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The shortest path tree rooted at a source to all other nodes is investigated in a graph with polynomial link
weights tunable by the power exponenta. By varyinga, different types of shortest path trees, in shorta trees,
appear. Especially, thea→0 regime that corresponds to heavily fluctuating link weights possesses a peculiar
type of tree. The most important properties of thisa→0 tree are derived in the asymptotic limit for largeN.
The application of the theoretical insights to real networksssuch as the Internetd are discussed: steering flow by
adjusting link weightsstraffic engineeringd, sensitivity of link weights and modeling of the network bya trees.
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I. INTRODUCTION

The simple shortest path problem asks for the computa-
tion of the path from a source to a destination node that
minimizes the sum of the weights of its constituent links.
The related shortest path treesSPTd is the union of the short-
est paths from a source node to all other nodes in the graph.
The SPT belongs to the fundamentals of graph theory and
has many applications. Moreover, powerful shortest path al-
gorithms like that of Dijkstra exist. Nevertheless, little seems
known about the influence of the link weight structure on the
properties of the SPT. The motivation to study the impact of
the link weights on the path properties arose in multicon-
strained routingf1g. Also from a traffic engineering perspec-
tive, a network operator may want to tune the weight of each
link such that the resulting shortest paths between a particu-
lar set of ingresses and egresses follows the desirable routes
in his network. Thus, apart from the topology of the graph,
the link weight structure clearly plays an important role. Of-
ten as in complex molecules, global social interactions or
other large infrastructures as the Internet, both the topology
and the link weight structure are not accurately known. This
uncertainty about the precise structure leads us to consider
both the underlying graph and each of the link weights as
random variables.

Since the shortest path tree problem is mainly sensitive to
the smaller, non-negative link weights, the probability distri-
bution of the link weights around zero will dominantly influ-
ence the properties of the resulting shortest path tree. Aregu-
lar link weight distribution Fwsxd=Prfwøxg has a Taylor
series expansion aroundx=0,

Fwsxd = fws0dx + Osx2d

sinceFws0d=0 andFw8 s0d= fws0d exists. A regular link weight
distribution is thus linear around zero. The factorfws0d only
scales all link weights, but it does not influence the shortest
path. The simplest distribution of the link weightw with a
distinct different behavior for small values is the polynomial
distribution

Fwsxd = xa1xPf0,1g + 1xPf1,̀ d, a . 0, s1d

where the indicator function 1x is one if x is true else it is
zero. The corresponding density isfwsxd=axa−1, 0,x,1.

The average and variance of the link weight areEfwg
=a / sa+1d and varfwg=a / sa+2d−fa / sa+1dg2, respectively.
The exponenta is called theextreme value indexof the
probability distribution ofw and a=1 for regular distribu-
tions. By varying the exponenta over all non-negative real
values, any extreme value index can be attained and a large
class of corresponding shortest path trees, in shorta-trees,
can be generated. Finally, we assume independence of link
weights which we deem a reasonable assumption in most
large networks.

The main purpose of this paper is to show that, by con-
sidering a polynomial link weight structure tunable by one
parametera on, e.g., the complete graph, a broad class of
shortest path trees are found as function ofa. Instead of
worrying about the precise topology of the graph, we show
that a tunable link weight structure thins out the complete
graph to the extent that a specific shortest path tree can be
constructed. The approach thus eliminates the precise knowl-
edge of the underlying graph by immediately concentrating
on the tree properties induced by polynomial link weights.

Secondly, we show that relatively small variations in the
link weight structures cause large differences in the proper-
ties of the SPT. In particular, the average hop countsi.e., the
number of links or number of nodes minus 1 in a pathd in a
graph with N nodes follows a different scaling:EfHNg
=Osln Nd for a around 1 whileEfHNg=OsN1/3d if a→0.
Moreover, fora→0, all traffic in the graph routed along the
SPT traverses preciselyN−1 links and among those links
there seems a large difference in the “critical backbone” over
which nearly all traffic flows and the other links. Thea
→0 regime corresponds to a strong disorder regime. In this
article, many properties of the resulting tree fora→0 will be
derived.

The paper is outlined as follows. We first overview three
types ofa trees fora→`, 1, and 0 and introduce a critical
ac.0 for which alla,ac area→0 treesswith overwhelm-
ing probabilityd. The major partsSec. IIId of the paper con-
sists of computing properties ofa→0 trees. The potential
applications ofa trees in the setting of Internet are discussed
in Sec. IV.

II. SPECIAL a TREES

Let us consider a graphGsN,Ld with N nodes andL links
and with independent polynomial link weights specified by
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Eq. s1d. The shortest path tree rooted at an arbitrary node in
the graph to all other nodes is called thea tree. In this sec-
tion, we will meet three speciala trees fora=`, 1, and 0,
respectively.

A. The casea\`

If a→`, it follows from Eq. s1d that w=1 for all links.
Since all link have unit weight, thea→` regime reduces to
the computation of the shortest path tree in the underlying
graph. Thea→` regime is thus entirely determined by the
topology of the graph because the link weight structure does
not differentiate between links. In case of the complete graph
anda→`, thea tree is a star. In other underlying graphs, it
is more difficult ssee, e.g., Ref.f2gd to determine properties
of the shortest path tree. In this paper, thea→` regime is
not further considered.

B. The casea=1

If a=1, the link weights are iid uniformly distributed.
Earlier f3g, it was shown that the shortest path tree in the
complete graph with uniformsor exponentiald link weights is
precisely a uniform recursive treesURTd while a URT is
asymptotically the shortest path tree in the Erdös-Rényi ran-
dom graphGpsNd f4g with link density p above the discon-
nectivity thresholdpc, ln N/N. The interest of the URT is
that analytic modeling is possible such as the computation of
the degree, the hop countf3,5g, the number of links in the
URT or the multicast problemf6,7g and the hop count to the
most nearby server or the anycast problemf8g. Comparison
with Internet measurementsssee Sec. IVd shows that proper-
ties of the shortest path tree in the regime arounda=1 agree
reasonably well with those measured, but they remain first
order estimates.

In an earlier analysisf3g, it was shown that, forN large
and fixeda, the hop countHN satisfies

EfHNg ,
ln N

a
, s2d

varfHNg ,
ln N

a2 , s3d

and that the hop count issat least asymptoticallyd indepen-
dent of the link densityp. That analysis has assumed inde-
pendence of the links in the shortest path. Also, for largeN,
it follows from Eqs.s2d and s3d that

a ,
EfHNg

varfHNg
s4d

which gives a method to relatea to Internet measurements
ssee, e.g., Fig. 9d provided thata is around 1.

C. The casea\0

If a→0,

Îvarfwg
Efwg

,
1

Îa

which means that, in this limit, the link weights possess
strong fluctuations and that the above ratio diverges. This
observation inspired by Braunsteinet al. f9g is crucial in the
analysis of the behavior of the shortest path for smalla. If
the set ofL link weights hwkj1økøL is ordered as

ws1d , ws2d , ¯ , wsLd

it is of interest to know if there exist a critical valueac.0
such that, for all a,ac, the following inequalities are
obeyedswith high probabilityd:

ws2d . ws1d,

ws3d . ws2d + ws1d,

ws4d . ws3d + ws2d + ws1d, . . . ,

wsk+1d . o
j=1

k

ws jd, . . . ,

wsLd . o
j=1

L−1

ws jd. s5d

In any graph with this link weight structure, the weight of a
path wsPd=oi→ jPPwsi → jd consists of one link that domi-
nates all others. Indeed, by ordering the sethwsi → jdji→ jPP
and assuming that maxi→ jPPhwsi → jdj=wskd, then the in-
equalities above indicate thatwsPd,wsk+1d. Hence, the set of
inequalities assure that the weight of a path can be upper
bounded by the next in order link weight higher than its own
maximum link weight. Any path in the graph that does not
contain the link with weightwsLd possesses a path weight that
is always smaller thanwsLd.

Theorem 1. If the link weights obey the inequalitiess5d,
the union of all shortest path trees rooted at each node in the
graph is a tree.

Proof. Suppose that the shortest path graphGø consisting
of the union of all shortest paths would contain a loop, then
the largest link weight of that loop is larger than the sum of
all other links of that path. Since subsections of the shortest
paths are again shortest paths, that largest link weight in the
loop will not appear in a shortest path because it is bypassed
by the other part of the loop with smaller link weight. Hence,
loops do not occur in the graphGø, and a loop-free graph is
a tree.

This curious property implies that all shortest path trees
rooted at different nodes are precisely the same and equal to
the minimum spanning treesMSTd. The coincidence of all
SPT’s with the MST for a general graph with strongly fluc-
tuating weights has been reported by Dobrin and Duxbury
f10g.

We will now show that the inequalitiess5d can be satisfied
providedac=OsL−2d. It is convenient to make the transfor-
mation w=e−V/a. Since wP f0,1g, the random variableV
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ranges over all positive real numbers andV is distributed as

Prfe−V/a ø xg = xa1xPf0,1g

or, since the eventhw=e−V/aøxj is equivalent to the event
hVù−a ln xj, and denotingy=−a ln x,

PrfV ù yg = e−y,

which shows that the random variableV is exponentially
distributed with mean 1. The set of inequalities generated by
wsk+1d.2wskd for each linkkP hLj is more severe than the
original set of inequalitiess5d. In other words, if there exists
anac such thatwsk+1d.2wskd for each linkkP hLj is obeyed,
then also the original set of inequalities is satisfied. Since

wsk+1d

wskd
= expS 1

a
sVskd − Vsk+1ddD . 2

the inequalities are all satisfied if the minimum spacing
Dmin;minuVskd−Vsk+1du.a ln 2. We further replace the expo-
nential distribution PrfVøyg=1−e−y with the squalitatively
similard uniform distribution onf0, 1g. The L random vari-
ablesVskd constitute a Poisson process and the spacingsD

between two consecutiveV’s are independent and identically
distributed as PrfD. tg=s1−tdL with average spacing 1/sL
+1d<1/L ssee, e.g., Ref.f11g, Chap. 7d. For largeL, we
have PrfLD. tg=s1−t /LdL→e−t and the spacingD tends to
the exponential distributionfDsxd=L exps−Lxd. The distribu-
tion of the minimum spacingDmin is given by

PrfDmin . a ln 2g = fPrsD . a ln 2dgL = exps− aL2 ln 2d.

In conclusion, by choosingac,L−2/ ln 2, the probability of a
violation of the inequalitieswsk+1d.2wskd for each link k
P hLj is less than one. Although this probability rapidly de-
cays, only ifa→0, the inequalities are surely satisfied. The
argument has shown that there is indeed a range of 0,a
,ac that obeys the inequalities with high probability. How-
ever, it merely demonstrates the existence ofac.0. More-
over, the resulting estimateac=OsL−2d is much too conser-
vative becausesad the inequalitieswsk+1d.2wskd for each link
kP hLj are more stringent than the set of inequalitiess5d, sbd
even the set of inequalitiess5d is likely to impose too many
restrictions, in particular on the links with larger link weights
wskd that are already unlikely to be part of a shortest path.
Consequently, the extremea→0 regime is expected to be
entered more rapidly than forac=OsL−2d.

A better estimate forac should be derived from the joint
density functionf of order statisticshwskdj of the set ofL link
weights which is

fsws1d = x1, . . . ,wsLd = xLd = L!p
j=1

L

fwsxjd 3 1x1,x2,¯,xL
.

The factorL! counts the number of permutations in which
the sethwjj1ø jøL of iid random variableswj can be ordered
to obtain the ordered sethws jdj1ø jøL. Thus,

pa = PrFws2d . ws1d,ws3d . ws2d + ws1d, . . . ,wsLd . o
j=1

L−1

ws jdG
s6d

and for polynomially link weights,

pa = aLL!E
0

1

dx1x1
a−1E

x1

1

dx2x2
a−1E

sx1+x2d1hx1+x2ø1j

1

dx3x3
a−1

3 ¯ E
so j=1

L−1xjd1ho j=1
L−1xjø1j

1

dxLxL
a−1. s7d

The largest value ofa that solves the equationpa=1−e for
an arbitrarily smalle.0 can be obtained. Although we be-
lieve that the integral ins7d can be solved exactly, the result
seems too cumbersome to be useful here. If all link weights
are iid exponential random variables with a same mean, we
find that

PrFws2d . ws1d,ws3d . ws2d + ws1d, . . . ,wsLd . o
j=1

L−1

ws jdG
=

L!

2LsL−1d/2 s8d

which shows that for independent exponential link weights
in any graph the inequalitiess5d are almost never satisfied for
largeL. Since the exponential has the same extremal index as
the uniform distributiona=1, we see that to satisfy the in-
equalitiess5d, the link weight structure must be highly fluc-
tuating. If operators in the Internet assign link weights in-
versely proportional to the bandwidthf12g, it is a priori not
unlikely that the inequalitiess5d are almost all satisfied be-
cause of the larger heterogeneity in linkssroughly from
10 kbit/s up to 10 Gbit/sd in the Internet.

In summary, three distincta regimes have been identified.
Values of a around either̀ , 1, and 0 are likely to yield
a-trees with properties that are essentially the same as those
of the shortest hop count tree, the URT or the MST. After a
study of properties of the MSTsa→0 treed, we will motivate
in Sec. III D a slightly better order estimate forac
=OsN−2 ln−2 Nd rather thanac=OsN−4d in worst case where
L=OsN2d.

D. Simulations

Figure 1 shows the average hop countEfHNg as a function
of the number of nodesN for various values of the exponent
aP f0,1d. For a near to 1, the average hop countEfHNg
scales linearly in lnN, in agreement with Eq.s2d. For smaller
a, the average hop countEfHNg increases faster than lnN. If
a→0, the strong overlapsdependenced of pathssall shortest
path trees are equal to the MSTd radically excludes assump-
tions of independence made in the earlier analysisf3g that
lead to a logarithmic scaling inN of the hop countEfHNg.

The simulations seem to indicate thatac may be much
larger than estimated in previous section which implies a
higher probability that they really appear in practice. Braun-
stein et al. f9g investigated the lengths of minimum-weight
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paths in the regime of large link weight fluctuationssa
→0d in random graphs, small-world and scale-free graphs.
Using arguments from the theory of critical phenomena and
numerical simulations they showed that for Erdös-Rényi ran-
dom graphs the hop count scales as lima→0EfHNsadg
=OsN1/3d.

Figure 2 visualizes the different structure of a typical
MST sad and a typical URTsbd of the same sizeN=100.
Figure 3 shows the probability that the union of all shortest

pathsGøsptsad between all node pairs in the complete graph
with polynomial link weights is a minimum spanning tree. In
real networks where almost all flows follow shortest paths
through the network, the union of all shortest paths is the
observable part of a network. For example, the union of all
trace routes between all node pairs in the Internet, would
represent the observable graph of the Internet. The real In-
ternet is larger because it also contains dark links for backup
paths needed in case of failures. We observe in Fig. 3 a phase

FIG. 1. The average hop countEfHNg in the random graph
GpsNd with link densityp=2 ln N/N as a function of the number of
nodesN.

FIG. 2. An example in the graph withN=100 nodes ofsad the MST which is the SPT fora=0 andsbd the URT which is the SPT for
a=1. Both trees are structured per level set where each level shows the number of nodes at different hop count from the rootshere node with
label 7d.

FIG. 3. The probability that the union of all shortest paths
Gøsptsad in the complete graph with polynomial link weights is a
minimum spanning tree as a function ofa.
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transition aroundac, which we here define as PrfGøsptsacd

=MSTg= 1
2. For a,ac, most graphsGøsptsad are trees with

high probability while fora.ac hardly any graphGøsptsad is
a tree. The widthDa of the phase transitionse.g., defined as
PrfGøsptsac−Dad=MSTg−PrfGøsptsac+Dad=MSTg=0.9d de-
creases withN. The simulations are limited to relatively
small graphs because for smalla the large relative variations
in the link weights require a Dijkstra shortest path algorithm
that runs with arbitrarily long real numberssmantisse and
exponentd. Indeed, a polynomial random variable is gener-
ated asU1/a=expsln U /ad where U is a uniform random
variable that is easy to generate with computers. For a small
a of about 10−3 and for a typical value ofU around1

2, we see
that link weights appear of the order of 2−1000 and smaller.

III. PROPERTIES OF MINIMUM SPANNING TREES

As mentioned in Sec. II B, the properties of the URTsa
=1d have been investigated earlier in detail. We devote this
section to study some properties of MSTs corresponding to
thea→0 regime. Although some results on MSTs have been
found earlier in a different setting with different methods, we
present here a unified and elegant approach in the asymptotic
regime forN→`.

A. Earlier work

Frieze f13g computed the average weight of an MST on
the complete graphKN for a general weight distribution with
finite fws0d. He also showed that the variance vanishes as-
ymptotically. Aldousf14g has computed the distribution of
the degree in assingle sampled MST. He has generalized
Frieze’s result for the MST weight to a more general class of
polynomial link weight distributions. Jansonf15g shows that
the distribution of the MST weight onKN with uniform
weights is asymptotically normal, and he gives an expression
for the variance. Penrosef16g proves that the degree distri-
bution of the Euclidean MST on ad-dimensional hypercube
converges to Aldous’ result, Eq.s24d below, in the mean-field
limit d→`.

Barabasif17g clarified the equivalence between invasion
percolation and Prim’s algorithm for the MSTsor strong-
disorder SPTd. Invasion percolation has been widely studied
by physicists working in the area of phase transitions usually
in two or three dimensionssrather than in the infinite-
dimensional case that we studyd. It models the penetration of
fluid in a porous medium saturated by another fluid. The link
weight plays the role of a potential barrier for fluid to invade
into a pore. Dobrinf10g shows that the MST geometry on a
random network is universalsi.e., does not depend on the
energy or weight distributiond, which yields a simple way to
compute the MST weight for general energy distributions.

B. The Kruskal growth process of the MST

Since the link weights in the underlying complete graph
are chosen independently and assigned randomly to links in
the complete graph, the resulting graph is probabilistically
the same if we first order the set of link weights and assign

them in increasing order randomly to links in the complete
graph. In the latter construction process, only the order sta-
tistics or the ranking of the link weights suffice to construct
the graph because the precise link weight can be unambigu-
ously associatedslaterd to the rank of a link. Hence, assume
the existence of a set ofL= s N

2
d iid polynomially link weights

with a→0 that are ordered, then we need only to take the
rank of each link weight into account to construct the MST
which coincides with the shortest path tree in the casea
→0. This observation immediately favors the Kruskal algo-
rithm f18g for the MST over Prim’s algorithm. Although the
Prim algorithm leads to the same MST, it gives a more com-
plicated, long-memory growth process, where the attachment
of each new node depends stochastically on the whole
growth history so far. Pietronero and Schneiderf19g illustrate
that in our approach Prim, in contrast with Kruskal, leads to
a very complicated stochastic process for the construction of
the MST.

The Kruskal growth process described here is closely re-
lated to a growth process of the random graphGsN,Ld with
N nodes andL links. The construction or growth ofGsN,Ld
starts fromN individual nodes and in each step an arbitrary,
not yet connected random pairs is connected. The only dif-
ference with Kruskal’s algorithm for the MST is that, in
Kruskal, links generating loops are forbidden. Those forbid-
den links are the links that connect nodes within the same
connected component or “cluster.” As a result, the internal
wiring of the clusters differs, but the cluster size statistics
scounted in nodes, not edgesd is exactly the same as in the
corresponding random graph. The metacode of the Kruskal
growth process for the construction of the randoma→0
trees is

We now relate the link densityp in the random graph
GpsNd to the link density in the corresponding stage of the
Kruskal growth process. We first compute the size of the
giant cluster in the forest as a function of the number of links
added. LetS=PrfnPCg denote the probability that a noden
belongs to the giant componentC. If n¹C, then none of the
neighbors of noden belongs to the giant component. The
number of neighbors of a noden is the degreedsnd of a node
such that

Prfn ¹ Cg = Prfall neighbor ofn ¹ Cg

= o
kù0

Prfall k neighbors ofn ¹ Cudsnd = kg

3Prfdsnd = kg.

Since inGpsNd all neighbors ofn are independent, the con-
ditional probability becomes with 1−S=Prfn¹Cg,
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Prfall k neighbors ofn ¹ Cudsnd = kg = sPrfn ¹ Cgdk

= s1 − Sdk.

Moreover, this probability holds for any node innPGpsNd
such that, writing the random variableDRG=dsnd,

1 − S= o
k=0

`

s1 − SdkPrfdsnd = kg = wDRG
s1 − Sd,

wherewDRG
sud=EfuDRGg is the generating function of the de-

greeDRG in GpsNd. For largeN, the degree distribution in
GpsNd is Poisson distributed with mean degreemRG=psN
−1d andwDRG

sud=emRGsu−1d. Hence, for largeN, the fractionS
of nodes in the giant component in the random graph is given
by

S= 1 −e−mRGS s9d

and the average size of the giant component isNS. For
mRG,1 the only solution isS=0 whereas formRG.1 there
is a nonzero solution for the size of the giant component. The
solution can be expressed as a Lagrange seriessRef. f20g, p.
94d,

SsmRGd = 1 −e−mRGo
n=0

`
sn + 1dn

sn + 1d!
smRGe−mRGdn. s10d

By reversing Eq.s9d, the average degree in the random graph
can be expressed in terms of the fractionS of nodes in the
giant component

mRGsSd = −
lns1 − Sd

S
. s11d

We will now transform the mean degreemRG in the ran-
dom graph to the mean degreemMST in the corresponding
stage of the MST. In early stages of the growth each selected
link will be added with high probability such thatmMST
=mRG almost surely. After some time the probability that a
selected link is forbidden increases, and thusmRG exceeds
mMST. In the end, when connectivity of allN nodes is
reached,mMST=2 ssince it is a treed while mRG=Osln Nd.

Consider now an intermediate stage of the growth as il-
lustrated in Fig. 4. Assume there is a giant component of
average sizeNS and nc=Ns1−Sd /sc small components of
average sizesc each. Then we can distinguish six types of
links labeled a–f in the figure. Types a and b are links that
have been chosen earlier in the giant componentsad and in
the small componentssbd, respectively. Types c and d are
eligible links between the giant component and a small com-
ponentscd and between small componentssdd, respectively.
Types e and f are forbidden links connecting nodes within
the giant componentsed, respectively, within a small compo-
nent sfd. For largeN, we can enumerate how many links
there are of each typeLk with k=ha,b,c,d,e,fj:

La + Lb =
1

2
mMSTN,

Lc = SNs1 − SdN,

Ld =
1

2
nc

2sc
2,

Le =
1

2
sSNd2 − SN,

Lf =
1

2
ncscssc − 1d − ncssc − 1d.

To highest order inOsN2d, we have

Lc = N2Ss1 − Sd,

Ld =
1

2
N2s1 − Sd2,

Le =
1

2
N2S2.

The probability that a randomly selected link is eligible is
q=sc+dd / sc+d+e+fd or

sLc + Ldd/sLc + Ld + Le + Lfd q = 1 −S2. s12d

In contrast with the growth of the random graphGpsNd
where at each stage a link is added with probabilityp, in the
Kruskal growth of the MST we are only successful to add
one link swith probability 1d per 1/q stages on average. Thus
the average number of links added in the random graph cor-
responding to one link in the MST is 1/q=1/s1−S2d. This
provides an asymptotic mapping betweenmRG and mMST in
the form of a differential equation

dmRG

dmMST
=

1

1 − S2 .

By using Eq.s11d, we find

FIG. 4. Component structure during the Kruskal growth
process.
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dmMST

dS
=

dmMST

dmRG

dmRG

dS
=

s1 + SdfS+ s1 − Sdlns1 − Sdg
S2 .

Integration with the initial conditionmMST=2 atS=1, finally
gives the average degreemMST in the MST as function of the
fraction S of nodes in the giant component

mMSTsSd = 2S−
s1 − Sd2

S
lns1 − Sd. s13d

As shown in Fig. 5, this result agrees well with the simula-
tion seven for a single sampled, except in a small region
around the transitionmMST=1 and for relatively smallN.

The key observation is that all transition probabilities in
the Kruskal growth process asymptotically depend on only
one parameter, the fraction of nodes in the giant component
S. This quantityS is called anorder parameterin statistical
physics. In general, the expectation of an order parameter
distinguishes the qualitatively different regimessstatesd be-
low and above the phase transition. In higher dimensions
fluctuations of the order parameter around the mean can be
neglected and the mean value can be computed from a self-
consistent mean-field theory. In our problem, the underlying
completesor randomd graph topology makes the problem
effectively infinite dimensional. The argument leading to Eq.
s9d is essentially a mean-field argument.

C. The average weight of the minimum spanning tree

The crucial observationf10g is that in any graph, the to-
pology of a MST depends only on the ranks of the link
weights. By definition, the weight of the MST is

WMST = o
j=1

L

ws jd1jPMST, s14d

wherews jd is the j th smallest link weight. The average weight
of the MST is

EfWMSTg = o
j=1

L

Efws jd1jPMSTg.

The random variablesws jd and 1jPMST are independent be-
cause the valuews jd of j th smallest link only depends on the
link weight distribution and the number of edgesL while the
appearance 1jPMST of the j th edge in the MST only depends
on the graph’s topology. Hence,

Efws jd1jPMSTg = Efws jdgEf1jPMSTg = Efws jdgPrf j P MSTg

such that the average weight of the MST is

EfWMSTg = o
j=1

L

Efws jdgPrf j P MSTg. s15d

In general for independent link weights with probability
density function fwsxd and distribution function Fwsxd
=Prfwøxg, the density function of thej th order statistic
sRef. f11g, Chap. 3d is

fws jd
sxd =

j f wsxd
Fwsxd

SL

j
DfFwsxdg jf1 − FwsxdgL−j . s16d

The factors L
j
dfFwsxdg jf1−FwsxdgL−j is a binomial distribution

with mean m=FwsxdL and variances2=LFwsxdf1−Fwsxdg
that, by the central limit theory, tends for largeL to a Gauss-
ian 1/ssÎ2pde−s j −md2/2s2

which peaks atj =m. Thus for large
N and fixedj /L, we havef21g xj =Esws jdd.Fw

−1s j /Ld.
For the complete graph, we found before in Eq.s12d that

the link rankedj appears in the MST with probability

Prf j P MSTg = 1 −Sj
2,

where Sj is the fraction of nodes in the giant component
during the construction process of the random graph at the
stage where the number of links precisely equalsj . Since
links are added independently, that stage in fact establishes
the random graphGsN,L= jd. With Eq. s11d and mRG

=2L /N, it follows that

2j

N
= −

lns1 − Sjd
Sj

. s17d

Hence,

EfWMSTg . o
j=1

L

Fw
−1S j

L
Ds1 − Sj

2d.

We now approximate the sum by an integral

EfWMSTg . E
1

L

Fw
−1Su

L
Ds1 − Su

2ddu.

Substituting x=2u/N fwhich is the average degree in
GsN,udg yields for largeN, whereL.N2/2,

FIG. 5. Size of the giant componentsdivided byNd as a function
of the mean degreemMST. Each simulation for different number of
nodesN consists of 1 MST sample.
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EfWMSTg .
N

2
E

2/N

N−1

Fw
−1S x

N
Ds1 − SsN/2dx

2 ddx

.
N

2
E

0

N

Fw
−1S x

N
Df1 − S2sxdgdx.

It is known f22g that if the number of linkssedgesd in the
growth process of the random graph is belowN/2, with high
probability sand ignoring a small onset region just below
N/2d, there is no giant component such thatSsxd=0 for x
P f0,1g. Thus, we arrive at the general formula valid for
largeN,

EfWMSTg .
N

2
E

0

1

Fw
−1S x

N
Ddx+

N

2
E

1

N

Fw
−1S x

N
Df1 − S2sxdgdx.

s18d

The first term is the contribution from the smallestN/2 links
in the graph, which are included in the MST almost surely.
The remaining part comes from the more expensive links in
the graph, which are included with diminishing probability
since 1−S2sxd decreases exponentially for largex as can be
deduced from Eq.s10d. The rapid decrease of 1−S2sxd makes
only relatively small values of the argumentFw

−1sx/Nd con-
tribute to the second integral.

At this point, the specifics of the link weight distribution
needs to be introduced. The Taylor expansion of
sN/2dFw

−1sx/Nd for largeN to first order is

N

2
Fw

−1S x

N
D =

N

2
Fw

−1s0d +
x

2fws0d
+ OS 1

N
D =

x

2fws0d
+ OS 1

N
D

since we require that link weights are positive such that
Fw

−1s0d=0. This expansion is only useful providedfws0d is
neither zero nor infinity. These cases occur, e.g., for polyno-
mial link weights with fwsxd=axa−1 with aÞ1. Fortunately,
for polynomial link weightssN/2dFw

−1sx/Nd=sN1−1/a /2dx1/a.
Formally, this latter expression reduces to the first order Tay-
lor approach fora=1, apart from the constant factor 1/fws0d.
Therefore, we will first computeEfWMSTg for polynomial
link weights and then return to the case in which the Taylor
expansion is useful.

1. Polynomial link weights

The average weight of the MST for polynomial link
weights followsf23g from Eq. s18d as

EfWMSTsadg .
N1−1/a

2 S 1

1/a + 1
+E

1

N

x1/af1 − S2sxdgdxD .

Let y=Ssxd and use Eq.s11d, then x=S−1syd=−lns1−yd /y
anddx=−d/dyflns1−yd /ygdy while y=Ss1d=0 andy=SsNd
=1, such that

I =E
1

N

x1/af1 − S2sxdgdx

=E
0

1 S−
lns1 − yd

y
D1/a

s1 − y2d
d

dy
S−

lns1 − yd
y

Ddy.

After partial integration, we have

I = −
1

1

a
+ 1

+
2

1

a
+ 1
E

0

`

x1/a+1 e−x

s1 − e−xd1/adx.

Finally, we end up with

EfWMSTsadg . N1−1/aS 1

1/a + 1
E

0

`

x1/a+1 e−x

s1 − e−xd1/adxD .

s19d

If a,1, thenEfWMSTsadg→0 for N→`, while for a.1,
EfWMSTsadg→`. In particular, lima→` EfWMSTsadg=N−1.
Only for a=1, EfWMSTs1dg is finite for largeN. More pre-
cisely,

EfWMSTs1dg = zs3d = 1.202, . . . , s20d

where we have usedfRef. f24g, Eq. s23.2.7dg the integral of
the Riemann Zeta function

Gssdzssd =E
0

` us−1

eu − 1
du

convergent for Ressd.1. This particular case fora=1 has
been proved earlier by Friezef13g based on a different
method. Asymptotically, as shown in Ref.f6g, the average
weight of a shortest path tree iszs2d=p2/6, while here the
average weight of the MST iszs3d,zs2d.

2. Generalizations

We now return to the Taylor series valid for link weights
where 0, fws0d,`. The above result fora=1 immediately
yields

EfWMSTg =
zs3d
fws0d

. s21d

This result is for the complete graphKN. A random graph
GpsNd with p,1 and weight densityfwsxd is equivalent to
KN with a fraction 1−p of infinite link weights. Thus the
effective link weight distribution ispfwsxd+s1−pddw,`, and
we can simply replacefws0d by pfws0d in the expressions21d
for the MST weight onKN.

D. The largest link weight in a group

Consider a groupse.g., in multicastingd consisting ofm
members and one source node on the MST. Both the source
and them receiving group members are chosen uniformly
among theN nodes of the MST. For largeN, the m paths
from source to each multicast group member have a same
bottleneck almost surelyf25g if and only if the source joins
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the giant component later than them destinations which hap-
pens with probability 1/sm+1d. We will now compute the
rank of the largest link weight in the tree that spans them
members.

During the growth of the MST as explained in Sec. III B,
at each step links are added and the last link that connects the
m members and the source will be determined. When link
weights are ranked in increasing order, the rankR of that last
link corresponds to theRth order statisticswsRd whose distri-
bution is specified in Eq.s16d. We first determine the rankR
which equals the stepT in the Kruskal growth process for
which T=maxst1,t2, . . . ,tm,tm+1d, wheretj is the time in the
growth process at which thej th multicast member is swal-
lowed by the giant component and wheretm+1 is the time at
which the source joins the giant component. Since allm
nodes and the source are uniformly selected during the
growth process measured in terms ofSP f0,1g, the random
variablestj are iid uniform onf0, 1g and

PrfT ø xg = xm+1

for xP f0,1g. From the relations11d of the average degree
and the fraction of nodes in giant componentS, the normal-
ized rank R* of the largest link weight follows fromR*

=s2/NdR= umRGsSduS=T and the eventhTøxj is equivalent to
hmRGsTdømRGsxdj becausemRGsxd is monotonically increas-
ing in x such that

PrfR* ø yg = fmRG
−1 sydgm+1,

where x=mRG
−1 syd is the inverse function ofy=mRGsxd and

explicitly given in Eq.s10d. The probability density function
fR*syd=sd/dydPrfR* øyg is

fR*syd = sm+ 1d
fmRG

−1 sydgm

mRG8 fmRG
−1 sydg

s22d

and is shown in Fig. 6 form=1, 2, 5, and 10. The mean is
best computed from the tail probability formula

EfR*g =E
0

N−1

s1 − PrfR* ø ygddy=E
0

1

s1 − xm+1ddmRGsxd

= − sm+ 1dE
0

1

xm−1 lns1 − xddx

= sm+ 1do
k=1

`
1

ksk + md
.

After partial fraction decomposition, the average normalized
rank is

EfR*g =
m+ 1

m
o
k=1

m
1

k
s23d

which shows that for largem, EfR*g. ln m. In casem=1, the
rank R=sN/2dR* is the rank of the largest link weight in the
shortest path from the source to the only destination and has
EfR*g=2, thusEfRg=N. For largeN, the probability thatR
,N/2 si.e., R* ,1d is zero asymptotically because the first
N/2 are almost surely not connected. Connectivity occurs
asymptotically when the mean degreemRG exceeds 1. The
probability distribution of the largest weight follows from
Eqs.s16d and s22d using the law of total probability

fwsR* d
sxd =E

0

N

fwsR* dsxuR* = yddPrfR* ø yg

=
N

2

fwsxd
FwsxdE1

N

yS L

sN/2dy
DfFwsxdgsN/2dy

3f1 − FwsxdgL−sN/2dyfR*syddy.

Observe thatwsR* d in contrast withR* does depend on link
probability p of the random graph. For largeN, fws jd

sxd tends

to a Gaussiansas explained in Sec. III Cd resulting in

fwsR* d
sxd .

1

sÎ2p
E

0

N

e−fsN/2dy − mg2/2s2
fR*syddy< fR*fNFwsxdg.

This expression shows that the probability density function
sPDFd of the highest link weight in the multicast group is
asymptotically distributed as the normalized rank with the
rank parametery in Eq. s22d replaced byNFwsxd.

Formula s23d shows that the rank of the largest link
weight in the MSTsm=Nd is aboutEfRmaxg.sN/2dln N. Re-
turning to the determination ofac in Sec. II C, this observa-
tion suggests that the number of relevant equations in Eq.s5d
is L=OsN ln Nd. In fact, if N→`, the claim is very likely
correct which leads to the critical regimeac=OsN−2 ln−2 Nd
in stead ofac=OsN−4d determined in Sec. II C.

E. The degree distribution

Aldous f14g has shown that the probability distribution of
the degreeDMST of nodes in the MST equals

FIG. 6. The PDF of the normalized rankR* for various sizesm
of the multicast group.
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PrfDMST = kg =E
0

1

e−Fssd Fssdk−1

sk − 1d!
ds, s24d

where Fssd=e0
sdtfln t / st−1dg. Remarkably, this expression

for the probability of the degreeDMST is closesbut not iden-
ticald to a Poissonsld distribution conditioned to positive in-
tegerskù1,

PrfDMST = kg .
lk

k!

e−l

1 − e−l , s25d

wherel is chosen such that the mean degree equalsmMST
=EfDMSTg=2. It is straight forward to show thatl is the
positive solution ofe−l=1−l /2, lg1.593624̄ and that

varfDMSTg=2sl−1d. Table I compares the two expressions
s24d and s25d.

During the growth process, we observed that the degree
distribution of the forest is found to be PoissonsxdsmMSTd
below the transitionsmMST,1d. Above the transitionsmMST

.1d, the average degree of the giant component equals the
final value of 2. At the transition the distribution of degree
minus one in the giant component is found to be Poissons1d.
Thus PrfDMST−1=kg=1/sek!d. For larger values ofmMST it
evolves gradually to the asymptotic form atmMST=2. The
degree distribution over all nodesnot in the large component
is Poisson for all 1,mMST,2, with average degree follow-
ing from 2S+s1−Sd msc=mMST:

msc=
mMST − 2S

1 − S
= −

1 − S

S
lns1 − Sd s26d

F. The hop count

The hop count between two arbitrary nodes in the MST
sa→0 regimed has been simulated and is shown in Fig. 7.
The simulation also indicated that per MST, there is a large
variation in the hop count which heavily contrasts with the
almost sure behavior for the hop count in thea=1 regime
f26g. The large variation between samples is indirectly de-
duced from the fact that varfHNg.EfHNg in the inset of
Fig. 7.

The PDFfhsxd of the scaled hop counth=HN/EfHNg ver-
sus the scaled number of hopsx= j /EfHNg is plotted in Fig. 8
as a full line. With the dotted line, we have added the PDF of
the limit random variableW of a Poisson branching process
sBPd with meanmBP. Two exact expressions forfWsxd are

TABLE I. Comparison of the degree distribution in the MST

k Exact Eq.s24d Conditioned Poisson Eq.s25d
1 0.40658 0.40637

2 0.32429 0.32380

3 0.17112 0.17201

4 0.068353 0.068529

5 0.022006 0.021842

6 0.0059347 0.0058013

7 0.0013768 0.0013207

8 0.00028022 0.00026309

9 0.000050790 0.000046586

10 8.2970310−6 7.4240310−6

varfDMSTg 1.1917 2sl−1d.1.1872

FIG. 7. The probability density function of the hop count simulated for various sizes of thea=0 tree. The inset plots the average and
variance of the hop count versus the number of nodesN.
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presented in Ref.f27g and fWsxd is shown in the inset for
various 2ømBPø10. We observe that the PDF of the scaled
hop count forN=50 up toN=6400 lies between those of the
BP corresponding to the Poisson degree distribution with
mean betweenmBP=4 andmBP=6. We have also plotted the
fit of a Maxwellian fhsxd=4/Îps2x/Îpd2exps−s2x/Îpd2d

which was proposed by Braunsteinet al. in f28g purely by
fitting the simulation data.

The PDFfWsxd of the Poisson BP is clearly superior to the
guess of a Maxwellian. The suggestion to compare the scaled
hop countswith mean 1d to the limit random variableW salso
with mean 1d is explained by Aldousf14g. However, we still

FIG. 9. Trace routes from CAIDA, May 2004. Each of the 21 sources has several 104 destinations. The local internal hops that follow a
single path towards the Internet have been subtracted. In the inset,a is computed asa=EfHg /varfHg.

FIG. 8. The scaled hop counth=HN/EfHNg versus the scaled number of hopsx= j /EfHNg for N=2532k with k=0, . . . ,8. The arrows
show how this scaled hop count varies with increasingN. The inset shows the PDFfWsxd of the limit random variable of a Poisson branching
process.
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need to associate the meanmBP of the Poisson BP to the
number of nodes in the MST which turns out to be a rather
difficult theoretical problem.

IV. DISCUSSION AND CONCLUSIONS

Properties of both thea=1-treesURTd and thea→0-tree
sMSTd have been characterized. We have shown that both
types of trees are quite different. Based on trace-route hop
count measurements as shown in Fig. 9, the regime of inter-
est for the Internet seemf29g to lie between 0.5,a,1.5.

From a topological view, the Internet trees indeed seem to
consist of a critical bearer treescorresponding to thea→0
treed overgrown with URT-like small treessinfluence ofa
=1d. Based on Eq.s2d, the latter causes that the hop count in
the Internet still scales logarithmically inN, rather than poly-
nomially as for thea→0 treesMSTd. This effect is similar to
the small world graphs: by adding a few links in a “large
average hop count graph,” the hop count may decrease dra-
matically.

Our theoretical study inspires some new research. If In-
ternet trees can be modeled viaa trees, insight about an
effectivelink weight structure in the Internet may be gained.
That effective link weight structures arises as a combination
of intra-domain sshortest pathd routing with interdomain
snot-shortest pathd routing. In spite of the relatively low
number of sources, Fig. 9 seems to suggest that the effective
link weight is close to a regular distribution. Although con-
troversial to adopt link weights, from a modeling perspec-
tive, simpler tools as shortest paths, no violation of the tri-
angular inequality, etc., can be applied to deduce first order
estimates. In a next stage, the modeling of multicast trees in
terms ofa trees may be interesting since little about Internet
multicast trees is known.

In networks where the link weights can be varied, con-
trolled or determined independent of the topology, we have
shown that if the extreme value index of the link weight
distribution is larger thanac, transport in a network is spread
out over more paths, while if the extreme value index is
below ac, transports starts concentrating on very few “back-
bone links.” Hence, by tuninga in a same underlying topol-
ogy, we may create two very different types of transport in
the network. The analogy with a normal conductionsabove a
critical temperatureTcd and a superconducting transportsbe-
low Tcd of an electrical current in some solidssnetwork of
atomsd comes to mind.

From a control point of view in networks, operators may
wish to steer flows by tuning link weights. Our study indi-
cates that large variations in the link weightssa smalld will
result in overall properties close to thea→0 tree sMSTd:
many flows will traverse over a same set of links and the
overall hop count will increase. From a robustness point of
view, choosinga around 1 will lead to the use of more paths
and, hence, a more balanced overall network load. A next
step in understanding the influence of the link weight struc-
ture is to find out what the maximum amountDw in link
weight change can be in order not to modify the set of short-
est paths in a network. This insight is important to estimate
the topology update overhead in networksse.g., in road traf-
fic where the link weights may be associated with the traffic
loadd. An accurate view of the updated topology is crucial for
route planner in cars.

ACKNOWLEDGMENTS

We would like to thank Serena Magdalena for providing
Figs. 1–3 and Xiaoming Zhou for Fig. 9.

f1g F. A. Kuipers and P. Van Mieghem, IEEE/ACM Trans. Netw.
sto be publishedd.

f2g R. van der Hofstad, G. Hooghiemstra, and P. Van Mieghem,
Random Struct. Algorithms26, 598 s2005d.

f3g P. Van Mieghem, G. Hooghiemstra, and R. van der Hofstad,
Delft University of Technology Report No. 2000125, 2000.

f4g B. Bollobas,Random Graphs, 2nd ed.sCambridge University
Press, Cambridge, 2001d.

f5g R. van der Hofstad, G. Hooghiemstra, and P. Van Mieghem,
Prob. Eng. Inf. Sci .s PEISd 15, 225 s2001d.

f6g R. van der Hofstad, G. Hooghiemstra, and P. Van Mieghem,
Combinatorics, Probab. Comput.14, 795 s2005d.

f7g P. Van Mieghem, G. Hooghiemstra, and R. van der Hofstad,
IEEE/ACM Trans. Netw.9, 719 s2001d.

f8g P. Van Mieghem, Int. J. Commun. Syst.17, 269 s2004d.
f9g L. A. Braunstein, S. V. Buldyrev, R. Cohen, S. Havlin, and H.

E. Stanley, Phys. Rev. Lett.91, 168701s2003d.
f10g R. Dobrin and P. M. Duxbury, Phys. Rev. Lett.86, 5076

s2001d.
f11g P. Van Mieghem,Performance Analysis of Communications

Systems and NetworkssCambridge University Press, Cam-
bridge, 2005d.

f12g In Cisco’s OSPF implementation, it is suggested to usewsi
→ jd=108/Bsi → jd, whereBsi → jd denotes the bandwidthsin
bit/sd of the link between nodesi and j .

f13g A. M. Frieze, Discrete Appl. Math.10, 47 s1985d.
f14g D. Aldous, Random Struct. Algorithms1, 383 s1990d.
f15g S. Janson, Random Struct. Algorithms7, 337 s1995d.
f16g M. D. Penrose, Ann. Prob.24, 1903s1996d.
f17g A.-L. Barabasi, Phys. Rev. Lett.76, 3750s1996d.
f18g T. H. Cormen, C. E. Leiserson, and R. L. Rivest,An Introduc-

tion to AlgorithmssMIT Press, Boston, 1991d.
f19g L. Pietronero and W. Schneider, Physica A170, 81 s1990d.
f20g A. I. Markushevich,Theory of Functions of a Complex Vari-

able sChelsea Publishing Company, New York, 1985d, Vols.
I–III.

f21g In general holds thatwskd=Fw
−1sUskdd and

Efwskdg = EfFw
−1sUskddg Þ Fw

−1sEfUskdgd.
but, for a large number of order statisticsL, the central limit
theorem leads to

Efwskdg . Fw
−1S j

L
D. Fw

−1sEfUskdgd

because for a uniform random variableU on f0,1g the average

P. VAN MIEGHEM AND S. VAN LANGEN PHYSICAL REVIEW E 71, 056113s2005d

056113-12



weight of thej th smallest link is exactly

Efwsidg =
j

L + 1
.

j

L
.

f22g S. Janson, D. E. Knuth, T. Luczak, and B. Pittel, Random
Struct. Algorithms4, 233 s1993d.

f23g Since the average of thekth smallest link weight can be com-
puted from Eq.s16d as

Efwskdg =
L!

GSL + 1 +
1

a
D

GSk +
1

a
D

Gskd

the exact formulas15d reduces to

EfWMSTsadg =
L!

GSL + 1 +
1

a
Doj=1

L GS j +
1

a
D

Gs jd
s1 − Sj

2d.

Analogously to the above manipulations, after convertion to an

integral, substitutingx=2u/N and using Eq.s6.1.47d of Ref.
f24g, for large z, that Gsz+1/ad /Gszd=szd1/af1+Os1/zdg, we
arrive at the same formula.

f24g M. Abramowitz and I. A. Stegun,Handbook of Mathematical
FunctionssDover Publications, New York, 1968d.

f25g The probability thatm nodes become connected in a cluster
different from the giant component tends to zero for largeN.

f26g P. Van Mieghem, G. Hooghiemstra, and R. W. van der Hofstad,
Proceeding of Passive and Active Measurement (PAM 2001),
April 23–24, RIPE NCC, Amsterdams2001d.

f27g P. Van Mieghemsunpublishedd.
f28g L. A. Braunstein, S. V. Buldyrev, S. Sreenivasan, R. Cohen, S.

Havlin, and H. E. Stanley, The Optimal Path in an Erdos-
Renyi Random Graph,Proceedings of the 23rd LANL-CALS
Conference on Complex NetworkssSpringer Verlag, Berlin
2004d.

f29g NLANR traces sAug. 2001d with 112 sources giveEfag
=1.34, while RIPE tracessFeb. 2004d with about 70 sources
give Efag=0.7.

INFLUENCE OF THE LINK WEIGHT STRUCTURE ON… PHYSICAL REVIEW E 71, 056113s2005d

056113-13


