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Influence of the link weight structure on the shortest path

Piet Van Mieghem and Stijn van Langen
Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
(Received 28 October 2004; published 20 May 2005

The shortest path tree rooted at a source to all other nodes is investigated in a graph with polynomial link
weights tunable by the power exponentBy varying «, different types of shortest path trees, in shoitees,
appear. Especially, the — 0 regime that corresponds to heavily fluctuating link weights possesses a peculiar
type of tree. The most important properties of this>0 tree are derived in the asymptotic limit for lartje
The application of the theoretical insights to real netwdgkgh as the Interneare discussed: steering flow by
adjusting link weightgtraffic engineering sensitivity of link weights and modeling of the network bytrees.
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I. INTRODUCTION The average and variance of the link weight dipn]
. =a/(a+1) and vafw]=a/(a+2)-[a/ (a+1)]? respectively.
. The simple shortest path problem asks_ for_ the COmIOUt‘F’LT'he(expc))nenta LE; c];alled( the()ext[rerrge va?l]ue ing)emf thg
tion of the path from a source to a destination node thabrobability distribution ofw and a=1 for regular distribu-

minimizes the sum of the weights of its constituent links.: : ;
: . tions. By varying the exponent over all non-negative real
The related shortest path tré8PT) is the union of the short- 5 es any extreme value index can be attained and a large

est paths from a source node to all other nodes in the grapR|5sg of corresponding shortest path trees, in sherees,
The SPT belongs to the fundamentals of graph theory angdan pe generated. Finally, we assume independence of link

has many applications. Moreover, powerful shortest path algeights which we deem a reasonable assumption in most
gorithms like that of Dijkstra exist. Nevertheless, little seemsjarge networks.

known about the influence of the link weight structure onthe  The main purpose of this paper is to show that, by con-
properties of the SPT. The motivation to study the impact ofidering a polynomial link weight structure tunable by one
the link weights on the path properties arose in multiconparametera on, e.g., the complete graph, a broad class of
strained routing1]. Also from a traffic engineering perspec- shortest path trees are found as functionaofinstead of
tive, a network operator may want to tune the weight of eactworrying about the precise topology of the graph, we show
link such that the resulting shortest paths between a particuhat a tunable link weight structure thins out the complete
lar set of ingresses and egresses follows the desirable routggaph to the extent that a specific shortest path tree can be
in his network. Thus, apart from the topology of the graph,constructed. The approach thus eliminates the precise knowl-
the link weight structure clearly plays an important role. Of-€dge of the underlying graph by immediately concentrating
ten as in complex molecules, global social interactions ofn the tree properties induced by polynomial link weights.
other large infrastructures as the Internet, both the topology Secondly, we show that relatively small variations in the
and the link weight structure are not accurately known. Thid"k Weight structures cause large differences in the proper-

uncertainty about the precise structure leads us to considdfS Of the SPT. In particular, the average hop cduet, the
both the underlying graph and each of the link weights ad!

umber of links or number of nodes minus 1 in a patha
random variables graph with N nodes follows a different scalingk[Hy]
Since the shortest path tree problem is mainly sensitive t

%O(In N) for « around 1 whileE[Hy]=O(NY3) if a—0.
the smaller, non-negative link weights, the probability distri- \0re0Ver, fora—0, all traffic in the graph routed along the
bution of the link weights around zero will dominantly influ-

SPT traverses precisel-1 links and among those links
ence the properties of the resulting shortest path treegs there seems a large difference in the “critical backbone” over
lar link weight distribution F,(x)=P{w=<x] has a Taylor

which nearly all traffic flows and the other links. The
. . O — 0 regime corresponds to a strong disorder regime. In this
SEries expansion arou ' article, many properties of the resulting tree &or 0 will be
Fu(X) = f,(0)x + O(x?) derived.

) ) ] ] ) The paper is outlined as follows. We first overview three
sinceF,,(0)=0 andF,,(0)=f,,(0) exists. Aregular link weight  types ofa trees fora—, 1, and 0 and introduce a critical
distribution is thus linear around zero. The factg(0) only 4 >0 for which all«< a, area— 0 trees(with overwhelm-
scales all link weights, but it does not influence the shortesing probability). The major par(Sec. Il)) of the paper con-
path. The simplest distribution of the link weight with a  sists of computing properties af—0 trees. The potential

distinct different behavior for small values is the polynomial applications of trees in the setting of Internet are discussed
distribution in Sec. IV.

Fu(¥) =X Lo+ Licrre), @>0, (1) Il. SPECIAL « TREES

where the indicator function,lis one if x is true else it is Let us consider a grapB(N,L) with N nodes and. links
zero. The corresponding density fig(x)=ax® %, 0<x<1. and with independent polynomial link weights specified by
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Eg. (1). The shortest path tree rooted at an arbitrary node in Wwafw] 1
the graph to all other nodes is called thdree. In this sec- W ~
tion, we will meet three special trees fora=, 1, and 0, va

respectively. which means that, in this limit, the link weights possess
strong fluctuations and that the above ratio diverges. This
observation inspired by Braunstesh al. [9] is crucial in the
analysis of the behavior of the shortest path for smallf

If a— o, it follows from Eq. (1) thatw=1 for all links.  the set ofL link weights{w,},-x~, is ordered as
Since all link have unit weight, the— <« regime reduces to
the computation of the shortest path tree in the underlying W) < W) <+ < Wy,

graph. Thea — < regime is thus entirely determined by the j; js of interest to know if there exist a critical valug.> 0

topology of the graph because the link weight structure d°e§uch that, for alla<a, the following inequalities are
not differentiate between links. In case of the complete graplabeyed(wi’th high probagility:

anda— x, the « tree is a star. In other underlying graphs, it

A. The casea— »

is more difficult(see, e.g., Ref.2]) to determine properties Wig) > W(q),
of the shortest path tree. In this paper, the: o regime is
not further considered. W(3) > Wp) + W),
B. The casea=1 Wia) = W)+ Wip) * Wy, -
If a=1, the link weights are iid uniformly distributed. K

Earlier [3], it was shown that the shortest path tree in the
complete graph with uniforrfor exponentiallink weights is

Wik+1) > 2 W(j), ey
) . ) . . =1
precisely a uniform recursive tre@RT) while a URT is

asymptotically the shortest path tree in the Erdds-Rényi ran- L-1
dom graphGp(N) [4] with link density p above the discon- W) > > Wj)- (5)
nectivity thresholdp,~In N/N. The interest of the URT is j=1

that analytic modeling is possible such as the computation of . - . )

the degrge the hopgcou?ﬁ 5], the number of Iinkspin the I any graph with th'.s Imk we|g_ht structure,.the weight O.f a
URT or the multicast problerf6,7] and the hop count to the Ezzgﬁﬁ)&?ie?é ETr\:\:j(L:d])bcogféS;nOf tzr;e@l‘;(r;k th)‘? QOml—
most nearby server or the anycast problé&h Comparison d : t hat » Dy orderir 9_ th_)J th—u eP
with Internet measurementsee Sec. Iy shows that proper- and assuming that max.p{w(i —j)}=w, then the in-
ties of the shortest path tree in the regime arousd. agree ~ €qualities above indicate thal?) <w..y). Hence, the set of

reasonably well with those measured, but they remain firsthequalities assure that the weight of a path can be upper

order estimates. bounded by the next in order link weight higher than its own
In an earlier analysi§3], it was shown that, foN large =~ maximum link weight. Any path in the graph that does not
and fixede, the hop counHy, satisfies contain the link with weightv,, possesses a path weight that
is always smaller thawm ).
E[Hy] ~ InN @) Theorem 11f the link weights obey the inequalitig®),
LN a the union of all shortest path trees rooted at each node in the

graph is a tree.
Proof. Suppose that the shortest path gr&hconsisting
~ InN of the union of all shortest paths would contain a loop, then
VaI{HN 2 1 (3) . . .

@ the largest link weight of that loop is larger than the sum of
. ) ) all other links of that path. Since subsections of the shortest
and that the hop count igt least asymptoticallyindepen-  paths are again shortest paths, that largest link weight in the
dent of the link density. That analysis has assumed inde-|oop will not appear in a shortest path because it is bypassed

pendence of the links in the shortest path. Also, for l&¥ge  py the other part of the loop with smaller link weight. Hence,

it follows from Egs.(2) and(3) that loops do not occur in the gragh,,, and a loop-free graph is
a tree.
o~ E[H\] (4) This curious property implies that all shortest path trees
vaifHy] rooted at different nodes are precisely the same and equal to

the minimum spanning treéMST). The coincidence of all
which gives a method to relate to Internet measurements SPT’s with the MST for a general graph with strongly fluc-
(see, e.g., Fig. Pprovided thatw is around 1. tuating weights has been reported by Dobrin and Duxbury
[10].
We will now show that the inequalitig$) can be satisfied
provided a,=0O(L™?). It is convenient to make the transfor-
If «—0, mation w=e"V*. Sincew e [0, 1], the random variable/

C. The casea—0
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ranges over all positive real numbers avids distributed as
Prle™" < x] = X*Lycpo,1

or, since the evenfw=eV/*<x} is equivalent to the event
{V=-alInx}, and denoting/=-a In X,

PiV=y]=¢€7,

which shows that the random variablé is exponentially

distributed with mean 1. The set of inequalities generated by

Wks1) > 2W for each linkk e {L} is more severe than the
original set of inequalitie$5). In other words, if there exists
an a, such thaw. ;> 2wy for each linkk e {L} is obeyed,

then also the original set of inequalities is satisfied. Since

Wk+1)

1
=exp —(Vg — V, >2
oo F(a( ®) (k+1))>

the inequalities are all satisfied if the minimum spacing

Amin=minV = V1| > a In 2. We further replace the expo-
nential distribution AV<y]=1-€7Y with the (qualitatively
similar) uniform distribution on[0, 1]. The L random vari-
ablesVy, constitute a Poisson process and the spacings
between two consecutiwés are independent and identically
distributed as BA>t]=(1-t)- with average spacing 1
+1)=1/L (see, e.g., Ref[11], Chap. 7. For largeL, we
have PfLA >t]=(1-t/L)* —¢e™ and the spacing tends to
the exponential distributiof, (x) =L exp(—Lx). The distribu-
tion of the minimum spacingd\, is given by

PlAni,> aln2]=[PrA > aIn2)]* = exp(- al?In 2).

In conclusion, by choosing,<L™2/In 2, the probability of a
violation of the inequalitiesw. 1> 2w, for each link k
e {L} is less than one. Although this probability rapidly de-
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L-1
Py = Pr[w(z) > Wg),Wea) > Wig) + W), - Wi > W(]-)]
=1
(6)
and for polynomially link weights,
1 1 1
Py = aLL!f dxle"lf dxzxg"lf dxgx§
0 X1 (X1HX0) L 4=}
1
X e J dx x* . (7)
(EjLz_llXﬂl{EjL;llxjsl}

The largest value of that solves the equation,=1-¢ for

an arbitrarily smalle>0 can be obtained. Although we be-
lieve that the integral irf7) can be solved exactly, the result
seems too cumbersome to be useful here. If all link weights
are iid exponential random variables with a same mean, we
find that

L-1

LW > 2 W)

Pr|:W(2) > W(l)!W(S) > W(Z) + W(l)! ..
j=1

L!

= Sh-n (8)
which shows that for independent exponential link weights
in any graph the inequalitig$) are almost never satisfied for
largeL. Since the exponential has the same extremal index as
the uniform distributione=1, we see that to satisfy the in-
equalities(5), the link weight structure must be highly fluc-
tuating. If operators in the Internet assign link weights in-
versely proportional to the bandwidff2], it is a priori not
unlikely that the inequalitie$5) are almost all satisfied be-
cause of the larger heterogeneity in linkoughly from
10 kbit/s up to 10 Gbit/sin the Internet.

In summary, three distinet regimes have been identified.

cays, only ifa— 0, the inequalities are surely satisfied. The values of & around either=, 1, and 0 are likely to yield

argument has shown that there is indeed a range<o&0
< a, that obeys the inequalities with high probability. How-
ever, it merely demonstrates the existencexgf0. More-
over, the resulting estimate,=O(L™?) is much too conser-
vative becauséa) the inequalitiesv.1)> 2wy, for each link

k e {L} are more stringent than the set of inequaliti&s (b)
even the set of inequalitig®) is likely to impose too many
restrictions, in particular on the links with larger link weights

W that are already unlikely to be part of a shortest path.

Consequently, the extreme— O regime is expected to be
entered more rapidly than far,=O(L™?).

A better estimate for, should be derived from the joint
density functionf of order statisticgwy)} of the set ofL link

weights which is
L
FWigy =Xg, - Wiy =X0 = LT ) X L e
j=1

The factorL! counts the number of permutations in which
the set{w;},<j<_ of iid random variablesy; can be ordered
to obtain the ordered séwv)};<j<. Thus,

a-trees with properties that are essentially the same as those
of the shortest hop count tree, the URT or the MST. After a
study of properties of the MS{la— 0 tree, we will motivate

in Sec. IlID a slightly better order estimate fod,
=0O(N"2In"2N) rather thana,=O(N™%) in worst case where
L=0(N?).

D. Simulations

Figure 1 shows the average hop colifitly] as a function
of the number of nodeN for various values of the exponent
ae[0,1). For a near to 1, the average hop couliftHy]
scales linearly in IlN, in agreement with Eq2). For smaller
«a, the average hop coufif Hy] increases faster than M If
a—0, the strong overlagdependengeof paths(all shortest
path trees are equal to the MBmdically excludes assump-
tions of independence made in the earlier anal{3jsthat
lead to a logarithmic scaling iN of the hop counti[Hy].

The simulations seem to indicate that may be much
larger than estimated in previous section which implies a
higher probability that they really appear in practice. Braun-
steinet al. [9] investigated the lengths of minimum-weight
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FIG. 1. The average hop coui{Hy] in the random graph FIG. 3. The probability that the union of all shortest paths
Gp(N) with link densityp=2 InN/N as a function of the number of G gy, in the complete graph with polynomial link weights is a
nodesN. minimum spanning tree as a function ef

paths in the regime of large link weight fluctuatiota  pathsG sy, between all node pairs in the complete graph
—0) in random graphs, small-world and scale-free graphswith polynomial link weights is a minimum spanning tree. In
Using arguments from the theory of critical phenomena andeal networks where almost all flows follow shortest paths
numerical simulations they showed that for Erdds-Reényi ranthrough the network, the union of all shortest paths is the
dom graphs the hop count scales as lili[Hy(a)]  observable part of a network. For example, the union of all
=O(NY3). trace routes between all node pairs in the Internet, would
Figure 2 visualizes the different structure of a typical represent the observable graph of the Internet. The real In-
MST (& and a typical URT(b) of the same sizeN=100. ternet is larger because it also contains dark links for backup
Figure 3 shows the probability that the union of all shortestpaths needed in case of failures. We observe inFmphase

(a) (b)

FIG. 2. An example in the graph with=100 nodes ofa) the MST which is the SPT foae=0 and(b) the URT which is the SPT for
a=1. Both trees are structured per level set where each level shows the number of nodes at different hop count froth¢he nooie with
label 7).
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transition arounda,, which we here define as [F@USp(%) them in increasing order randomly to links in the complete

:MST]:%. For a< a;, most graphsG sy, are trees with graph. In the latter construction process, only the order sta-

high probability while fora> a., hardly any graptG epa is tistics or the ranking of the link weights suffice to construct

a tree. The widthA« of the phase transitiofe.g. defir;]ed as the graph because the precise link weight can be unambigu-

PG . =MST]-P{G N —MST]—O' 9 de- ously associatedlaten to the rank of a link. Hence, assume
a~Aa) ™ atAa) ™ - . .. . . .

crea:;g( \C/vith)N. The simuI;tsig(ncs a)re limited to relatively the existence ofasetdn‘:(’;) lid polynomially link weights

) L with «— 0 that are ordered, then we need only to take the
small graphs because for smalthe large relative variations ; S
) g ; . - . _rank of each link weight into account to construct the MST
in the link weights require a Dijkstra shortest path algorithm

. o : which coincides with the shortest path tree in the case
that runs with arbitrarily long real numbefsnantisse and : S X
. . X — 0. This observation immediately favors the Kruskal algo-
exponent Indeed, a polynomial random variable is gener-

ated asUY*=expIn U/a) where U is a uniform random rlthm [18] for the MST over Prim's algor!thm. Although the
Prim algorithm leads to the same MST, it gives a more com-

variable that '35' easy to gen_erate with computerf. For a SmaHlicated, long-memory growth process, where the attachment
o of about 10” and for a typical value o around;, we sée ot each new node depends stochastically on the whole
that link weights appear of the order of*2*and smaller. growth history so far. Pietronero and Schneided] illustrate
that in our approach Prim, in contrast with Kruskal, leads to
[ll. PROPERTIES OF MINIMUM SPANNING TREES a very complicated stochastic process for the construction of
the MST.
The Kruskal growth process described here is closely re-
ed to a growth process of the random gr&iiN,L) with

As mentioned in Sec. Il B, the properties of the URYT
=1) have been investigated earlier in detail. We devote thi§at

section to study some properties of MSTs corresponding R nodes and. links. The construction or growth @(N, L)

thea—0 regime. A.IthOUQh some re_sult; on MSTs have beer%tarts fromN individual nodes and in each step an arbitrary,
found earlier in a different setting with different methods, we | yet connected random pairs is connected. The only dif-

present here a unified and elegant approach in the asympto Srence with Kruskal's algorithm for the MST is that, in

regime forN—c. Kruskal, links generating loops are forbidden. Those forbid-
. den links are the links that connect nodes within the same
A. Earlier work connected component or “cluster.” As a result, the internal

Frieze[13] computed the average weight of an MST onWiring of the clusters differs, but the cluster size statistics

the complete grapk for a general weight distribution witn (counted in nodes, not edges exactly the same as in the
finite f,,(0). He also showed that the variance vanishes ascorresponding random graph. The metacode of the Kruskal

ymptotically. Aldous[14] has computed the distribution of 9rowth process for the construction of the randam-0
the degree in gsingle sample MST. He has generalized €€S1S

Frieze’s result for the MST weight to a more general class o

polynomial link weight distributions. Jans¢m5] shows that Kruskal GrowthM ST

the distribution of the MST weight oKy with uniform 1. start with N disconneded nodes

weights is asymptotically normal, and he gives an expressio] 2. repeat untif all nodes are connected
for the variance. Penrogd6] proves that the degree distri- 3- i’;"’mﬁ;i” il "°dn; F:'st('-l )
bution of the Euclidean MST on @dimensional hypercube 5 then omm‘d i to]

converges to Aldous’ result, E¢R4) below, in the mean-field

limit d_’°°'_ . , ) , We now relate the link densitp in the random graph
Barabasi[17] clarified the equivalence between invasion G4(N) to the link density in the corresponding stage of the

S_erc?jlatlosnpar}d Prim’s algorllth_m fﬁr thbe MS(b(; sltrong(;_ 4Kruskal growth process. We first compute the size of the
isorder SPY. Invasion percolation has been widely studied 5+ ojster in the forest as a function of the number of links

by physicists working in the area of phase transitions usuall dded. LetS=Pin  C] denote the probability that a node

Ic?' two or 'ihree ?;]mfn5|o?§éatherdtr}ar;hln thetlnI_lnlte—f belongs to the giant compone@t If n ¢ C, then none of the
imensional case that we stydjt models the penetration o eighbors of noden belongs to the giant component. The

fluid in a porous medium saturated by another fluid. The "nlﬁ'lnumber of neighbors of a nodeis the degreel(n) of a node
weight plays the role of a potential barrier for fluid to invade such that

into a pore. Dobriff10] shows that the MST geometry on a
random network is universdi.e., does not depend on the
energy or weight distribution which yields a simple way to Pn ¢ C]=Pifall neighbor ofn ¢ C]
compute the MST weight for general energy distributions.
= > Pfall k neighbors of ¢ C|d(n) =k]

k=0

B. The Kruskal growth process of the MST
X Pr{d(n) =k].

Since the link weights in the underlying complete graph
are chosen independently and assigned randomly to links in
the complete graph, the resulting graph is probabilisticallySince inG,(N) all neighbors ofn are independent, the con-
the same if we first order the set of link weights and assigrditional probability becomes with 1S=Pi{n ¢ C],
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Prlall k neighbors o ¢ C|d(n) =k] = (P{n ¢ C])¥
=(1-9
Moreover, this probability holds for any node ime Gy(N)
such that, writing the random variabBBxg=d(n),

©

1-8=2 (1-9'Pd(n) =Kl = ¢p (1 -9),
k=0

wheregp_ (u1)=E[uPrq] is the generating function of the de- & @) ®
. C

gree Drg in Gy(N). For largeN, the degree distribution in

Gp(N) is Poisson distributed with mean degrags=p(N
—1) andgp_ (W)=e“rd"D. Hence, for large, the fractionS N\ d
of nodes in the giant component in the random graphis given >~ 77T

by

S=1-¢e#rcS (9) FIG. 4. Component structure during the Kruskal growth

. . process.
and the average size of the giant componeniNEB For

Mre<1 the only solution isS=0 whereas fofurs>1 there

is a nonzero solution for the size of the giant component. The Ly= }nzsz
solution can be expressed as a Lagrange séRes [20], p. 2 ¢
94),
+1)" L :}(SN)Z—SN
Slure) =1 -€7#R GE 1+ 1)) (MRGe Hre)", (10) ¢ 2 '

By reversing Eq(9), the average degree in the random graph 1
can be expressed in terms of the fract®of nodes in the Li= EHCSC(SC— 1) -n(s-1).
giant component

In(1-9) an To highest order irD(N?), we have
S Lo=N?S(1-9),

We will now transform the mean degreeg in the ran-
dom graph to the mean degreg,st in the corresponding 1
stage of the MST. In early stages of the growth each selected Lg==N%1-97?,
link will be added with high probability such thakyst 2
=urg almost surely. After some time the probability that a
selected link is forbidden increases, and thug; exceeds )
Must- In the end, when connectivity of alN nodes is '—eZEN .
reached uyst=2 (since it is a trepwhile urg=0(In N).

Consider now an intermediate stage of the growth as ilThe probability that a randomly selected link is eligible is
lustrated in Fig. 4. Assume there is a giant component of=(c+d)/(c+d+e+§ or
average sizeNS and n,=N(1-S)/s; small components of
average sizes; each. Then we can distinguish six types of (Le+Lg/(Le+Lg+Le+L) q=1-S (12
links labeled a—f in the figure. Types a and b are links that
have been chosen earlier in the giant comportanand in  In contrast with the growth of the random graj@y(N)
the small component&), respectively. Types ¢ and d are where at each stage a link is added with probabpityn the
eligible links between the giant component and a small comKruskal growth of the MST we are only successful to add
ponent(c) and between small componer{th, respectively. one link (with probability 1) per 1/q stages on average. Thus
Types e and f are forbidden links connecting nodes withinthe average number of links added in the random graph cor-
the giant componerte), respectively, within a small compo- responding to one link in the MST is @#1/(1-S%). This
nent (f). For largeN, we can enumerate how many links provides an asymptotic mapping betweegs and uyst in

Hra(S) = -

there are of each typl, with k={a,b,c,d,e f: the form of a differential equation
1
La+ Lb = EILLMSTN, —dMRG = —l .
dumst  1- S
L.=SN1-9N, By using Eq.(11), we find
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1.0 T T T L
-------- N = 1000 _
-~~~ N =10000 B E[WMST] - 2 E[W(j)lj € MST]-
0g Ll N=25000 g 1 =
| |==— Theory

The random variablewy;, and 1.ysr are independent be-
06hL / 4 cause the valuey;, of jth smallest link only depends on the
4 link weight distribution and the number of eddesvhile the
appearance;lysr of the jth edge in the MST only depends
on the graph’s topology. Hence,

02k 4 i E[wg)1j cmst] = Elwg) JE[ 1 cmst] = E[w) JPI{j € MST]

’ such that the average weight of the MST is
0.0 b |

Fraction S of nodes in the giant component

0.0 0.5 1.0 1.5 20 L
Heon GeBIee ot E[Wysr] = S Elwg JPij € MST].  (15)
FIG. 5. Size of the giant componefaivided byN) as a function =1
of the mean degregysr. Each simulation for different number of |n general for independent link weights with probability
nodesN consists of 1 MST sample. density function f,(x) and distribution function F(x)
=Pf{w=x], the density function of thgth order statistic
d/—LMST d/*LMST dMRG (l + S [S+ (1 S)In(l S)] (Ref [11], Chap 3 is
dS  dupg dS 53 0
W . B
Integration with the initial conditionuyst=2 atS=1, finally Wu (x) = Fu(X) ( >[F‘N(X)]l[1 ~Fu00]7. (16)
gives the average degregst in the MST as function of the
fraction S of nodes in the giant component The factor(* )[Fw(x)]l[l F(¥)]-7 is a binomial distribution
1-g? with mean ,u F,(X)L and variancec®=LF,(X)[1-F,(X)]
pnsr(S) = 25— ( S ) In(1-9). (13) _that by trﬁce_n.t[alzhmzlt th_eory, tends for larbdo a Gauss-
ian 1/(o\2m)e i-»720" which peaks aj=u. Thus for large

N and fixedj/L, we have[21] x;=E(w;) =F,(/L).
For the complete graph, we found before in ELR) that
the link rankedj appears in the MST with probability

As shown in Fig. 5, this result agrees well with the simula-
tion (even for a single sampleexcept in a small region
around the transitiopyst=1 and for relatively smalN.

The key observation is that all transition probabilities in
the Kruskal growth process asymptotically depend on only

one parameter, the fraction of nodes in the giant componenthere% is the fraction of nodes in the giant component

S. This quantitySis called anorder parameteiin statistical durm the construction process of the random araph at the
physics. In general, the expectation of an order paramete 9 P grap
Stage where the number of links precisely eqyal§ince

distinguishes the qualitatively different regimestate$ be-
i . . .__links are added independently, that stage in fact establishes
low and above the phase transition. In higher dmensmn%ﬁe random graphG(N,L=}). With Eq. (11) and usg

fluctuations of the order parameter around the mean can beZL/N it foll that
neglected and the mean value can be computed from a self- It Tollows tha
consistent mean-field theory. In our problem, the underlying

Plj e MST]=1-S,

complete (or random graph topology makes the problem 2_j:_ In(2 - )_ (17)
effectively infinite dimensional. The argument leading to Eq. N S
(9) is essentially a mean-field argument.
Hence,
C. The average weight of the minimum spanning tree L )
The crucial observatiofil0] is that in any graph, the to- E[Wyst] = > F\Ll(JE)(l -S).
pology of a MST depends only on the ranks of the link =1
L L
- 4fu
WsT= > Wi Ljemst (14) E[Wyst] = f Fuw (E)ﬂ -S)du.
=1 1

wherew;; is thejth smallest link weight. The average weight Substituting x=2u/N [which is the average degree in
of the MST is G(N,u)] yields for largeN, whereL =N?/2,
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N N-1 X N
E[Wisr] = 2 f F;Vl(—)(l = Sz dx = f X1 - S(x)]dx
2 2/N N 1
NJN _1(x> Y In(@-y)\Ye d( In(l-y)
=—| FM=|[1-S(x]dx. = -—=] 1-y)—|-——]dy.
2)o "\N 0 y dy y
) ) ] ] After partial integration, we have
It is known [22] that if the number of linkgedge$ in the
growth process of the random graph is bel@2, with high | = 1 2 C a1 € q
probability (and ignoring a small onset region just below Y * 1 o (1-egX)le X.
N/2), there is no giant component such ti&k)=0 for x ;+ 1 > +1
e[0,1]. Thus, we arrive at the general formula valid for
large N, Finally, we end up with
N 1 X N N X E[WMST(Q)] — Nl_l/DK(LJ‘OO Xl"“le—_xdx).
E[Wist] = - J Fv'vl<—)dx+ = f F;Vl<—>[1 - () ]dx. la+1], (1-e™)e
2), N 2), N
(19
(18

If <1, thenk[Wyst(a)]— 0 for N— o, while for a>1,

The first term is the contribution from the small&t2 links }(E;[V?/M?T(a)]_TOE \I/r\} parilcu_larf,_ I'.nb—fm ]IE[WM?\IT(CK;]_N_]“_
in the graph, which are included in the MST almost surely. nly for a=24, [Wust(1)] is finite for largeN. More pre

The remaining part comes from the more expensive links irFiS€Y:

the graph, which are included with diminishing probability E[Wys(1)]=£(3)=1.202, ..., (20)

since 1-5%(x) decreases exponentially for largeas can be

deduced from Eq10). The rapid decrease of 1%(x) makes ~ Where we have useiiRef. [24], Eq.(23.2.7] the integral of
only relatively small values of the argumeRf‘(x/N) con-  the Riemann Zeta function

tribute to the second integral. = sl
At this point, the specifics of the link weight distribution I'(s)i(s) :J ;- du
needs to be introduced. The Taylor expansion of o€ -1

_1 . .
(N/2)F,; (x/N) for largeN to first order is convergent for Re)>1. This particular case for=1 has

been proved earlier by Friezgl3] based on a different
N_,(x) N_, X X 1 method. Asymptotically, as shown in R¢B], the average
2 <N> PO 21,00 O(N> " 20,0 O(N) weight of a shortest path tree §2)=72/6, while here the
average weight of the MST i&3) < {(2).

since we require that link weights are positive such that
F;vl(O):O. This expansion is only useful providdg(0) is
neither zero nor infinity. These cases occur, e.g., for polyno- We now return to the Taylor series valid for link weights
mial link weights withf,(x)=ax®* with a# 1. Fortunately, ~where 0<f,(0) <. The above result for=1 immediately
for polynomial link weights(N/2)F,}(x/N)=(N*"Ye/2)xte yields
Formally, this latter expression reduces to the first order Tay-

2. Generalizations

lor approach forwr=1, apart from the constant factorf],(0). E[Wist] = @ (21)
Therefore, we will first computdi[Wys7] for polynomial fw(0)
link weights and then return to the case in which the Taylorrhjs result is for the complete gragy. A random graph
expansion is useful. Gy(N) with p<1 and weight densityi,,(x) is equivalent to
Ky with a fraction 1 of infinite link weights. Thus the
1. Polynomial link weights effective link weight distribution igpf,,(x)+(1-p)dy., and

we can simply replac§,(0) by pf,(0) in the expressiofi21)

The average weight of the MST for polynomial link for the MST weight orKy,

weights follows[23] from Eq. (18) as

N D. The largest link weight in a group
+f xMe[1 —Sz(x)]dx>.

Nl—l/a
E[Wyst(a)] = (
1

2 Consider a grouge.g., in multicasting consisting ofm

members and one source node on the MST. Both the source
and them receiving group members are chosen uniformly
Let y=S(x) and use Eq(11), thenx=S*(y)=-In(1-y)/y  among theN nodes of the MST. For largl, the m paths
anddx=-d/dy[In(1-y)/y]dy while y=5(1)=0 andy=S(N) from source to each multicast group member have a same
=1, such that bottleneck almost surelj25] if and only if the source joins

la+1
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08F" X N-1 . 1
’ E[R’] =f (1-PfR = y])dy=f (1 =X dprc(X)
[ 0 0
061 ' m-1
=—(m+1) | X" In(1-x)dx
I 0
2 oaf S
& Var
R =(m+1)> :
: k=1 K(k+m)
02f After partial fraction decomposition, the average normalized
L rank is
Y1) AN m
o mtlal
’ ER]=——=3 (23)
m 5 Kk

FIG. 6. The PDF of the normalized rafk for various sizesn .
of the multicast group. which shows that for largm, E[R ]=In m. In casem=1, the
rank R=(N/2)R’ is the rank of the largest link weight in the

the giant component later than thedestinations which hap- sho[test path from the source to the only destin_ation and has

pens with probability 1¢m+1). We will now compute the FE[R]=2, thusE[R]=N. For largeN, the probability thaiR

rank of the largest link weight in the tree that spans rime <N/2 (i.e., R’ <1) is zero asymptotically because the first

members. N/2 are almost surely not connected. Connectivity occurs
During the growth of the MST as explained in Sec. Ill B, asymptotically when the mean degregg exceeds 1. The

at each step links are added and the last link that connects tigobability distribution of the largest weight follows from

m members and the source will be determined. When linkEds-(16) and(22) using the law of total probability

weights are ranked in increasing order, the r&x that last

link corresponds to th&th order statisticsv(g, whose distri-

bution is specified in Eq16). We first determine the ranR

which equals the step in the Kruskal growth process for

N
fw(R*)(X) = j fury(XR =y)dPIR" <]
0

which T=max(ty,ty, ... ,tm, tme1), Wheret; is the time in the _ N Ny< L )[F (]2
growth process at which thgh multicast member is swal- 2F, () )y T\(N2)y /- Y

lowed by the giant component and wheyg; is the time at L-(NI2)y

which the source joins the giant component. Sincenall X[1-Fu(¥] fre(y)dy.

nodes and the source are uniformly selected during the ] - _
growth process measured in terms# [0, 1], the random ~ Observe thawg in contrast withR™ does depend on link
variablest; are iid uniform on[0, 1] and probability p of the random graph. For largé, f,, (x) tends

- to a Gaussiaras explained in Sec. Il Cresulting in
P{T<x]=xX

1 N
for xe[0,1]. From the relation(11) of the average degree fu g (X) = —f e V2 = k2% L (y)dy = e [N ()],
and the fraction of nodes in giant compon&nthe normal- ov2mlo
ized rankR" of the largest link weight follows fronR’
=(2/N)R= urd9)|s-T and the evenfT<x} is equivalent to
{urdT) < ura(X)} becauseurg(x) is monotonically increas-
ing in x such that

This expression shows that the probability density function
(PDP of the highest link weight in the multicast group is
asymptotically distributed as the normalized rank with the
rank parametey in Eq. (22) replaced byNF,(x).

, 1 Formula (23) shows that the rank of the largest link
PIR < y]=[preW]™, weight in the MST(m=N) is aboutli[R,,.J = (N/2)In N. Re-
1 . . turning to the determination af; in Sec. Il C, this observa-
Whe.re.x:,u_RG(y)' is the inverse functpn OS/:“RG(X) aqd tion suggests that the number of relevant equations if&g.
explicitly given |n*Eq.(1_O). The probability density function ;o L=O(NIn N). In fact, if N—, the claim is very likely
fre(y)=(d/dy)PIR <y] is correct which leads to the critical reginig=O(N"2In"2 N)

in stead ofa,=O(N™#) determined in Sec. Il C.

[ac(y)]™
fre(y) = (m+1)—FRELL (22)
trd Hre(Y)] E. The degree distribution

and is shown in Fig. 6 fom=1, 2, 5, and 10. The mean is  Aldous[14] has shown that the probability distribution of
best computed from the tail probability formula the degredy st of nodes in the MST equals
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TABLE |. Comparison of the degree distribution in the MST

k Exact Eq.(24) Conditioned Poisson E¢25)
1 0.40658 0.40637
2 0.32429 0.32380
3 0.17112 0.17201
4 0.068353 0.068529
5 0.022006 0.021842
6 0.0059347 0.0058013
7 0.0013768 0.0013207
8 0.00028022 0.00026309
9 0.000050790 0.000046586
10 8.2970< 1076 7.4240< 1076
vall Dystl 1.1917 IN-1)=1.1872
1 k-1
P{Dyst=k]= fo e“b(s)%ds, (24)

where ®(s)=[3dt{In t/(t-1)]. Remarkably, this expression

for the probability of the degreBy,st is close(but not iden-

tical) to a Poissof\) distribution conditioned to positive in-

tegersk=1,

A< et
P{Dysr=k] = — ,
{Dust=K] K1—e?

(25)

where\ is chosen such that the mean degree equgisr
=k[Dust]=2. It is straight forward to show that is the
positive solution ofe™=1-\/2, A=1.593624-- and that

PHYSICAL REVIEW E 71, 056113(2005

vafDyst]=2(\—-1). Table | compares the two expressions
(24) and (25).

During the growth process, we observed that the degree
distribution of the forest is found to be Pois$RXiuysT)
below the transitior(uyst<1). Above the transitior{uyst
>1), the average degree of the giant component equals the
final value of 2. At the transition the distribution of degree
minus one in the giant component is found to be Poi€gon
Thus PfDyst—1=k]=1/(ek). For larger values ofuysr it
evolves gradually to the asymptotic form af;st=2. The
degree distribution over all nodest in the large component
is Poisson for all X uyst<2, with average degree follow-
ing from 25+(1-9) psc=pmst:

_ MMST‘ZS__ 1-S
Msc— 1-S - S

In(1-9 (26)

F. The hop count

The hop count between two arbitrary nodes in the MST
(e¢— 0 regime has been simulated and is shown in Fig. 7.
The simulation also indicated that per MST, there is a large
variation in the hop count which heavily contrasts with the
almost sure behavior for the hop count in thel regime
[26]. The large variation between samples is indirectly de-
duced from the fact that vigry]>E[Hy] in the inset of
Fig. 7.

The PDFf(x) of the scaled hop coutt=Hy/E[Hy] ver-
sus the scaled number of haps|j/E[Hy] is plotted in Fig. 8
as a full line. With the dotted line, we have added the PDF of
the limit random variabl&V of a Poisson branching process
(BP) with mean ugp. Two exact expressions fdky(x) are

1 T T
014‘A T L L T LN R S R | T T LN R A A T e |
1000 f- a1 . E
_ £ | 0 EH (14N . 3
0.12 1 2 | e var (6t oesNT) 1-
& L a=0 * 4
0]0 F “5 100 b ® -
% sf . n ﬁ_
— . r G ]
T 0.8 g s . s © 17
Z B J
= g T * o ;
B . u]
0.06 = 10 o 47
o 5
L3t taal 2 2 ¢ o sy el s M SR T | M.
0.04 10° 10° 10* .
Number of nodes N
0.02 N=25x2"fork=0,..8 7
0.00 1 1
0 50 100 150 200
the number of hops j

FIG. 7. The probability density function of the hop count simulated for various sizes aflietree. The inset plots the average and

variance of the hop count versus the number of nddles
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08

06

Increasing N

Pdf £, (x) of the Scaled Hopcount

~——— Simulation of the Hopcount
=« =« Theory: f,(x) of a Poisson BP

—— Fit: Maxwell (N = 6400)

0.5 1.0 1.5 20 25 30
Scaled number of hops x = j/EfH,,]

FIG. 8. The scaled hop couht=Hy/E[Hy] versus the scaled number of hapsj/E[Hy] for N=25x 2K with k=0, ...,8. The arrows
show how this scaled hop count varies with increadin@he inset shows the PDifp(x) of the limit random variable of a Poisson branching
process.

presented in Refl27] and f\,(x) is shown in the inset for which was proposed by Braunstegt al. in [28] purely by
various 2< ugp=<10. We observe that the PDF of the scaledfitting the simulation data.

hop count folN=50 up toN=6400 lies between those of the = The PDFf,\(x) of the Poisson BP is clearly superior to the
BP corresponding to the Poisson degree distribution witlguess of a Maxwellian. The suggestion to compare the scaled
mean betweemgp=4 andugp=6. We have also plotted the hop countiwith mean 1 to the limit random variabl&V (also

fit of a Maxwellian f,(x)=4/\m(2x/\m)%exp(—(2x/\m)?)  with mean 1 is explained by Aldou$14]. However, we still

T 17 r T _H

-{Bog=1+H
Varfo] =0.03]

0.12 |— apan_ip

0.10

| [ TS R A, N SR
6 8 10 12 14 16 18 20
Nr. of experiments

0.08 - !

=J]
[t
i ¥
&
g

0.06 |~ champagne

Pr{H

s west
— = riesling
0.02 F| - sjc
=¥+ uoregon
-+ yto

4) -
Yo —— i = |

FIG. 9. Trace routes from CAIDA, May 2004. Each of the 21 sources has sevérdedtinations. The local internal hops that follow a
single path towards the Internet have been subtracted. In the insetomputed asr=E[H]/vaiH].

056113-11



P. VAN MIEGHEM AND S. VAN LANGEN PHYSICAL REVIEW E 71, 056113(2005

need to associate the meanpp of the Poisson BP to the In networks where the link weights can be varied, con-
number of nodes in the MST which turns out to be a rathetrolled or determined independent of the topology, we have
difficult theoretical problem. shown that if the extreme value index of the link weight
distribution is larger tham, transport in a network is spread
IV. DISCUSSION AND CONCLUSIONS out over more paths, while if the extreme value index is
Properties of both the:=1-tree(URT) and thea— O-tree below ac, transports starts _con_centrating on very few “back-
(MST) have been characterized. We have shown that botRone links.” Hence, by tuning in a same underlying topol-
types of trees are quite different. Based on trace-route hopdy. We may create two very different types of transport in
count measurements as shown in Fig. 9, the regime of inteth® network. The analogy with a normal conductiabove a
est for the Internet seef29] to lie between 0.5 a<1.5. critical temperaturd¢) and a superconducting transpdse-
From a topological view, the Internet trees indeed seem tPW To) of an electrical current in some solidsetwork of
consist of a critical bearer tre@orresponding to thee—0  atoms comes to mind. o
tree overgrown with URT-like small tree¢influence of _From a control point of view in networks, operators may
=1). Based on Eq(2), the latter causes that the hop count in Wish to steer flows by tuning link weights. Our study indi-
the Internet still scales logarithmically M, rather than poly- ~ cates that large variations in the link weigttts smal) will
nomially as for thew— 0 tree(MST). This effect is similar to ~ "esult in overall properties close to the—0 tree (MST):
the small world graphs: by adding a few links in a “large Many flows will traverse over a same set of links and the

average hop count graph,” the hop count may decrease dr@verall hop count will increase. From a robustness point of
matically. view, choosingx around 1 will lead to the use of more paths

Our theoretical study inspires some new research. If In&nd, hence, a more balanced overall network load. A next
ternet trees can be modeled viatrees, insight about an Step in understanding the influence of the link weight struc-
effectivelink weight structure in the Internet may be gained. tureé is to find out what the maximum amousitv in link

That effective link weight structures arises as a combinatioffV€ight change can be in order not to modify the set of short-
of intra-domain (shortest path routing with interdomain €St paths in a network. This insight is important to estimate

(not-shortest pathrouting. In spite of the relatively low the topology update overhead in netwotksg., in road traf-

number of sources, Fig. 9 seems to suggest that the effectif& Where the link weights may be associated with the traffic
link weight is close to a regular distribution. Although con- 10ad. An accurate view of the updated topology is crucial for
troversial to adopt link weights, from a modeling perspec-fouteé planner in cars.

tive, simpler tools as shortest paths, no violation of the tri-

angular inequality, etc., can be appligd to dedu<_;e first ordgr ACKNOWLEDGMENTS

estimates. In a next stage, the modeling of multicast trees in

terms ofa trees may be interesting since little about Internet  We would like to thank Serena Magdalena for providing
multicast trees is known. Figs. 1-3 and Xiaoming Zhou for Fig. 9.
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