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Abstract

The minimal weight of the shortest path tree in a complete graph with independent and expo-
nential (mean 1) random link weights, is shown to converge to a Gaussian distribution. We prove
a conditional central limit theorem and show that the condition holds with probability converging
to 1.

1 Introduction

Consider the complete graph KN+1, with N + 1 nodes and 1
2N(N + 1) links. To each link (or edge)

we independently assign an exponentially distributed weight with mean 1. The shortest path between

two nodes is that path whose sum of its links weights is minimal. (Each of these shortest paths is a.s.

unique.) The shortest path tree (SPT) is the union of the N shortest paths from a root (e.g. node

1) to all other nodes in the graph. In this paper we consider the total weight WN of the SPT rooted

at node 1 to all other nodes in the complete graph. In [7, 9], we have rephrased the shortest path

problem between two arbitrary nodes in the complete graph with exponential link weights to a Markov

discovery process which starts the path searching process at the source and which is a continuous time

Markov chain with N + 1 states. Each state n represents the n already discovered nodes (including

the source node). If at some stage in the Markov discovery process n nodes are discovered, then the

next node is reached with rate λn = n (N + 1− n), which is the transition rate in the continuous-time

Markov chain. Since the discovery of nodes at each stage only increases n, the Markov discovery

process is a pure birth process with birth rate n (N + 1− n). We call τn the inter-attachment time

between the inclusion of the nth and (n+1)st node to the SPT for n = 1, . . . , N. The inter-attachment

time τn is exponentially distributed with parameter λn as follows from the theory of Markov processes.

By the memoryless property of the exponential distribution, the new node is added uniformly to an

already discovered node. Hence, the resulting SPT to all nodes is exactly a uniform recursive tree

(URT). A URT of size N + 1 is a random tree rooted at some source node and where at each stage a

new node is attached uniformly to one of the existing nodes until the total number of nodes is equal

to N + 1.
∗rhofstad@win.tue.nl, Department of Mathematics and Computer Science, Eindhoven University of Technology,

P. O. Box 513, 5600 MB Eindhoven, The Netherlands.
†G.Hooghiemstra@ewi.tudelft.nl and P.VanMieghem@ewi.tudelft.nl, Electrical Engineering, Mathematics and

Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands.

1



The average of the weight WN of the SPT equals

E [WN ] =
NX
k=1

1

k2
, (1)

and the variance is

var [WN ] =
4

(N + 1)

NX
k=1

1

k3
+ 4

NX
j=1

1

j3

jX
k=1

1

k
− 5

NX
j=1

1

j4
. (2)

The result for the mean (1) has been found first in [8], but it is rederived in Section 2.1 because the

method is considerably simpler. The derivation for the variance (2) is in Section 2.2 while many ap-

pearing sums are computed in the Appendix. The asymptotic form of the average weight is immediate

from (1) as

E [WN ] = ζ (2) +O

µ
1

N

¶
, (3)

while the corresponding result for the variance, derived in Section 2.2, is

var [WN ] =
4ζ (3)

N
+ o

µ
1

N

¶
. (4)

The third and main result in this paper is that we show that the scaled weight of the SPT tends

to a Gaussian. In particular, √
N (WN − ζ (2))

d→ N
¡
0, σ2

¢
,

where σ2 = σ2SPT = 4ζ (3) ' 4.80823. A related result for the minimum spanning tree (MST) is worth

mentioning. The average weight of the minimum spanning tree WMST in the complete graph with

exponential with mean 1 (or uniform on [0, 1]) link weights has been computed earlier by Frieze [3].

For large N , Frieze showed that

E [WMST]→ ζ (3) .

Janson [5] extended Frieze’s result by proving that the scaled weight of the MST tends to a Gaussian,

√
N (WMST − ζ (3))

d→ N
¡
0, σ2MST

¢
,

where

σ2MST = 2ζ (4)− 2
∞X
i=0

∞X
j=1

∞X
k=1

(i+ k − 1)!kk(i+ j)i−2j

i!k!(i+ j + k)i+k+2
' 1.6857.

The triple sum was exactly computed by Wästlund [10] resulting in

σ2MST = 6ζ (4)− 4ζ (3) .

2 The weight of the shortest path tree

From the Markov discovery process briefly explained in Section 1, the discovery time to the kth

discovered node from the root equals

vk =
kX

n=1

τn, (5)
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where the inter-attachment times τ1, τ2, · · · , τk are independent, exponentially distributed random
variables with parameter λn = n(N + 1 − n), 1 ≤ n ≤ k. An arbitrary uniform recursive tree

consisting of N + 1 nodes and with the root labeled by zero can be represented as

(0←− 1) (N2 ←− 2) . . . (NN ←− N) (6)

where (Nj ←− j) means that the jth discovered node is attached to node Nj ∈ {0, . . . , j − 1}. Hence,
Nj is the predecessor of j and this relation is indicated by ←−. The weight WN of an arbitrary SPT

from the root 0 to all N other nodes is with (5) and v0 = 0 and N1 = 0,

WN =
NX
j=1

(vj − vNj ) =
NX
j=1

jX
n=Nj+1

τn.

In the URT, the integer Nj , 1 ≤ j ≤ N, are independent and uniformly distributed over the interval

{0, . . . , j− 1}. It is more convenient to use a discrete uniform random variable on {1, . . . , j} which we
define as Aj = Nj + 1. We rewrite

WN =
NX
j=1

jX
n=Aj

τn =
NX
j=1

jX
n=1

1{Aj≤n}τn =
NX
n=1

τn

⎛⎝ NX
j=n

1{Aj≤n}

⎞⎠ .

The set {Aj}1≤j≤N are independent random variables with P [Aj = k] = 1
j for k ∈ {1, 2, . . . , j}. In

addition, we define for n ∈ {1, . . . ,N} the random variables

Bn =
NX
j=n

1{Aj≤n}, (7)

to obtain

WN =
NX
n=1

Bnτn. (8)

The N random variables B1, B2, . . . , BN are dependent. The mean of the random variable Bn follows

from (7) as

E [Bn] =
NX
j=n

E
h
1{Aj≤n}

i
=

NX
j=n

P [Aj ≤ n] =
NX
j=n

n

j
. (9)

The variance var [Bn] and covariances cov [Bn, Bm] are given in Lemma 1 below.

2.1 The average weight of the SPT

It is immediate from (8) and the independence of the A1, A2, . . . , AN from the inter-attachment times

τ1, τ2, . . . , τN that

E [WN ] =
NX
n=1

E [Bn]E [τn] =
NX
n=1

NX
j=n

n

j

1

n (N + 1− n)
=

NX
n=1

1

(N + 1− n)

NX
j=n

1

j
=

NX
j=1

1

j

NX
k=N+1−j

1

k
,

which is, by the equality (31) below, equal to (1).
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2.2 The variance of the weight of the SPT

To compute the variance of WN , we use the formula

var [WN ] = var [E[WN |B1, . . . , BN ]] + E[var [WN |B1, . . . , BN ]]. (10)

Since for an exponential random variable τn with parameter λn = n (N + 1− n), the expectation

equals 1/λn and the variance 1/λ2n, we have

E[WN |B1, . . . , BN ] = E

"
NX
n=1

Bnτn|B1, . . . , BN

#
=

NX
n=1

λ−1n Bn, (11)

var [WN |B1, . . . , BN ] = var

"
NX
n=1

Bnτn|B1, . . . , BN

#
=

NX
n=1

λ−2n B2n. (12)

Combining (10), (11) and (12),

var [WN ] = var

"
NX
n=1

λ−1n Bn

#
+

NX
n=1

λ−2n E[B2n]. (13)

To proceed, we need expressions for the covariance of Bn and Bm, which are computed in the following

lemma:

Lemma 1 For every n,m ≥ 1,

(i)

var [Bn] =
NX
j=n

µ
n

j
− n2

j2

¶
, (14)

(ii)

cov [Bn, Bm] =
NX

j=m

n

j

µ
1− m

j

¶
, n ≤ m. (15)

Proof. The proof of (i) follows from that of (ii) with n = m.

(ii) The bilinearity of the covariance yields, for n ≤ m,

cov [Bn, Bm] = cov

⎡⎣ NX
i=n

1{Ai≤n},
NX

j=m

1{Aj≤m}

⎤⎦ = NX
i=n

NX
j=m

cov
h
1{Ai≤n},1{Aj≤m}

i
.

Since Ai and Aj are independent for i 6= j, we have that cov
h
1{Ai≤n},1{Aj≤m}

i
= 0, for i 6= j, such

that
NX
i=n

NX
j=m

cov
h
1{Ai≤n},1{Aj≤m}

i
=

NX
j=m

cov
h
1{Aj≤n},1{Aj≤m}

i
.

With cov
h
1{Aj≤n},1{Aj≤m}

i
= E

h
1{Aj≤n}1{Aj≤m}

i
− P [Aj ≤ n]P [Aj ≤ m] and 1{Aj≤n}1{Aj≤m} =

1{Aj≤min(n,m)} = 1{Aj≤n} for n ≤ m, we obtain

NX
j=m

cov
h
1{Aj≤n},1{Aj≤m}

i
=

NX
j=m

n

j

µ
1− m

j

¶
. ¤
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Applying Lemma 1 to the right side of (13) gives

var [WN ] = var

"
NX
n=1

λ−1n Bn

#
+

NX
n=1

λ−2n E[B2n] = 2
X
n≤m

λ−1n λ−1m cov [Bn, Bm] +
NX
n=1

λ−2n (E[Bn])
2

= 2
X
n≤m

λ−1n λ−1m

NX
j=m

n

j

µ
1− m

j

¶
+

NX
n=1

λ−2n

⎛⎝ NX
j=n

n

j

⎞⎠2 = T2(N) + T1(N).

where the sum T1(N) is defined as

T1 (N) =
NX
n=1

1

(N + 1− n)2

⎛⎝ NX
j=n

1

j

⎞⎠2 = 2 NX
n=1

1

n3

nX
k=1

1

k
−
Ã

NX
k=1

1

k2

!2
, (16)

and the last equality is proved in the Appendix (see (46) below), while

T2 (N) = 2
NX
n=1

NX
m=n

1

(N + 1− n)m (N + 1−m)

NX
j=m

1

j

µ
1− m

j

¶
(17)

=
4

N + 1

NX
k=1

1

k3
− 5

NX
k=1

1

k4
+ 2

NX
n=1

1

n3

nX
k=1

1

k
+

Ã
NX
k=1

1

k2

!2
,

where the last equality is proved in the Appendix (see (44) below). Summing T1 (N) and T2 (N) gives

the explicit form (2) of the variance for WN .

We next investigate the asymtotics of the variance of WN for large N . We write the sum of the

last two terms in (2) by

Q(N) = 4
NX
j=1

1

j3

jX
k=1

1

k
− 5

NX
j=1

1

j4
. (18)

Then, for large N ,

Q(N)−Q(N − 1) = 4

N3

NX
k=1

1

k
− 5

N4
= O

µ
logN

N3

¶
,

and, by summation, Q(N) = Q + O
³
logN
N2

´
, where the limit Q = limN→∞Q (N) exists, by (18). It

follows from [1, Corollary 4, main theorem] that

Q = 4
∞X
j=1

1

j3

jX
k=1

1

k
− 5

∞X
j=1

1

j4
= 0, (19)

so that

Q(N) = O

µ
logN

N2

¶
.

Hence, asymptotically, we arrive at (4).

3 Central limit theorem for WN

In this section we prove a central limit theorem for WN . We use the symbol
d→ to denote convergence

in distribution and the symbol P→ for convergence in probability. We denote by σ(WN), the standard
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deviation of WN , so σ2(WN) = var [WN ]. We denote by N (0, 1) a random variable with standard

normal distribution. The main result proved in this section is the following central limit theorem for

WN :

Theorem 2 As N →∞,
WN − E[WN ]

σ(WN)
d→ N (0, 1).

We start with an outline of the proof. We wish to prove that WN is asymptotically normal, in the

sense that
√
N(WN − E[WN ]) has an asymptotic normal distribution. We first define

s2N =
NX
j=1

B2j
j2(N + 1− j)2

. (20)

We note that s2N is a random variable, and we sometimes make this explicit by writing s2N(ω), where

ω is an element of the probability space.

We split WN = XN + YN , where

XN =
NX
j=1

³
τj −

1

j(N + 1− j)

´
Bj , and YN =

NX
j=1

Bj

j(N + 1− j)
. (21)

Our strategy is to prove the following steps:

1. Define an event AN such that: (a) AN is measurable with respect to the σ-algebra generated

by {Aj}Nj=1, (b) P(Ac
N) ≤ N−δ, and (c) Uniformly for ω ∈ AN , we have Ns2N(ω) − σ21,N = o(1),

where

σ21,N = N
NX
j=1

(E[Bj ])
2

j2(N + 1− j)2
= NT1 (N) .

Consecutively, we show that σ21 = limN→∞ σ21,N exists.

2. Prove the central limit theorem for
√
NXN with variance Ns2N , conditionally on {Aj}Nj=1, when

{Aj}Nj=1 is such that AN holds. More precisely, we will show that uniformly on AN ,

EA[e
it
√
NXN ] = e−t

2Ns2N/2 + o(1),

where EA is the conditional expectation given {Aj}Nj=1.

3. Prove that
√
N(YN−E[YN ]) converges in distribution to a normal random variable with variance

σ22 = limN→∞NT2 (N).

Together, these steps prove Theorem 2. Indeed, we compute, using that AN is measurable with

respect to the sigma-algebra generated by {Aj}Nj=1,

φ(t) = E[eit
√
NWN ] = E[eit

√
NWN1AN ] +O(P(Ac

N)) = E
h
EA[e

it
√
NWN ]1AN

i
+O(N−δ).

We split WN = XN + YN , and use that YN is measurable with respect to {Aj}Nj=1 to arrive at

φ(t) = E
h
eit
√
NYNEA[e

it
√
NXN ]1AN

i
+O(N−δ).
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According to Step 2, uniformly on AN ,

EA[e
it
√
NXN ] = e−t

2Ns2N/2 + o(1),

and, according to Step 1, uniformly on AN ,

EA[e
it
√
NXN ] = e−t

2σ21,N/2 + o(1).

Therefore, using that E[WN ] = E[YN ],

E[eit
√
N(WN−E[WN ])] = E[eit

√
N(WN−E[WN ])1AN

] + o(1) = e−t
2σ21,N/2E[eit

√
N(YN−E[YN ])1AN

] + o(1),

again by Step 1. Now, by Step 3, we have that

E[eit
√
N(YN−E[YN ])1AN

] = E[eit
√
N(YN−E[YN ])] + o(1) = e−t

2σ22/2 + o(1),

so that

E[eit
√
N(WN−E[WN ])] = e−t

2σ2/2 + o(1),

where σ2 = σ21 + σ22 , and σ21 = limN→∞ σ21,N .

We now turn to the details of the proof. We will prove Steps 1-3 in Sections 3.1—3.3, respectively.

3.1 Step 1: The good event and convergence in probability of Ns2N

Fix a ∈ (0, 1) and an integer n0, and define

AN = BN ∩ CN ,

where

BN =
N−Na\
j=Na

{|Bj − E[Bj ]| ≤ �NE[Bj ]}, (22)

and

CN =
Na\
j=1

{Bj ≤ max(2n0, j) logN}, (23)

with

�N = N−a/3.

Later we will see that in fact we need n0 large and a > 3
4 . On the event BN , with all random variables

Bj , with Na ≤ j ≤ N − Na, are close to their respective mean E[Bj ]; on the event CN , we have a
logarithmic bound on the random variables Bj , with 1 ≤ j ≤ Na.

We will show two lemmas. The first shows that AN occurs with high probability, while the second

proves that Ns2N is close to a constant on AN . Together the lemmas imply the claims in step 1.

Lemma 3 Fix a ∈ (12 , 1) and n0 sufficiently large. Then, for N sufficiently large,

P(Ac
N) ≤ N−(2−a),

so that we can take δ = 2− a > 1 in Step 1.
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Proof. We use Boole’s inequality to obtain,

P(Ac
N) ≤

NaX
j=1

P(Bj > max(2n0, j) logN) +
N−NaX
j=Na

P(|Bj − E[Bj ]| ≥ �NE[Bj ]).

Note that Bj is the sum of independent indicators, and, therefore, by the estimate of Janson [6] and

with 0 < � < 1,

P(|Bj − E[Bj ]| ≥ �E[Bj ]) ≤ 2e−
3
8
�2E[Bj ],

where E[Bj ] is given in (9) which we bound as

j log

µ
N

j

¶
= j

Z N

j

1

x
dx ≤ E[Bj ] ≤ j

Z N

j−1

1

x
dx = j log

µ
N

j − 1

¶
.

Therefore, we have that

P(|Bj − E[Bj ]| ≥ �E[Bj ]) ≤ 2e−
3
8
�2j log N

j ,

which is o(N−2) for all n0 ≤ j ≤ Na and n0 sufficiently large. On the other hand, for j ≤ n0,

P(Bj ≥ 2n0 logN) ≤ P(|Bj − E[Bj ]| ≥ n0E[Bj ]) ≤ N−2,

again for n0 sufficiently large. Hence,

NaX
j=1

P(Bj > max(2n0, j) logN) ≤ Na ·N−2 = N−2+a, (24)

for n0 sufficiently large.

We complete the argument as follows. For Na ≤ j ≤ N −Na, we have that

P(|Bj − E[Bj ]| ≥ �E[Bj ]) ≤ 2e−
3
8
�2j log N

j ≤ 2e− 3
16
�2Na

, (25)

since, uniformly for all j such thatNa ≤ j ≤ N−Na, we have j log N
j ≥

1
2N

a. Indeed, this follows since

fN(j) = j log N
j is first increasing and then decreasing. Therefore, uniformly for N

a ≤ j ≤ N −Na,

fN(j) ≥ min
¡
fN(N

a), fN(N −Na)
¢
. (26)

We note that, for N sufficiently large and a ∈ (12 , 1) fixed,

fN(N
a) = (1− a)Na logN ≥ 1

2
Na,

and, using that log (1− x) ≤ −x, 0 < x < 1,

fN(N −Na) ≥ −(N −Na) log (1−Na−1) ≥ (N −Na)Na−1 ≥ 1
2
Na.

For �N = N−a/3, we can use (25), to obtain, again for N sufficiently large,

N−NaX
j=Na

P(|Bj − E[Bj ]| ≥ �NE[Bj ]) ≤ 2Ne−
3
16
N

a
3 = o(N−2+a). (27)

Combining the bounds (24) and (27) we obtain the statement in the lemma. ¤

Recall that Ns2N = N
PN

j=1

B2j
j2(N+1−j)2 . We next investigate Ns2N on the event AN :
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Lemma 4 For N →∞, and uniformly on the event AN ,

Ns2N(ω)−N
NX
j=1

(E[Bj ])
2

j2(N + 1− j)2
= o(1).

Proof. From (7), it follows that Bj ≤ N + 1− j. For N sufficiently large,

N
NX

j=N−Na

B2j
j2(N + 1− j)2

≤ N
NX

j=N−Na

1

j2
≤ 2Na

N −Na
= O(Na−1),

for any a < 1. Therefore, we have that

Ns2N(ω) = N
N−NaX
j=1

B2j
j2(N + 1− j)2

+ o(1).

On the event CN , for N sufficiently large,

N
NaX
j=1

B2j
j2(N + 1− j)2

≤ 2N
NaX
j=1

(max(2n0, j))
2(logN)2

j2N2
≤ O

¡
N−1+a(logN)2

¢
= o(1),

so that, on CN ,

Ns2N(ω) = N
N−NaX
j=Na

B2j
j2(N + 1− j)2

+ o(1).

On BN , and for Na ≤ j ≤ N −Na, we can sandwich (1− �N)
2(E[Bj ])

2 ≤ B2j ≤ (1 + �N)
2(E[Bj ])

2, so

with probability at least 1−O(N−(2−a)), we find,

Ns2N(ω) = (1 +O(�N))
2N

N−NaX
j=Na

(E[Bj ])
2

j2(N + 1− j)2
+ o(1).

Similar estimates as above yield that

N
NaX
j=1

E[Bj ]
2

j2(N + 1− j)2
= o(1), N

NX
j=N−Na

E[Bj ]
2

j2(N + 1− j)2
= o(1).

This completes the proof of the lemma. ¤

The argument of convergence in probability of Ns2N(ω) is complete when we prove that

N
NX
j=1

(E[Bj ])
2

j2(N + 1− j)2
→ σ21.

For this, we note that

N
NX
j=1

(E[Bj ])
2

j2(N + 1− j)2
= NT1 (N) ,

and from (47), we find that σ21 = 2ζ (2).
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3.2 Step 2: Conditional central limit theorem for XN

In this section, we compute EA[e
it
√
NXN ], where {Aj}Nj=1 is such that AN holds. For this, we note

that, for any random variable X with finite third moment, we have that

φX(t) = E[eitX ] = eitμ−t
2σ2/2+O(|t|3m3), (28)

where μ = E[X], σ2 = var(X) and m3 = E[|X|3]. The independence of the τj , conditionally on

{Aj}Nj=1, gives that

EA[e
it
√
NXN ] =

NY
j=1

EA[e
it
√
N
¡
τj− 1

j(N+1−j)

¢
Bj ].

By (28), and since B1, . . . , BN are measurable with respect to the σ−algebra spanned by the random
variables A1, A2, . . . , AN , we obtain that

EA[e
it
√
N
¡
τj− 1

j(N+1−j)

¢
Bj ] = exp

h
− t2N

B2j
2j2(N + 1− j)2

+O
³
|t|3N3/2

B3j
j3(N + 1− j)3

´i
.

Therefore,

EA[e
it
√
NXN ] = e−t

2Ns2N/2eO(|t|
3vN ),

where

vN = N3/2
NX
j=1

B3j
j3(N + 1− j)3

.

We finally show that vN = o(1) on AN . First, we note that, since Bj ≤ N + 1− j and a < 1,

N3/2
NX

j=N−Na

B3j
j3(N + 1− j)3

≤ N3/2
NX

j=N−Na

1

j3
≤ N

3
2
−3+a ≤ N−1

2 .

When j ≤ N − Na, we can use the bounds provided by AN . We start with the contribution due to

j ≤ Na, for which we can bound on CN , for sufficiently large N , and some constant C depending on

n0 and a,

N3/2
NaX
j=1

B3j
j3(N + 1− j)3

≤ N3/2
NaX
j=1

(max(2n0, j))
3(logN)3

j3(N + 1− j)3
≤ C(logN)3N

3
2
−3+a ≤ N− 1

2 .

Finally, for Na ≤ j ≤ N −Na, we obtain on BN , using E[Bj ] ≤ j logN ,

N3/2
N−NaX
j=Na

B3j
j3(N + 1− j)3

≤ (1 + �N)
3N3/2

N−NaX
j=Na

(E[Bj ])
3

j3(N + 1− j)3

≤ (1 + �N)
3N3/2

N−NaX
j=Na

(logN)3

(N + 1− j)3

≤ (1 + �N)
3(logN)3N3/2N−2a ≤ N−η,

for any η < 2a − 3
2 , and we note that η > 0 when a > 3

4 . This completes the proof that vN ≤ N−η

when a > 3
4 , and that, for {Aj}Nj=1 such that AN holds,

EA[e
it
√
NXN ] = e−t

2Ns2N/2eO(N
−η) = e−t

2Ns2N/2 + o(1).

10



3.3 Step 3: The central limit theorem for YN

We again use convergence of characteristic functions to that of a normal random variable with mean

0. We rewrite

√
N
¡
YN − E[YN ]

¢
=
√
N

NX
j=1

1

j(N + 1− j)

NX
k=j

¡
1{Ak≤j} −

j

k

¢
=

NX
k=1

(Yk,N − E[Yk,N ]),

where

Yk,N =
√
N

kX
j=1

1{Ak≤j}
j(N + 1− j)

. (29)

The summands Y1,N , . . . , YN,N are independent. We wish to show that
√
N(YN −E[YN ]) is asymptoti-

cally normal with asymptotic variance Nvar(YN). From the independence of the summands,

E[eit
√
N(YN−E[YN ])] =

NY
k=1

E[eit(Yk,N−E[Yk,N ])].

Then, we note that, for N sufficiently large and using that 1
j(N+1−j) =

1
N+1(

1
j +

1
N+1−j ),

|Yk,N | ≤
√
N

kX
j=1

1

j(N + 1− j)
≤
√
N

NX
j=1

1

j(N + 1− j)
≤ 3 logN√

N
. (30)

Therefore, we have that, for N sufficiently large and t > 0,

E[eit(Yk,N−E[Yk,N ])] = exp
©
− (t2/2)var(Yk,N) +O(|t|3mk,N)

ª
,

where mk,N = E[|Yk,N − EYk,N |3] denotes the absolute third central moment. By (30), we have that
|Yk,N − EYk,N | ≤ 3 logN√

N
, so that

mk,N ≤
3 logN√

N
var(Yk,N).

Hence

E[eit
√
N(YN−E[YN ])] =

NY
k=1

E[eit(Yk,N−E[Yk,N ])] =
NY
k=1

e(−t
2var(Yk,N )/2+O(|t|3mk,N )

= e−t
2σ22,N/2eO(|t|

3σ22,NN−1/2 logN).

This completes the proof because

σ22,N =
NX
k=1

var(Yk,N) = Nvar(YN) = Nvar

⎛⎝ NX
j=1

λ−1j Bj

⎞⎠ = NT2(N)→ σ2 = 4ζ(3)− 2ζ(2),

as shown by (45) in the appendix.

Appendix
In Section A we prove a couple of identities formulated as lemmas. Lemma 5 to Lemma 10 are all

proven in an identical way by taking differences. We therefore leave out some of the details. We

will denote the partial sums in these identities by C(N),D(N), . . ., instead of CN ,DN , . . ., in order

to distinguish them from the standard notation for random variables. In Section B, we apply these

identities to obtain asymptotic expressions for the variance of XN and YN .
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A Identities

Lemma 5 For all N ≥ 1,

C(N) =
NX
j=1

1

j

NX
k=N+1−j

1

k
=

NX
k=1

1

k2
. (31)

The identity (31) was proved in [8] by induction. Earlier Coppersmith and Sorkin [2] have proved

(31) also by induction. We give a new and simpler proof.

Proof: Clearly, C(1) = 1 and

C(N)−C(N − 1) = 1

N

NX
k=1

1

k
+

N−1X
j=1

1

j

⎛⎝ NX
k=N+1−j

1

k
−

N−1X
k=N−j

1

k

⎞⎠
=
1

N

NX
k=1

1

k
+

N−1X
j=1

1

j

µ
1

N
− 1

N − j

¶
=
1

N

NX
k=1

1

k
−

N−1X
j=1

1

N(N − j)
=

1

N2
.

Summing both sides from N = 2 to N =M , using C(1) = 1 and relabeling M → N then leads to the

right hand side in (31). ¤
A related sum which we will need is

D(N) =
NX
j=1

1

j

jX
k=1

1

k
=
1

2

Ã
NX
k=1

1

k

!2
+
1

2

NX
k=1

1

k2
. (32)

Relation (32) is straightforward by symmetry.

Lemma 6 For all N ≥ 1,

F (N) =
NX
k=1

1

k

NX
j=N+1−k

1

j2
=

NX
j=1

1

j2

NX
k=N+1−j

1

k
= 2

NX
k=1

1

k3
−

NX
k=1

1

k2

kX
j=1

1

j
. (33)

Proof: The first equality follows after reversion of the summations. Parallel to the proof of Lemma
5, the second equality is derived as

F (N)− F (N − 1) = 1

N2

NX
k=1

1

k
+

N−1X
j=1

1

j2

⎛⎝ NX
k=N+1−j

1

k
−

N−1X
k=N−j

1

k

⎞⎠
=

1

N2

NX
k=1

1

k
−

N−1X
j=1

1

jN(N − j)
=

1

N2

NX
k=1

1

k
− 1

N

N−1X
j=1

1

j(N − j)
.

Writing 1
N2

PN
k=1

1
k =

1
N2

PN−1
k=1

1
k +

1
N3 , and using 1

j(N−j) =
1
N (

1
j +

1
N−j ) on the second summand, we

find that

F (N)− F (N − 1) = 1

N3
− 1

N2

N−1X
j=1

1

j
.

As in the proof of Lemma 5 this leads to the quoted result by iteration from F (1) = 1. ¤
The next lemma states a somewhat more involved identity:
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Lemma 7 For all N ≥ 1,

G(N) =
NX
k=1

1

k

Ã
NX

m=N+1−k

1

m

!2
=

NX
k=1

1

k2

kX
m=1

1

m
. (34)

Proof:

G(N)−G(N − 1) = 1

N

Ã
NX

m=1

1

m

!2
+

N−1X
k=1

1

k

Ã
N−1X

m=N+1−k

1

m
+
1

N

!2
−

N−1X
k=1

1

k

Ã
N−1X

m=N+1−k

1

m
+

1

N − k

!2

=
1

N

Ã
NX

m=1

1

m

!2
+

N−1X
k=1

1

k

Ãµ
2

N
− 2

N − k

¶ N−1X
m=N+1−k

1

m
+

1

N2
− 1

(N − k)2

!

=
1

N

Ã
NX

m=1

1

m

!2
− 2

N

N−1X
k=1

1

(N − k)

N−1X
m=N+1−k

1

m
+

1

N2

N−1X
k=1

1

k
−

N−1X
k=1

1

k

1

(N − k)2
.

Now, using identity (32),

N−1X
k=1

1

(N − k)

N−1X
m=N+1−k

1

m
=

N−1X
j=1

1

j

N−1X
m=j+1

1

m
= D(N − 1)−

N−1X
k=1

1

j2
=
1

2

Ã
N−1X
n=1

1

n

!2
− 1
2

N−1X
n=1

1

n2
,

and the partial fractions result:

1

k(N − k)2
=

1

N2k
+

1

N2 (N − k)
+

1

N (N − k)2
, (35)

we arrive at

G(N)−G(N − 1) = 1

N

Ã
NX

m=1

1

m

!2
− 1

N

Ã
N−1X
n=1

1

n

!2
− 1

N2

N−1X
k=1

1

k
=

1

N2

NX
m=1

1

m
.

As before we obtain the result by iteration. ¤

Lemma 8 For all N ≥ 1,

L(N) =
NX
k=1

kX
j=1

1

kj

NX
n=N+1−j

1

n
=

NX
k=1

1

k3
. (36)

Proof: After a tedious, but straightforward, computation we get

L(N)− L(N − 1) = 1

N

NX
j=1

1

j

NX
n=N+1−j

1

n
− 1

N

N−1X
k=1

1

k

N−1X
j=N−k

1

j
.

With identity (31),

L(N)− L(N − 1) = 1

N

NX
j=1

1

j2
− 1

N

N−1X
j=1

1

j2
=

1

N3
.

This yields the proof. ¤
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Lemma 9 For all N ≥ 1,

R(N) = 2
NX
k=1

kX
n=1

1

kn

NX
j=N+1−n

1

j2
= 5

NX
k=1

1

k4
− 2

NX
n=1

1

n3

nX
k=1

1

k
−
Ã

NX
k=1

1

k2

!2
. (37)

Proof: Once more we compute the difference

R (N)−R (N − 1) = 2

N

NX
n=1

1

n

NX
j=N+1−n

1

j2
+ 2

N−1X
k=1

kX
n=1

1

kn

µ
1

N2
− 1

(N − n)2

¶

=
2

N

NX
n=1

1

n

NX
j=N+1−n

1

j2
+

2

N2

N−1X
k=1

1

k

kX
n=1

1

n
− 2

N−1X
k=1

1

k

kX
n=1

1

n (N − n)2
.

Using the partial fraction result (35) on the last sum

R (N)−R (N − 1) = 2

N

NX
k=1

1

k

NX
j=N+1−k

1

j2
− 2

N2

N−1X
k=1

1

k

N−1X
m=N−k

1

m
− 2

N

N−1X
k=1

1

k

N−1X
m=N−k

1

m2

=
2

N2

NX
j=1

1

j2
+
2

N

N−1X
k=1

1

k

⎛⎝ NX
j=N+1−k

1

j2
−

N−1X
m=N−k

1

m2

⎞⎠− 2

N2

N−1X
k=1

1

k

N−1X
m=N−k

1

m

=
2

N2

NX
j=1

1

j2
− 2

N2

N−1X
k=1

1

k

N−1X
m=N−k

1

m
+
2

N

N−1X
k=1

1

k

µ
1

N2
− 1

(N − k)2

¶

=
2

N2

NX
j=1

1

j2
− 2

N2

N−1X
j=1

1

j2
+

2

N3

N−1X
k=1

1

k
− 2

N

N−1X
k=1

1

k

1

(N − k)2
,

where we have used (31). Using (35) to replace the last sum on the right side, we obtain,

R (N)−R (N − 1) = 2

N4
− 2

N3

N−1X
k=1

1

k
− 2

N2

N−1X
m=1

1

m2
=

6

N4
− 2

N3

NX
k=1

1

k
− 2

N2

NX
m=1

1

m2
. (38)

Summing both sides, and using R (1) = 2,

R (N) = 6
NX
k=1

1

k4
− 2

NX
n=1

1

n3

nX
k=1

1

k
− 2

NX
k=1

1

k2

kX
m=1

1

m2
.

Finally by an argument parallel to (32),

NX
k=1

1

k2

kX
m=1

1

m2
=
1

2

Ã
NX
k=1

1

k2

!2
+
1

2

NX
k=1

1

k4
. (39)

Together, this yields the proof. ¤

Lemma 10 For all N ≥ 1,

T (N) =
NX
k=1

1

k2

Ã
NX

m=N+1−k

1

m

!2
= 2

NX
k=1

1

k3

kX
n=1

1

n
−
Ã

NX
k=1

1

k2

!2
. (40)
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Proof: As before

T (N)− T (N − 1) = 1

N2

Ã
NX

m=1

1

m

!2
+

N−1X
k=1

1

k2

Ã
N−1X

m=N+1−k

1

m
+
1

N

!2
−

N−1X
k=1

1

k2

Ã
N−1X

m=N+1−k

1

m
+

1

N − k

!2

=
1

N2

Ã
NX

m=1

1

m

!2
+

N−1X
k=1

1

k2

Ãµ
2

N
− 2

N − k

¶ N−1X
m=N+1−k

1

m
+

1

N2
− 1

(N − k)2

!

=
1

N2

Ã
NX

m=1

1

m

!2
− 2

N

N−1X
k=1

1

k(N − k)

N−1X
m=N+1−k

1

m
+

1

N2

N−1X
k=1

1

k2
−

N−1X
k=1

1

k2
1

(N − k)2
.

Now from taking partial fractions, (31) and (32),

N−1X
k=1

1

k(N − k)

N−1X
m=N+1−k

1

m
=

C(N − 1)
N

− 2

N2

N−1X
k=1

1

k
+

D(N − 1)
N

− 1

N

N−1X
m=1

1

m2
.

We can simplify this using the expressions for C(N) in (31) and D(N) in (32),

N−1X
k=1

1

k(N − k)

N−1X
m=N+1−k

1

m
= − 2

N2

N−1X
k=1

1

k
+

1

2N

Ã
N−1X
n=1

1

n

!2
+

1

2N

N−1X
n=1

1

n2
.

Using partial fraction expansion again yields

N−1X
k=1

1

k2
1

(N − k)2
=

4

N3

N−1X
k=1

1

k
+

2

N2

N−1X
k=1

1

k2
(41)

Combining these results then gives

T (N)− T (N − 1) = 1

N2

Ã
NX
n=1

1

n

!2
− 1

N2

Ã
N−1X
n=1

1

n

!2
+

4

N3

N−1X
k=1

1

k
− 1

N2

N−1X
n=1

1

n2
+

1

N2

N−1X
k=1

1

k2

− 4

N3

N−1X
k=1

1

k
− 2

N2

N−1X
k=1

1

k2

=
1

N2

Ã
N−1X
n=1

1

n
+
1

N

!2
− 1

N2

Ã
N−1X
n=1

1

n

!2
− 2

N2

N−1X
k=1

1

k2

=
2

N3

N−1X
n=1

1

n
+

1

N4
− 2

N2

N−1X
k=1

1

k2
=

2

N3

NX
n=1

1

n
+

1

N4
− 2

N2

NX
k=1

1

k2
,

from which by summing both sides from N = 2 to N =M (and then M → N again)

T (N)− 1 = 2
NX
k=2

1

k3

kX
n=1

1

n
+

NX
k=2

1

k4
− 2

NX
k=2

1

k2

kX
n=1

1

n2
.

Using (39) then yields the proof. ¤
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B The asymptotic results for the variances

In this section we use the identities of Section A, in order to compute simplified expressions for T2(N)

and T1(N). Consequently we use these results for the asymptotic variance of WN .

The sum T2 (N) (compare (17)) equals

T2 (N) = R1(N)−R2(N),

where

R1(N) = 2
NX
n=1

NX
m=n

1

(N + 1− n)m (N + 1−m)

NX
j=m

1

j
,

and

R2(N) = 2
NX
n=1

NX
m=n

1

(N + 1− n) (N + 1−m)

NX
j=m

1

j2
.

We start with the sum R1(N), and interchange the sums to obtain

R1 (N) = 2
NX

m=1

NX
j=m

1

j

mX
n=1

1

(N + 1− n)m (N + 1−m)

= 2
NX
k=1

1

k

kX
n=1

1

n (N + 1− n)

nX
m=1

1

N + 1−m
.

Splitting (n(N + 1− n))−1 into two parts,

R1 (N) =
2

N + 1

NX
k=1

1

k

kX
n=1

1

n

NX
j=N+1−n

1

j
+

2

N + 1

NX
k=1

1

k

NX
m=N+1−k

1

m

NX
j=m

1

j
.

The first sum equals 2L(N)/(N + 1), where L(N) was simplified in Lemma 8.

By the same method that we used in (32) to obtain D(N), we find

NX
m=N+1−k

1

m

NX
j=m

1

j
=
1

2

⎛⎝ NX
j=N+1−k

1

j

⎞⎠2 + 1
2

NX
j=N+1−k

1

j2
. (42)

This implies using (33),

NX
k=1

1

k

NX
m=N+1−k

1

m

NX
j=m

1

j
=
1

2

NX
k=1

1

k

Ã
NX

m=N+1−k

1

m

!2
+
1

2

NX
k=1

1

k

NX
m=N+1−k

1

m2

=
1

2
(G(N) + F (N)) =

NX
k=1

1

k3
.

Combining all,

R1 (N) =
4

N + 1

NX
k=1

1

k3
=
4ζ(3)

N
(1 +O(N−2)). (43)
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We now turn to the sum

R2 (N) = 2
NX
n=1

NX
m=n

1

(N + 1− n) (N + 1−m)

NX
j=m

1

j2

= 2
NX
k=1

NX
m=N+1−k

1

k (N + 1−m)

NX
j=m

1

j2
= 2

NX
k=1

kX
n=1

1

kn

NX
j=N+1−n

1

j2
= R(N),

and R (N) was simplified in Lemma 8.

Together we find

T2 (N) = R1 (N)−R2 (N) = R1 (N)−R (N)

=
4

N + 1

NX
k=1

1

k3
− 5

NX
k=1

1

k4
+ 2

NX
n=1

1

n3

nX
k=1

1

k
+

Ã
NX
k=1

1

k2

!2
. (44)

From (38) we find that R(N)−R(N − 1) = −2ζ(2)
N2 +O( logNN3 ), so that, by summation,

R(N) = R+
2ζ (2)

N
+O

µ
logN

N2

¶
,

where

R = 5
∞X
k=1

1

k4
− 2

∞X
n=1

1

n3

nX
k=1

1

k
−
Ã ∞X
k=1

1

k2

!2
=
5

2
ζ(4)− ζ(2)2 = 0,

The first equality follows by (19), while the second follows by [4, (9.542)1]. Thus, we obtain the

asymptotics

T2 (N) = R1 (N)−R (N) =
4ζ (3)− 2ζ (2)

N
+O

µ
logN

N2

¶
. (45)

We finally turn to the second sum T1(N) (see (16)), which sum is equal to the sum T (N) displayed

in Lemma 10. Therefore,

T1(N) =
NX
n=1

1

(N + 1− n)2

⎛⎝ NX
j=n

1

j

⎞⎠2 = 2 NX
k=1

1

k3

kX
n=1

1

n
−
Ã

NX
k=1

1

k2

!2
. (46)

From the proof of Lemma 10, the difference

T1 (N)− T1 (N − 1) =
2

N3

NX
n=1

1

n
+

1

N4
− 2

N2

NX
k=1

1

k2
= − 2

N2

NX
k=1

1

k2
+O

µ
logN

N3

¶
,

which shows, by summation that for large N , T1 (N) behaves asymptotically as

T1 (N) = T1 +
2ζ (2)

N
+O

µ
logN

N2

¶
, (47)

where we write

T1 = 2
∞X
k=1

1

k3

kX
n=1

1

n
−
Ã ∞X
k=1

1

k2

!2
=
5

2
ζ(4)− ζ2(2), (48)

and, again, the second equality follows by (19), while Equation [4, (9.542)1] implies that T1 = 0.
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Remark. We note that T1 = 0 and Q = 0 can also be proved directly from the first equality in (46)

without resorting to [1, Corollary 4, main theorem]. We split T1(N) as

T1(N) =

N/2X
n=1

1

(N + 1− n)2

⎛⎝ NX
j=n

1

j

⎞⎠2 + NX
n=1+N/2

1

(N + 1− n)2

⎛⎝ NX
j=n

1

j

⎞⎠2

For N sufficiently large, the first sum is bounded as

N/2X
n=1

1

(N + 1− n)2

⎛⎝ NX
j=n

1

j

⎞⎠2 < 3 log2N

N
,

while the second sum is, assuming that N/2 is an integer,

NX
n=1+N/2

1

(N + 1− n)2

⎛⎝ NX
j=n

1

j

⎞⎠2 = N/2X
n=1

1

(N/2 + 1− n)2

⎛⎝ NX
j=n+N/2

1

j

⎞⎠2

=

N/2X
m=1

1

m2

⎛⎝ NX
j=N+1−m

1

j

⎞⎠2

For m ≤ N/2, we bound the sum between brackets as

NX
j=N+1−m

1

j
<

Z N

N−m

dx

x
= − log

³
1− m

N

´
=

m

N
+O

µ
m2

N2

¶
Hence, we obtain

NX
n=1+N/2

1

(N + 1− n)2

⎛⎝ NX
j=n

1

j

⎞⎠2 < N/2X
m=1

1

m2

³m
N

´2
+O

⎛⎝ 1

N3

N/2X
m=1

m

⎞⎠ = O

µ
1

N

¶
.

Combining both estimates shows that T1(N)→ 0 as N →∞, hence T1 = 0.
From (17), we find that T2 = limN→∞ T2 (N) is

T2 = −5
∞X
k=1

1

k4
+ 2

∞X
n=1

1

n3

nX
k=1

1

k
+

Ã ∞X
k=1

1

k2

!2
. (49)

Equation (48) shows that

T2 = 2
∞X
n=1

1

n3

nX
k=1

1

k
+ ζ2(2)− 5ζ(4) = −T1 = 0.

The definition (18) of Q (N) together with (2) gives

Q (N) = T1 (N) + T2 (N) +O
¡
N−1¢

from which Q = limN→∞Q (N) follows as

Q = T1 + T2 = 0

This result proves (19) independently from Borwein’s paper [1, Corollary 4, main theorem].
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