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Abstract— Most of the currently deployed multicast protocols
(e.g. DVMRP, PIM, MOSPF) build one shortest path multicast
tree per sender, the tree being rooted at the sender’s subnetwork.
This paper examines the stability of such a tree, specifically, ”How
does the number of links change as the number of multicast users
in a group changes?” Two modelling assumptions are made. We
assume that (a) packets are delivered along the shortest path tree
(which is a realistic assumption as indicated above) and that (b)
the m multicast group member nodes are chosen uniformly out
of the total number of nodes N . The probability density function
for the number of changed edges∆N (m) when one multicast user
joins or leaves the group is studied. For random graphs of the class
Gp (N) withN nodes, link density p and with uniformly (or expo-
nentially) distributed link weights, the probability density func-
tion Pr [∆N (m) = k] is proved to tend to a Poisson distribution
for large N . The proof of this theorem enables a generalization to
an arbitrary topology. Simulations, mainly conducted to quantify
the validity of the asymptotic regime, reveal that the Poisson law
seems more widely valid than just in the asymptotic regime where
N → ∞. In addition, the effect of the link weight distribution on
the stability of the multicast tree is investigated. Finally, the sta-
bility of a Steiner tree connecting m multicast users is compared
to the shortest path tree via simulations.

I. INTRODUCTION

The demand for multimedia which combines audio, video
and data streams over a network, is rapidly increasing. Some
of the more popular real-time interactive applications are desk-
top video/audio conferencing, shared white boards, software
updates, tele-classing, interactive games and animated simula-
tions. Even when data compression is used, multimedia ap-
plications require in general a considerable amount of band-
width. IP multicast is regarded as a promising network service
for group multimedia applications.

One of the major points of interest in IP multicasting is the ef-
ficient multicast routing. The goal of multicast routing is to find
a loopless (acyclic) tree of links that connects all the members
of the multicast group. Multicast packets are then forwarded
along this tree from the sender to all multicast group members.
Several approaches have been adopted for determining the mul-
ticast spanning tree. The simplest way to build a spanning tree
is to add one participant at a time, using a shortest path algo-
rithm (e.g. Dijkstra’s [16]). New participants are connected
along a shortest path to the nearest node in the existing spanning
tree. Improved versions of this source-specific tree principle
are implemented in DVMRP [4], MOSPF [5] and PIM-Dense
Mode [7]. While the shortest path tree between the source node
and each destination node guarantees that multicast packets will
be delivered as fast as possible, it does not necessarily result in
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a tree that economizes on network resources. The second ap-
proach is to construct a single tree to distribute the traffic from
all senders in the group, regardless of the sender’s location, and
to minimize the total weight of the tree. Hence, it optimizes the
use of network resources. The problem of finding a minimum
weight tree that spans all multicast users is known as the Steiner
tree problem [20]. However, due to the high computational ef-
fort and the less stable dynamic behavior, a Steiner tree is not
implemented in multicast routing protocols. Instead, a group-
shared tree used in protocols like CBT [3] and PIM-SM [6] is
based on defining a center node (or rendez-vous point) in the
routing tree. Finally, a third approach is the recently proposed
explicit multicast [21] for small multicast groups. Explicit mul-
ticast essentially forwards packets, with in the header all the
(unicast) IP addresses of the multicast group members, along
the shortest paths. At branches of the shortest path tree, the
packet is multiplicated on the outgoing links and the list of IP
addresses in the header is splitted properly.

Apart from the dynamics of topology updates, IP multicast
offers the possibility of joining and leaving a group at any time.
This activity requires the multicast tree to be dynamically up-
dated (e.g. branches without multicast members must be dis-
carded.) These changes in the shortest path tree imply that the
forwarding of IP multicast packets may change dramatically,
resulting in undesirable transient routing effects. The goal of
this article is to investigate and quantify multicast stability, in
particular, to determine the probability density function for the
number of branches that change if one user joins or leaves the
group. In addition, we quantify the common belief (see e.g. the
book of Huitema [11]) that Steiner trees are more instable than
shortest path trees.

The paper is organized as follows. In Section II, we present
the theoretical and analytic results, while Section III presents
simulation results for both the shortest path (SPT) and the
Steiner tree (MST). Finally, we conclude in Section IV.

II. ON THE EFFICIENCY OF MULTICAST.
In this section, previous theoretical results are first briefly re-

viewed. For the proofs, discussion and the nice agreement with
Internet measurements, we refer to [14]. In the second part,
the stability of the multicast tree is defined and basic theoretical
results are deduced.

A. Theory: A review.
We focus on the efficiency or gain of multicast in terms of

network resource consumption compared to unicast. Specifi-
cally, we concentrate on a one-to-many communication, where
a source distributes messages (packets) to m different, uni-
formly distributed destinations along the shortest path. In



unicast, these messages are sent m times from the source to
each destination. Hence, unicast uses on average fN(m) =
mE [HN ] link-traversals or hops, where E [HN ] is the aver-
age number of hops of a message to a uniform location in the
graph under consideration containingN nodes. One of the main
properties of multicast is that it economizes on the number of
link-traversals. If we define for multicast gN(m) to be the aver-
age number of hops in the shortest path tree rooted at a source
to m randomly chosen distinct destinations, then, of course,
gN(m) ≤ fN(m). For the extreme sizes of the multicast group,
we have simple expressions: gN(1) = fN(1) = E [HN ] while
gN(N − 1) = N − 1 reflecting the number of links in a (com-
plete) spanning tree. Below we merely list the more important
results obtained previously [14].

Theorem 1: For any connected graph withN nodes,

m ≤ gN(m) ≤ Nm

m+ 1
. (1)

Theorem 2: For any connected graph withN nodes, the map
m 7→ gN(m) is concave and the map m 7→ gN(m)

fN(m)
is decreas-

ing.
Next, we need the following definition. Let Xi be the

number of joint hops that all i uniformly chosen and different
group members have in common. Then we have the identity:

Theorem 3: For any connected graph withN nodes,

gN(m) =
mX
i=1

µ
m

i

¶
(−1)i−1E [Xi] . (2)

Corollary 4: For any connected graph, the multicast effi-
ciency gN(m) is bounded by

fN(m)

gN(m)
≤ E [HN ] , (3)

where E [HN ] is the average number of hops in unicast.
This Corollary 4 means that the maximum savings in re-

sources an operator can gain by using multicast (over unicast)
never exceeds E [HN ], which is roughly about 15 in Internet
today.

Remark the generality of these theorems: they hold for any
graph, including the graph of the Internet. The remaining two
Theorems only apply to a specific type of graph. The class of
the random graphs Gp (N) with N nodes, with independently
chosen links with probability p (studied in detail by Bollobas
[2] and later by Janson et al. [10]) and with uniformly on [0,1]
(or exponentially) distributed link metrics w is further referred
to as RGU.

Theorem 5: For the class RGU,

gN(m) =mN

µ
ψ(N)− ψ(m)
N −m

¶
− 1, (4)

where ψ(x) is the digamma function. For largeN , we have the
accurate asymptotic,

gN(m) ∼ mN

N −m log

µ
N

m

¶
− 1
2

(5)

We have also considered the regular k-ary tree of depth1 D
with the source at the root of the tree and m receivers at ran-
domly chosen nodes. In a k-ary tree the total number of nodes
satisfies

N = 1 + k + k2 + . . .+ kD =
kD+1 − 1
k − 1 , (6)

so that N ∼ kD.
Theorem 6: For the k-ary tree,

gN,k(m) = N − 1−
D−1X
j=0

kD−j
¡
N−1−kj+1−1

k−1
m

¢¡
N−1
m

¢ . (7)

Figure 1 illustrates the behavior of gm(m) for the random
graph and several k-values of the k-ary tree together with the
extreme values given by (1). Finally, when fitting Internet mea-
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Fig. 1. The multicast efficiency gN (m) versus group member size m in a
network withN = 104 nodes and various topologies

surements with (7) and treating 1 ≤ k ≤ N−1 as a real positive
number (instead of an integer), an accurate fit has been obtained
with kInternet = 3.2. Since the corresponding k-value for the
class RGU is kRGU = e = 2.718 . . ., the simple analytic model
(5) is well suited to provide first order estimates of gN(m) in (a
subgraph of) the Internet.

B. Stability.
We now turn to the problem of quantifying the stability in a

multicast tree and present new theoretical results which will be
verified by simulations in the next section. Inspired by Poisson
arrival processes, at a single instant of time, we assume that ei-
ther no or one group member can leave. In the sequel, we do not
make any further assumption about the time-dependent process
of leaving/joining a multicast group and refrain from dependen-
cies on time. As measure for the stability of the multicast tree,
the number of links in the tree that change after one multicast
group member leaves the group has been chosen. If we denote
this quantity by ∆N(m), then, by definition of gN(m), the av-
erage number of changes equals

E [∆N(m)] = gN(m)− gN(m− 1) (8)
1The depth D is equal to the number of hops from the root to a node at the

leaves.



Since gN(m) is concave (Theorem 2), E [∆N(m)] is always
positive and decreasing in m. If the scope of m is extended to
real numbers, E [∆N(m)] ≈ g0N(m) which simplifies further
estimates.

The situation where on average less than 1 link changes if
one multicast group member leaves may be regarded as a stable
regime. Since E [∆N(m)] is always positive and decreasing
in m, this regime is reached when the group size m exceeds
m1, which satisfies E [∆N(m1)] = 1. For example, for the
recursive tree which is the shortest path tree (as shown in [13])
for the class RGU, this condition approximately follows from
(5) as

E [∆N(m)] ∼ mN

N −m log

µ
N

m

¶
− (m− 1)N
N −m+ 1 log

µ
N

m− 1
¶

(9)
Let x = m

N , then 0 < x < 1 and

E [∆N(m)]

N
∼ −x
1− x logx+

(x− 1/N)
1− (x− 1/N) log

µ
x− 1

N

¶
After expanding the second term in a Taylor series around x to
first order in 1

N ,

E [∆N(xN)] ∼ x− 1− log x
(1− x)2 +O

µ
1

N

¶
Hence, for large N , E [∆N(x1N)] ∼ 1 occurs when x1 =
0.3161, which is the solution in x of x−1−logx

(1−x)2 = 1. For the
class RGU, a stable tree as defined above is obtained when the
multicast group size m is larger than m1 = 0.3161N ≈ N

3 .
In the sequel, since m1 is high and of less practical interest,
we will focus on multicast group sizes smaller than m1. The
computation of m1 for other graph types turns out to be diffi-
cult. Since, as mentioned above, the comparison with Internet
measurement (see [14]) shows that formula (5) provides a fairly
good estimate, we expect that m1 ≈ N

3 also approximates the
stable regime in Internet well.

The following Theorem quantifies the stability in the class
RGU.

Theorem 7: For sufficiently large N and fixed m, the num-
ber of changed edges ∆N(m) in a random graph Gp (N) with
uniformly distributed link weights tends to a Poisson distribu-
tion,

Pr [∆N(m) = k] ∼ e−E[∆N(m)]
(E [∆N(m)])

k

k!
(10)

whereE [∆N(m)] = gN(m)−gN(m−1) and gN(m) is given
by (4) or approximately by (5).

Proof: Previously [12],[13] we have shown that the short-
est path tree from a source to an arbitrary node in the random
graph Gp (N) with uniformly (or exponentially) distributed
link weights, is a uniform recursive tree for large N . In addi-
tion, the random variable for the number of hops (the hopcount
HN ) from that source to an arbitrary node tends, for largeN , to
a Poisson random variable with meanE [HN ] ∼ logN+γ−1,
where γ is Euler’s constant (γ = 0.5772156 . . .). Hence,
∆N(m) is the random variable that counts the absolute value of
the difference between the hopcountHN(m) from the source to

userm and the hopcountHN(m−1) from the source to the user
closest in the tree to m, which we label by m − 1. Both users
m and m − 1 are not independent, nor the two random vari-
ables HN(m) and HN(m− 1) are independent in general due
to possible overlap in their paths. If the shortest paths from the

m-1

m
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D

Fig. 2. A sketch of a uniform recursive tree, where HN (m) = 3 and
HN (m− 1) = 4 and the number of links in common is two (shown in
bold Root-A-B).

root to each of the two usersm andm−1 overlap, there always
exists a node in the shortest path tree, say node B as illustrated
in Figure 2, that sees the partial shortest paths from itself to
m and m − 1 as non-overlapping and independent. Since the
shortest path tree is a uniform recursive tree, the subtree rooted
at that node B (shown in dotted line in Figure 2) is again a
uniform recursive tree2. With respect to B, the nodes m and
m− 1 are uniformly chosen. We denote the unknown number
of nodes in that subtree rooted at B by ν(m) ≤ N . We have
that ν(m) ≤ ν(m− 1) because by adding a group member, the
size of the subtree can only decrease. For large N and small
m, ν(m) is large such that the above mentioned asymptotic law
of the hopcount applies. If both m and N are large, ν(m) will
become too small for the asymptotic law to apply (a fact illus-
trated by the simulations in sec. III). Thus, for fixedm and large
N , this implies that∆N(m) tends to Poisson random variables
with mean E [∆N(m)]. For any graph and any m and N ap-
plies relation (8). SinceE [∆N(m)] can be explicitly computed
as (9), this completes the proof.

Remark that the proof can be extended to a general topology.
Assume for a certain class of graphs that the pdf of the hop-
count Pr [HN = k] and the multicast efficiency gN(m) can be
computed for all sizes N . The subtree rooted at B is again a
shortest path tree in a subcluster of size ν(m), which is an un-
known random variable. The argument similar as the one in the
proof above shows that

Pr [∆N(m) = k] = Pr
£
Hν(m) = k

¤
2Recall that a uniform recursive tree possesses the property that any new node

N has equal probability to be attached to any of theN − 1 node already in the
tree.



This argument implicitly assumes that all multicast users are
uniformly distributed over the graph. By the law of total prob-
ability,

Pr
£
Hν(m) = k

¤
=

NX
n=1

Pr
£
Hν(m) = k|ν(m) = n

¤
Pr [ν(m) = n]

=

NX
n=1

Pr [Hn = k] Pr [ν(m) = n]

which, unfortunately shows that the pdf of ν(m) is re-
quired to specify Pr [∆N(m) = k]. However, we can pro-
ceed further in an approximate way by replacing the unknown
random variable ν(m) by its best estimate, E [ν(m)]. In
that approximation, the average size E [ν(m)] of the short-
est path subtree rooted at B can be specified, at least in prin-
ciple, with the use of (8). Indeed, since E

£
HE[ν(m)]

¤
=PE[ν(m)]−1

k=1 kPr
£
HE[ν(m)] = k

¤
, by equating

E
£
HE[ν(m)]

¤
= gN(m)− gN(m− 1)

a relation in one unknown E [ν(m)] is found and can be solved
for E [ν(m)]. In conclusion, we end up with the approximation

Pr [∆N(m) = k] ≈ Pr
£
HE[ν(m)] = k

¤
which roughly demonstrates that, in general, Pr [∆N(m) = k]
is likely related to the hopcount distribution in that certain class
of graphs.

Unfortunately, for very few types of graphs, both the pdf
Pr [HN = k] and the multicast gain gN(m) can be computed.
This fact augments the value of Theorem 7, although the class
RGU is not a good model for the graph of the Internet. Fortu-
nately, the shortest path tree deduced from that class seems a
reasonable approximation (as shown in [13]) and sufficient to
provide first order estimates. In any case, we believe its value
outweighs simulation results. Moreover, its relatively simple
analytic character is desirable in modeling problems.
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III. SIMULATION RESULTS.
The main goal of the simulations is to verify the quality of the

asymptotic result in Theorem 7. In particular, section III-A is

devoted entirely to that purpose. In section III-B, results for the
Steiner tree on the same type of graphs for the class RGU are
presented and compared to those of the corresponding shortest
path tree.

In order to anticipate frequently received criticism about the
class RGU, the value of the results only applies to this class
RGU and no attempt is made to correlate these results to the
current Internet, although the previous section did so. The main
reasons are as follows:

1) The topology of the Internet is currently not sufficiently
known to categorize the Internet as a type or an instance
of a class of graphs. The Internet is most likely best seen
as an organism changing over time; there does not ex-
ist a fixed Internet topology and, hence, a class specifi-
cation is desirable, in particular for simulations. There
are measurements (on a part) of the Internet that show
that the Internet graph is sparse (low link density p) and
that the distribution of the degrees (number of links per
node/router) is likely polynomially distributed with ex-
ponent close to -2.2 (see. e.g. [9]). Unfortunately, these
measurements only reveal a part of what we need to know
(e.g. Are there large subgraphs in the Internet that are
planar? Is the Internet clearly hierarchically structured?
Is there a relation to the structure of the autonomous do-
mains (when collapsed in a single point) and the structure
inside an autonomous domain?) And many more of such
questions can be posed.

2) For any routing problem, in addition to the network topol-
ogy, we need also knowledge about the link weight distri-
bution. Older systems are more likely to define all links
with unit weight (w = 1). More recently, it makes sense
to distinguish between a satellite link, a large bandwidth
link and a smaller, or legacy link. Hence, not all link
weights will be equal to w = 1.
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Fig. 4. SPT: The mean and the variance of∆200

Even if more realistic topology generators (such as e.g. gt-
itm [17]) are used, the second problem of the link distributions
will be debatable. Moreover, the link weight distribution is
equally important as the topology of the graph itself. Although
it is believed that Waxman graphs [15] represent communica-



tion networks in a more realistic way, it has been demonstrated
in [13] and [18] that there is no significant difference in the
hopcount of the shortest path in these two families of graphs,
provided the link weight distribution is uniformly or exponen-
tially distributed. It has been shown in [13] that for N large
enough (in practice N > 50), the dependency of the hopcount
of the shortest path on the link density p (i.e. the number of
links in the graph) becomes insignificantly small. Hence, by
attaching a certain weight to a link, the specific details of the
underlying topology may be shielded (or become irrelevant) in
a routing problem.

the number of changed edges k

0 2 4 6 8 10 12

Pr
[∆

Ν
=k

]

0.0001

0.001

0.01

0.1

1

m=3
m=8
m=16
m=32
poisson (m=3)
poisson (m=8)
poisson (m=16)
poisson (m=32)

N=100

Fig. 5. SPT: Pdf Pr [∆N = k] forN = 100 andm < N/3

the number of changed edges k

0 2 4 6 8 10

Pr
[∆

N
=k

]

0.0001

0.001

0.01

0.1

1

m=32
m=50
m=70
poisson(m=32)
poisson (m=50)
poisson(m=70)

N=100

Fig. 6. SPT: Pdf Pr [∆N = k] forN = 100 andm > N/3

A. The shortest path tree
We confine ourselves to graphs of the class RGU with N ≥

100 and with link density p = 0.2. For each graph of N nodes,
we define the number of multicast users in the network, and
the source node. For each N and p, 105 topologies are gen-
erated randomly. The connectivity is tested using the Prim’s
minimum spanning tree algorithm [16]. Only if the generated
topology is connected,m nodes out ofN −1 (the node number

one was defined as a source node) are uniformly chosen, and
the shortest path tree is computed using a modification of Dijk-
stra’s algorithm. The number of edges in the tree was computed
as well as the number of edges in the tree that interconnects one
(uniformly chosen) multicast user less. The difference of those
two values was stored in a histogram, from which the proba-
bility density function was deduced, and simultaneously also
the mean E[∆N ] and the variance var[∆N ] of the number of
changed edges. These two variables (E[∆N ] and var[∆N ]) are
plotted as a function of the multicast group size m, for three
different values of N (100, 200 respectively) on Figures 3 and
4.
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However, for larger values of N , this simulation process is
time consuming, and not efficient. Therefore, forN larger than
500, we used a Markov discovery process to find the shortest
paths from the source node to the other multicast group mem-
bers. The Markov discovery process has been explained in de-
tail in [13]. The Markov discovery process allows us to com-
pute the shortest path tree very efficiently in large graphs (even
up to 105 nodes) of the class RGU.



We observe that the meanE[∆N ] determined via the simula-
tions, and the mean E[∆N ] computed by (9) are almost identi-
cal. Another important observation is that there is an area where
the mean E[∆N ] and the variance var[∆N ] tend to each other.
Since this is a property of the well-known Poisson distribution,
we are led to the conclusion that the probability distribution
function of the number of changed edges ∆N is very likely a
Poisson distribution. In Figures 5 to 8, simulation results to-
gether with the Poisson law (10) are plotted in the dotted and the
solid line respectively, as a function of the number of changed
edges, with the multicast group size as a parameter.
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Figures 5 to 8 show that form < N
3 (equivalent toE[∆N ] >

1), the probability distribution function is remarkably well de-
scribed by the Poisson distribution. For m > N

3 , the notice-
able differences between the mean E[∆N ] and the variance
var[∆N ] appear, and there are significant deviations of the
probability distribution function from the Poisson distribution.
The explanation is that the size ν(m) of the subtree rooted at B
as illustrated in Figure 2, becomes too small to justify a Poisson
law for the hopcount in that subtree. But, as we have already
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explained in the section II-B, if the average number of changed
links is less than one, the multicast tree can be considered as
stable.

Figure 9 and 10 represent results obtained from the Markov
discovery process, forN = 1000. These Figures show that, for
N = 1000, the probability distribution function matches the
Poisson distribution (10) even for larger values ofm.

Finally, the effect of the link weight distribution on the num-
ber of changed branches ∆N in the shortest path tree is illus-
trated in Figure 11. For graphs of the class Gp(N), this Fig-
ure 11 compares the pdf Pr [∆N = k] obtained with uniformly
(or exponentially) distributed and with constant (w = 1) link
weights. Earlier in [13], it is shown that, for all link weights
equal in Gp(N), the probability that the hopcount exceeds 2
hops precisely equals

Pr [HN > 2] = (1− p)
£
1− p2¤N−2

and very rapidly decreases with N for all link densities p >
1√
N

. This phenomenon is also observed in the behavior of∆N
in Figure 11 and supports the generalization of the Poisson law
(10) - which is deduced for uniformly (or exponentially) dis-
tributed link weights - that Pr [∆N(m) = k] is reasonably well
approximated by Pr

£
HE[ν(m)] = k

¤
.

Figure 11 also seems to indicate that less variability in the
link weight distribution amounts to a higher stability of the
shortest path multicast tree. Although concluded from the class
Gp(N), similar simulations with more realistic topologies gen-
erated by gt-itm [17] (transit-stub method) confirm this stable
shortest path tree behavior.

In conclusion, the simulation results indicate that, in spite of
the applicability of Theorem 7 to an asymptotic regime (large
N and fixed m), the law (10) seems to have a wider validity
region. This feature, also previously observed in [19], reflects a
robustness property of the Poisson law, that may be associated
with almost sure behavior.



the number of changed edges k

0 2 4 6 8 10 12

Pr
[∆

N
=k

]

0.0001

0.001

0.01

0.1

1
m=3 (p=0.4)
m=3 (p=0.6)
m=3 (p=0.8)
m=5 (p=0.4)
m=5 (p=0.6)
m=5 (p=0.8)
m=7 (p=0.4)
m=7 (p=0.6)
m=7 (p=0.8)
m=9 (p=0.4)
m=9 (p=0.6)
m=9 (p=0.8)

Fig. 12. MST: Pdf Pr [∆N = k] forN = 10 (α = 0.2)

B. The Steiner tree

In this subsection we will present corresponding results ob-
tained for the Steiner trees. The simulation process is similar
to the one used for generating the shortest path tree. Again
we performed simulations in the class RGU. We generated 105
random graphs of that class RGU. In each graph, m multicast
group members are chosen uniformly out of the N possible
nodes. Depending on m, the Steiner tree [20] is generated us-
ing different algorithms. For m = 2, the minimum Steiner tree
(MST) problem reduces to the computation of the shortest path
between those two users. If m = N , the MST is actually the
(complete) minimum spanning tree, and is computed with the
Prim algorithm. For 2 < m < N , the MST problem belongs
to the class of hard NP-complete problems. Certain reductions
[20] in the topology decrease the number of nodes and links
to a reduced graph, and increase the speed of simulations. In
spite of the implemented reductions, the simulation process is
extremely time consuming for large N . Therefore, we confine
ourselves to graphs where N is not larger than 20. In each
graph, the MST is computed for m an m − 1 members of the
multicast group. The difference ∆N in the number of the links
forming these trees was stored in a histogram, from which the
probability density function was deduced.

1) Influence of the link weight distribution.: For the class of
Gp(N) with various polynomial link weight distributions spec-
ified by the power exponent α,

Pr [w ≤ x] = xα10≤x≤1 + 1x≥1

where 1x is the indicator function3, we have simulated the
pdf Pr [∆10 = k] as shown in Figure 12 to 17 for a =
0.2, 0, 5, 1, 2, 5,∞. The class RGU corresponds to α = 1 and
the last case (α =∞) corresponds to w = 1 everywhere.

The first observation from these Figures is that the pdf
Pr [∆10 = k] appears to be independent of the link probability
p for α ≤ 1. Second, the larger x = m

N , the more correla-
tion there is in the Steiner tree which is reflected by oscillatory

3The indicator function 1x equals 1 if the condition x is true, otherwise it is
zero.
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Fig. 13. MST: Pdf Pr [∆N = k] forN = 10 (α = 0.5)
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Fig. 14. MST: Pdf Pr [∆N = k]forN = 10 (α = 1)

behavior of the probability density function. Third, these os-
cillations are more pronounced for increasing power exponents
α.

If the power exponent α is small (but α > 0), var [w] =
α

(α+2)(α+1)2 is relatively large (with a maximum for α =
√
5−1
2

which is the ’golden number’) whileE [w] = α
α+1 is small.

This variation implies the existence of smaller link weights that
will play a dominant role in the Steiner tree. Since the Steiner
tree is a minimum link weight tree, the links with smaller
weights will more likely be included in both the Steiner tree
with m and m − 1 multicast users. This will lead to a reason-
able stable situation which is similar to the shortest path tree
dynamics. The larger part of the tree will not change if a multi-
cast user leaves or joins. The number of changed branches∆N
in the Steiner tree is very unlikely to be smaller than in the cor-
responding shortest path tree because by choosing a longer hop
path, it may be possible to achieve a lower total weight of the
tree. As a second implication of small α, the link weights have
a thinning effect on the topology and overshadow the influence
of the link density p: even if there is a link, it is the link weight
that determines the importance of that link especially in short-
est link weight problems. This explains the negligible effect of
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Fig. 15. MST: Pdf Pr [∆N = k] forN = 10 (α = 2)

p as observed in Figure 12, 13 and 14.
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Fig. 16. MST: Pdf Pr [∆N = k] forN = 10 (α = 5)

When α is large, var [w] → 0 and E [w] → 1. Let us con-
sider the limit case of α →∞. All links are equally important
and, hence, the effect of the topology quantified by the link den-
sity p is important. If p → 1, then Gp(N) → KN and the be-
havior of ∆N in the complete graphKN with w = 1 is readily
analyzed. Any Steiner tree s(m) in KN connecting m multi-
cast users consists of precisely m− 1 links while the total link
weight of that tree also equals m− 1. Moreover, there exists a
large number of different Steiner trees. In particular, the num-
ber of different minimum spanning trees or s(N) trees in KN
is precisely (N − 1)!. The number of changed branches ∆N
consists of the total number of branches in s(m) and s(m− 1)
minus the 2 times the number Lc of links in common. Hence,
∆N = 2m − 3 − 2Lc or ∆N is always odd, which explains
the oscillatory behavior between odd and even values for ∆N
in Figures 16 and 17, especially for p high. The stability of
these Steiner trees is as worse as can be: the Steiner tree s(m)
inKN may consist of entirely different branches from those of
the Steiner s(m − 1) as exhibited by the wild oscillations in
Figure 17.

In conclusion, the simulations have shown that the link
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Fig. 17. MST: Pdf Pr [∆N = k] forN = 10 (α =∞)

weight distribution has profound influence on the stability of
the Steiner tree. The more links are equal (equivalent to α
large), the higher the instability. If more links have different
link weights, the more stable the Steiner tree is. Whereas the
underlying topology is decisive in the former, it plays hardly
a role in the latter situation. Thus, the more the link weight
structure of a network is heterogeneous, the more healthy for
the stability of the Steiner trees. Recall the opposite behavior
for the shortest path tree as illustrated in Figure 11.

2) Influence of the size N of the graph.: If we compare the
results for the pdf obtained forN = 10 andN = 20 in the class
RGU as illustrated in Figure 18, we observe that the probability
density function for N = 10 and N = 20 match each other
well for x = m

N > 0.7.
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Fig. 18. MST: Pdf Pr [∆N = k] forN = 10 andN = 20

The mean E[∆N ] and the variance var[∆N ] were also com-
puted and plotted as a function of the ratio x = m

N in Figure
19. We observe for the class RGU (α = 1) that the mean value
seems independent of the number of nodes in the network, al-
though the variances differ.

3) Comparison of Steiner and shortest path tree.: In order
to compare the stability of the Shortest path tree (SPT) and the
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Minimum Steiner tree (MST) in the class RGU, we have plot-
ted in Figures 20 and 21, the probability density functions of
changed number of edges ∆N for N = 10 and N = 20 nodes,
and in Figures 22 and 23 the mean value and the variance of
these pdfs. From these Figures, the following observations can
be made: (A) The maximum number of changed edges ∆N in
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SPT does not increase with the increase of N as fast as for the
Steiner tree (MST). This phenomenon has been explained pre-
viously: the minimization of the weight of the total tree forces
the Steiner tree to include longer hop paths if the sum of their
link weights is smaller. (B) The pdf of ∆N for the Steiner tree
possesses a larger tail which agrees with the common intuition
that Steiner trees are less stable than shortest path trees. (C) The
larger tail for the Steiner tree also causes that the mean E [∆N ]
of MST is larger than that of the SPT and similarly for the vari-
ance. (D) The more remarkable observation is that the mean
E [∆N ] forN = 10 andN = 20 in both MST and SPT, hardly
changes with N for nearly all value of x = m

N . Most likely,
for RGU or α = 1, the dynamics of the Steiner tree resembles
those of the SPT as argued above. The equality of E [∆N ] and
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var [∆N ] in SPT follows from the Poisson law (10).
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IV. CONCLUSION.
The stability of both the shortest path tree (SPT) and the

Steiner tree (MST) has been quantified for the class RGU. The
Poisson law (10) for the number of changed edges ∆N in SPT,
has been proven mathematically for the class RGU, while simu-
lation results point towards a larger applicability of the Poisson
law than the asymptotic regime. In addition, we have argued
that similar laws as the Poisson law for the class RGU can be
obtained for a general topology (including that of the Internet),
provided both the hopcount distribution Pr [HN = k] and the
multicast efficiency gN(m) are known. Hence, the stability (in
our setting) of the shortest path tree problem may be regarded
in principle as approximately solved.

The behavior of the Steiner trees is not entirely understood
and requires further analysis. Especially, for large N , it would
be interesting to find the scaling laws of the Steiner tree as well
as the tail behavior. Apart from large network sizesN , the sim-
ulations show that the link weight distribution determines the
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stability of the Steiner tree problem. If the majority of the links
is differently weighted, the stability of the Steiner tree resem-
bles that of the shortest path tree. The other extreme, where
most link weights are equal, leads to large instabilities reflected
by wild oscillations in the corresponding pdf Pr [∆N = k]. At
last, the stability of the Steiner tree is in most situations worse
than that of the corresponding shortest path tree. Mainly be-
cause the departure or arrival of a multicast member may cause
other branches to be included in the Steiner tree (to achieve
an overall minimum in the sum of the weights) than just the
branches of the shortest path towards the subtree rooted at B
(as defined in Figure 2).
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