relations that expresses the additional constraint imposed to the phases, but dwells

on his tuning parameter η needed for stability reasons as shown in Lemma 1. In summary, his linear

formulation of the Kuramoto model is, as shown above by forcing limt→∞
Rj(t)
Rk(t)

= cjk for all k, defective.
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6 Conclusions

The proposed, complex but linear z-process (1) is shown to be only stable for relatively small values

of the coupling strength g = |κ|, except when κ is real. In that case, the z-process seems a promising

linearization of the cosine-variant (4) of the Kuramoto model. We conjecture that this cosine-variant

(4) does not possess a phase transition, as opposed to the original Kuramoto model (3) and that it,

therefore, describes another, though related, physical phenomenon. In the other cases where γ ∈ (0, π),
the formal resemblence of the z-process with the Kuramoto model, in particular for the almost always

unstable γ = π
2 case, is deceptive. We explain why and show where former work [5] is erroneous.

Acknowledgement We are grateful to Steven Strogatz for the many and illuminating discussions
while at Cornell University.
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³
ζk
κ

´
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³
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κ

´
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=
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(14)
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lies in a disk |μ− uj + ivj | ≤ dj for some 1 ≤ j ≤ N .

9



Lemma 1 The z-process is surely stable if

min1≤j≤N (ηj)

g
− dmax |sin γ + cos γ| ≥ 0

and definitely unstable if
max1≤j≤N (ηj)

g
+ dmax |sin γ + cos γ| < 0

Proof: The general solution (8) shows that a necessary condition for stability of the z (t)-process
with t ≥ 0 entails that sin γReμk+cos γ Imμk ≥ 0 for all 1 ≤ k ≤ N . Gerschgorin’s Theorem provides

the lower bound for any k,

sin γReμk + cos γ Imμk ≥ min
1≤j≤N

(sin γuj + cos γvj − dj (sin γ + cos γ))

= min
1≤j≤N

µ
ηj
g
− dj (sin γ + cos γ)

¶
≥ min1≤j≤N (ηj)

g
− dmax |sin γ + cos γ|

and, similarly, the upperbound for any k,

sin γReμk + cos γ Imμk ≤ max
1≤j≤N

(sin γuj + cos γvj + dj (sin γ + cos γ))

≤ max1≤j≤N (ηj)
g

+ dmax |sin γ + cos γ|

This demonstrates Lemma 1. ¤
Since |sin γ + cos γ| ≤

√
2, Lemma 1 states that we can always make the z-process stable by chosing

min1≤j≤N (ηj)
g ≥

√
2dmax.

In the κ = 0 case, the eigenvalues of limκ→0 κQ
³
ζk
κ

´
= diag(ζk) are equal to μk = ζk for 1 ≤ k ≤ N .

A.1 The sum of powers of eigenvalues

For each integer value of m, we invoke the general relation (see e.g. [9, Appendix A])

trace
µ
Qm

µ
ζk
κ

¶¶
=

NX
k=1

μmk (16)

For m = 1 in (16), we obtain
NX
k=1

μk =
NX
k=1

uk + i
NX
k=1

vk

which shows, in terms of the mean Ω = 1
N

PN
k=1 ωk and H = 1

N

PN
k=1 ηk, that

NX
k=1

Reμk =
N cos γ

g
Ω+

N sin γ

g
H (17)

and
NX
k=1

Imμk =
N cos γ

g
H − N sin γ

g
Ω (18)

10



Using

trace
¡
Q2 (qi)

¢
= trace

¡
A2
¢
+ trace

¡
diag

¡
q2i
¢¢

we have for m = 2 in (16) that

NX
k=1

μ2k = 2L+
NX
k=1

u2k −
NX
k=1

v2k + 2i
NX
k=1

ukvk

Substituting (14) and (15), we obtain, after taking real and imaginary parts,

NX
k=1

(Reμk)
2 −

NX
k=1

(Imμk)
2 = 2L+

N cos 2γ

g2
¡
Var [ω]−Var [η] +Ω2 −H2

¢
+
2N sin 2γ

g2
E [ωη] (19)

and
NX
k=1

Reμk Imμk =
N sin 2γ

2g2
¡
Var [η]−Var [ω] +H2 − Ω2

¢
+

N cos 2γ

g2
E [ωη] (20)

One computational step further for m = 3 in (16) gives

trace
¡
Q3 (qi)

¢
= trace

¡
diag

¡
q3i
¢¢
+ 2trace

¡
diag

¡
qiA

2
¢¢
+ trace (Adiag (qi)A)− trace

¡
A3
¢

where

trace
¡
diag

¡
q3i
¢¢
=

NX
k=1

q3k

trace
¡
diag

¡
qiA

2
¢¢
= trace (Adiag (qi)A) =

NX
k=1

qkdk

trace
¡
A3
¢
=

NX
k=1

NX
l=1

NX
s=1

aklalsask

In particular, trace
¡
A3
¢
is the number of closed walks of length 3 and equals 6 times the number of

triangles in the graph, which we denote here by NG. Thus, we obtain

NX
k=1

μ3k = −6NG +
NX
k=1

u3k − 3
NX
k=1

ukv
2
k + 3

NX
k=1

ukdk + 3i
NX
k=1

vkdk − i
NX
k=1

v3k + 3i
NX
k=1

u2kvk

After introducing (14) and (15) and taking the real and imaginary part, we find

NX
k=1

Reμk

³
(Reμk)

2 − 3 (Imμk)
2
´
= −6NG +

cos 3γ

g3

NX
k=1

ω3k −
sin 3γ

g3

NX
k=1

η3k +
3 sin 3γ

g3

NX
k=1

ω2kηk

− 3 cos 3γ
g3

NX
k=1

ωkη
2
k +

3cos γ

g

NX
k=1

ωkdk +
3 sin γ

g

NX
k=1

ηkdk (21)

and

NX
k=1

Imμk

³
3 (Reμk)

2 − (Imμk)
2
´
= −sin 3γ

g3

NX
k=1

ω3k −
cos 3γ

g3

NX
k=1

η3k +
3 cos 3γ

g3

NX
k=1

ω2kηk

+
3 sin 3γ

g3

NX
k=1

ωkη
2
k −

3 sin γ

g

NX
k=1

ωkdk +
3cos γ

g

NX
k=1

ηkdk (22)
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B The constant of motion in the Kuramoto model

We compute the constant of motion in the Kuramoto model (3) for any undirected graph. Summing

the first m ≤ N equations in (3) yields

mX
k=1

·
θk =

mX
k=1

ωk + g
mX
k=1

NX
j=1

akj sin (θj − θk)

=
mX
k=1

ωk + g
mX
k=1

mX
j=1

akj sin (θj − θk) +
mX
k=1

NX
j=1+m

ajk sin (θk − θj)

Let us now change k → j and j → k in the first double sum, then
mX
k=1

mX
j=1

akj sin (θj − θk) =
mX
j=1

mX
k=1

ajk sin (θk − θj)

We invoke the symmetry in akj = ajk, but the oddness of sin (θk − θj) = − sin (θj − θk), and reverse

the order of summation such that
mX
k=1

mX
j=1

akj sin (θj − θk) = −
mX
k=1

mX
j=1

akj sin (θj − θk)

and conclude that this sum vanishes (because a number that obeys x = −x can only be zero). The
total mutual interaction between a subset of m nodes (oscillators) in the network precisely cancels.

The arguments show that this total mutual cancellation holds for any odd coupling function f (x) =

−f (−x), and not only for the sinus. Thus, provided A = AT and 1 ≤ m ≤ N , there holds for any

odd coupling function that
mX
k=1

mX
j=1

akjf (θj − θk) = 0 (23)

Hence, for any odd coupling function f , we arrive at

mX
k=1

·
θk =

mX
k=1

ωk +
mX
k=1

NX
j=1+m

ajkf (θk − θj)

where the last sum reflects the interactions that the group of m oscillators experience from the other

oscillators in the network. When m = N , we deduce that
NX
k=1

·
θk =

NX
k=1

ωk (24)

which leads to
NX
k=1

θk (t) = NΩt+ c (25)

where the constant c =
PN

k=1 θk (0) is the initial sum of all phases. The transform eθk = θk+Ωt yields

d

dt

Ã
NX
k=1

eθk! = 0
This means that the aggregate of all oscillator phases with respect to the mean frequency Ω does not

change over time. As Strogatz [7] remarks, we can set Ω = 0 due to the rotational symmetry in the

model and eθk is the frequency of oscillator k in a rotating coordinate frame at frequency Ω.
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