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Abstract — The last several years we witness the pro-
liferation of multimedia applications on Internet. One
of the unavoidable techniques to support this type of
communication is multicasting. However, even a decade
after its initial proposal, multicast is not widely de-
ployed. One reason lies in the lack of a business model.
If the gain and the cost of multicast could be predicted,
network operators might be encouraged to deploy multi-
cast on a larger scale. In this paper we propose several
analytical expressions that could be used to estimate the
gain and cost of network-layer multicast. We show that
the theoretical model we propose matches simulation and
Internet measurement results remarkably well.
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1 Introduction
The number of multimedia applications on Internet,

combining audio, video and data streams, is growing
explosively. Multimedia applications, even when data
compression is used, require in general a considerable
amount of bandwidth, and they are often delay sensi-
tive. Such applications include radio/television broad-
cast, desktop video/audio conferencing, shared white
boards, tele-classing, file transfers to multiple locations,
online gaming and animated simulations. IP multicast,
offering a scalable point-to-multipoint delivery, is re-
garded as a promising network service for group mul-
timedia applications.
Multiple user communication can be realized in sev-

eral ways. The minimum cost approach would be to
construct a single tree to distribute the traffic from all
senders in the group, regardless of the sender’s location,
and to minimize the total weight of the tree. Hence,
it optimizes the use of network resources. The prob-
lem of finding a minimum weight tree that spans all
multicast users is known as the Steiner Tree problem
[14]. However, the computational complexity of find-
ing a Steiner Minimum Tree (SMT), proven to be NP-
complete, together with its less stable dynamic behavior
[20] prohibits the implementation of this algorithm for

multicast routing protocols on Internet. Instead, most
of the current Internet protocols forward packets based
on the (Reverse) Shortest Path. A Shortest Path Tree
(SPT) is then composed from shortest paths between
the source and the destination. The SPT algorithm does
not necessarily result in a tree that economizes on net-
work resources but it is easy to compute and it offers a
minimum delay.

Even though the first deployment of multicast oc-
curred in 1992, and in spite of the continuously rising
demand for a ubiquitous multicast service, IP multicast
is still experiencing slow wide-scale deployment. One
of the reasons for this is the lack of a proper business
model. The computational and administrational over-
head of multicast group management increases the de-
ployment cost compared to the cost of unicast. Clearly,
the deployment of multicast can only be justified if the
netto gain defined as savings minus costs is larger than
the netto gain for unicast. Therefore, we believe the de-
ployment of multicast on larger scale would be encour-
aged if the gain/cost of multicast could be successfully
estimated.

Different researchers have introduced different defin-
itions for the gain and the cost of multicast. One pos-
sible criterion to assess the gain of the multicast is the
number of hops in the tree rooted at a particular source
to m randomly chosen destinations. Alternatively, the
cost of multicast can be defined as the sum of all the
link weights in a tree connecting m uniformly chosen
nodes. In this paper we propose analytic expressions
that can be used to compute the gain and cost of the
Shortest Path Tree, which we also compare with the
Steiner Minimum Tree. Moreover, we investigate how
well the simulation and Internet measurement data fit
the proposed model.

The remainder of the paper is organized as follows:
in the following Section we give a short overview of the
related work on the multicast cost and the gain analysis,
together with our previous work on this subject. Ana-
lytical results on the Uniform Recursive Tree (URT) are
given in Subsection 3.1, followed by simulation results
in Subsection 3.2. In the Section 3.3, the quality of the



URT as model for multicast trees is compared with In-
ternet measurements. Finally, we conclude in Section
4.

2 Related Work on a Multicast
Cost Analysis

Quantifying the gain/cost of multicast has been initi-
ated by Chuang and Sirbu [6], and further investigated
by Philips et. al [16] and Chalmers and Almeroth [4].
In [6], Chuang and Sirbu assumed that multicast pack-
ets are being delivered along a shortest-path tree from
source to m destinations. As most of the current In-
ternet protocols forward packets based on the (reverse)
shortest path, the assumption of shortest-path tree de-
livery is quite realistic. Further, they assumed that m
destinations are uniformly chosen out of N nodes, an
assumption that is confirmed by Internet measurements
as well [16] [4].
Let us denote by HN (m) the number of hops in the

shortest path tree rooted at a particular source to m
randomly chosen destinations. The average number of
hops of a message to a uniformly chosen destination in
the graph containing N nodes is E [HN ] = E [HN (1)].
Chuang and Sirbu defined the normalized cost of a mul-
ticast tree, as the ratio E [HN (m)] /E [HN ]. Via simu-
lations on various network topologies, they suggested a
power-law E [HN (m)] /E [HN ] ≈ m0.8. However, Van
Mieghem et al. [18] have shown that this Chuang-Sirbu
law cannot hold for all m.
Finally, related work has been done on multicast pric-

ing and billing. One of the earliest schemes has been
proposed by Herzog et al. [12]. Einsiedler et al. [9]
propose to charge the users for the resources they use.
The weights of a link is determined by the maintenance
costs, congestion on the link, or other factors. At each
router in the tree where branching takes place (branch-
ing point), costs are determined by splitting the cost
among subtrees. Each router stores the information on
the number of branches and on link weights, and dis-
tributes this information along the branches to other
branching points.

3 The Gain and the Cost of Mul-
ticast

3.1 Theory of the Uniform Recursive
Tree (URT)

As mentioned above, Van Mieghem et al. [18] have
shown that the Chuang-Sirbu law cannot hold for all m
and they presented the general framework, valid for any
number of nodes N and of users m and any topology. In
[18] the exact expression for the multicast efficiency over
unicast is derived in the random graph Gp (N) [2], with
independent exponential link weights w, and m multi-
cast users uniformly chosen out of the N nodes. Earlier,

the same group of authors [19] has shown that the Short-
est Path Tree in the complete graph is exactly, and in
the class Gp (N) asymptotically, a Uniform Recursive
Tree [17]1 (URT). For the URT, the average number of
hops to m randomly chosen destinations, for every N
and m is given by

E [HN (m)] =
mN

N −m

NX
k=m+1

1

k
(1)

Van Mieghem et al. [18] have further shown that
for the complete graph with exponentially distributed
weights, and for m small with respect to N , the ra-
tio E [HN (m)] /mE [HN ] increases about linearly with
m on a log-log scale, explaining the empirical Chuang-
Sirbu law. In addition to the average (1), the same
authors derive in [13] the exact probability generating
function and probability distribution Pr [HN (m) = k]
from which the variance follows as

var [HN (m)] =
N − 1 +m

N + 1−m
E [HN (m)]−

−(E [HN (m)])
2

(N + 1−m)
− (2)

− m2N2

(N −m) (N + 1−m)

NX
k=m+1

1

k2

The interest of this result as shown in [13] is that for all
m = o(

√
N), HN (m)−E[HN(m)]√

var[HN (m)]
converges to a standard

normal (Gaussian) random variable when N →∞.
Recently, Bollobas et al. [3] have shown that in the

complete graph with N nodes and with exponentially
distributed link weights with mean 1, the asymptotic
weight of the Steiner tree spanning m + 1 uniformly
chosen nodes and m small with respect to N,

E [WSteiner (k)] = (1 + o (1))
m

N
log

N

m+ 1
(3)

Triggered by this result, van der Hofstad et al. [13]
have derived the average E [WN (m)] of the sum of the
weights WN (m) in the Shortest Path Tree to m uni-
form multicast users in the random graph Gp (N) with
exponentially distributed link weights,

E [WN (m)] =
mX
j=1

1

N − j

N−1X
k=j

1

k
≤ π2

6
(4)

It has been shown [17] that the ratio of the average
of the number of nodes with degree k, denoted by DN

k ,
over the total number of nodes in the URT obeys for
large N

1A URT is defined by the following growth rule: given a URT
with N nodes, a URT with N + 1 nodes is deduced by attaching
the N +1-th node uniformly (thus with probability 1/N) to each
of the N other nodes in the tree.
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which is, for large N , close to Pr[deg = k], the proba-
bility that an arbitrary node has a degree k. Hence, the
decay rate of the pdf of the node degrees in the URT
equals − ln 2 = 0.693.
The importance of these results lies in the fact that, if

we can demonstrate that the URT characteristics match
the Internet measurements for multicasting, then the
cost/gain of multicast routing trees can be estimated.

3.2 Simulation Results and a Conjec-
ture

The aim of the simulations described in this Section
was to complement the analytical results derived in [13].
We confined ourselves to complete graphs with exponen-
tially distributed link weights with mean 1. For each
number of nodes N , 105 topologies were generated ran-
domly. For each of these topologies, m ∈ {1, N − 1}
nodes were uniformly chosen. The Shortest Path Tree
(SPT) and the Steiner Minimum Tree (SMT) have been
computed subsequently. The SPT is computed by us-
ing the Dijkstra algorithm, with N ≤ 100. Depending
on m, the Steiner tree [14] is generated using different
algorithms. For m = 2, the SMT problem reduces to
the computation of the shortest path between those two
users. If m = N , the SMT is actually the (complete)
minimum spanning tree, and is computed with the Prim
algorithm. For 2 < m < N , the SMT problem belongs
to the class of hard NP-complete problems. Certain re-
ductions [14] in the topology decrease the number of
nodes and links and increase the speed of simulations in
that reduced graph. In spite of the implemented reduc-
tions, the simulation process is nevertheless extremely
time consuming for large N . Therefore, we restrict the
simulations of SMT to graphs with N ≤ 20. In each
graph and for each m, the sum of the weights as well as
the number of links in both the SPT and the SMT have
been stored in 4 histograms. From these histograms,
the probability density function of the sum of the link

weights
d

dw
(Pr [WN (m) ≤ x]) = fWN(m) (x) in the SPT

and the SMT, as well as the probability density func-
tion of the number of links Pr [HN (m) = k] have been
deduced. Since Pr [HN (m) = k] is analytically known
[13], these simulations are not shown, but served as a
verification for the simulations.
Figure 1 gives the probability density function of the

sum of the link weights fWN(m) (x) in the SPT.
The average value E[WN (m)] of the sum of the link

weights in the SPT and the SMT is plotted as a function
of the multicast group size m, for the number of nodes
N = 20 in Figure 2. Apart from the match between
simulations and theory for the SPT, this figure reveals
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Figure 1: The pdf of sum of the weights in the Shortest
Path Tree for N=100

that E[WN (m)] for the SMT seems similar (apart from
some scaling factor) to that of the corresponding SPT.
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Figure 2: The average value of the sum of the link
weights for SPT and SMT (N=20)

In Figure 3, simulation results of the variance of
WN (m) in the SPT and the SMT are shown. So far,
var [WN (m)] has not been derived analytically.
Although N is small (which allows us to show the

entire m-range), Figure 4 indicates that the scaled ran-
dom variable WN (m)−E[WN (m)]√

var[WN (m)]
is close to a Gumbel type

e−e
−x
, which suggests us to conjecture, for all m, that

lim
N→∞

Pr

"Ã
WN (m)−E [WN (m)]p

var [WN (m)]

!
≤ x

#
= e−e

− π√
2
x

(6)
For the particular case of m = 1, we are able to prove
this result (see Appendix).
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3.3 Measurements on Internet
In 1999, Faloutsos et al. [10] studied three different

Internet AS level instances. Their results indicated that
the degree distribution follows power law characteristics.
These findings have provoked astonishment among net-
work researchers and stimulated the desire to explain
this behavior. However, Chen et al. [5] have criticized
the results published in [10] implying that they were ob-
tained on incomplete AS graphs. They show that when
data is obtained from more complete AS graphs, the
degree distribution follows heavily skewed distributions
(the values of degree vary over 3 to 4 orders of magni-
tude), but where only tails decay like a power law.
Faloutsos et al. [10] have also suggested the power-

law node degree distribution for nodes in a router-level
map of Internet. Ever since, several global router-level
Internet mapping projects have been initiated, almost

all being based on traceroute, or some traceroute-like
utility. Over the time the mapping techniques have ad-
vanced and improved, resulting in more and more ac-
curate maps. However, due to several important rea-
sons, as we discuss in [15], it is dangerous to apply the
conclusions drawn on those imperfect maps to the ac-
tual Internet topology. Nevertheless, in [15] we have
performed a thorough analysis of results obtained by
other researchers on node degrees. We have concluded
that most of the researchers have observed power-laws,
with similar values for the slope coefficient α. Only
the results based on CAIDA measurement data had the
considerably larger slope coefficient. These measure-
ments indicate that the random graph Gp (N) with ex-
ponentially distributed weights and binomially distrib-
uted node degree distribution does not appear to be a
good model for Internet topology.
Whereas the node degree distribution in Internet

maps attracted much attention, only few results have
been published on the characteristics of multicast rout-
ing trees so far. The first one has been provided by
Chalmers and Almeroth [4], who have looked into the
properties of the Internet multicast trees on Mbone.
They have gathered multicast tree data for four live
multicast sessions: the 43rd IETF meeting in December
1998 and the NASA shuttle launch in February 1999,
each of them consisting of a separate audio and video
channel. The path from each receiver to the source has
been traced via mtrace (multicast traceroute) [11]. The
mtrace data has been used for each dataset to recon-
struct a multicast tree. Chalmers and Almeroth have
developed the tool mwalk, that builds an activity graph
of all possible trees over time. In [15, Figure 3(a).] we
have plotted the node degree distribution for one real-
ization of the tree, in 43rd IETF video dataset, when 129
receivers have been traced to belong to the group. After
fitting their data on different scales, we noticed that the
best fit of all (with the correlation coefficient2 of 0.91)
has been obtained for the linear fit on the log-lin scale,
suggesting rather exponentially than polynomially dis-
tributed node degrees. Interestingly, the slope of the
curve is approximately the same as that of the URT
(see (5)).
The only other result on the multicast tree degree

distribution so far has been provided by Dolev et al.
[8]. In [8] Dolev et. al. have investigated properties
of multicast trees obtained from Internet measurement
data. The data they used for their multicast analysis
has been obtained via unicast traceroute measurement.
They have used two datasets: first, on the underlying
topology provided from traceroute measurements, they
generated shortest path trees using the Dijkstra algo-
rithm. The second dataset has been created based on

2The linear correlation coefficients measure the extent of linear
relationship of two variables, and are given by r = cov(y,x)√

var(y)var(x)
.



traceroute measurements of the paths between the root
and the clients in the client population of www.bell-
labs.com. In [8, Figure 6 and Figure 7] they have plot-
ted the node degree distributions in both datasets on
a log-log scale, and fitted with the linear function de-
caying with the rate −3.40 and −3.18 for the first and
the second dataset, with the correlation coefficients of
0.9897 en 0.9829, respectively. These findings seem to
suggest a power-law structure of the node degree dis-
tribution in multicast routing trees, which contradicts
that of [4].
With the purpose of understanding this discrepancy,

in [15] we have investigated the node degree distribu-
tion in multicast trees constructed as unions of tracer-
outs obtained from both CAIDA’s Skitter project [21]
and RIPE [22]. We have demonstrated that the de-
gree distribution in the multicast tree for small m does
not follow a power law. For larger values of the num-
ber of destinations m the degree distribution seems to
follow a power-law, when multicast trees are created
as union of traceroutes. The result of Chalmers and
Almeroth implies that if another method for construct-
ing trees is used other than the union of traceroute
paths, power-laws might not even be observed for larger
values of m. Multicast routing trees have been obtained
from CAIDA’s Skitter project [21] traceroute data in
the following way: first, we have randomly chosen
m = 50, 100, 500, 1000 destinations (multicast users).
For three monitor boxes (two of them situated in United
States and one in Japan) the collection of paths from
these three sources to randomly chosen destinations has
been obtained via traceroute. In this way, we obtained
for each source a set of 4 trees. For each of these 12 trees,
the number of links in the tree has been calculated. In
Figure 5 this number has been plotted, for each source,
as a function of m. In addition, for N = 135000 (the
approximate number of nodes in the Internet map de-
rived from traceroute measurements, see [15]) and for
various values of m (in the range [50, 20000], the values
of the functions E [HN (m)] and E [HN (m)]± 6σN (m)
(where σN (m) =

p
var (HN (m))) have been computed,

and plotted in the same Figure. Since σN (m) is much
smaller than gN (m) , the number of links in the URT is
well approximated by the mean, HN (m) ≈ E [HN (m)]
for large values of N.
Also in our previous work we have shown that our

analytical findings were supported by Internet measure-
ments (we refer to [18, Figure 7]). Hence, all of our
measurement results so far indicate that the URT rep-
resents a reasonable, first order model for the multicast
tree in Internet.

4 Conclusions
One of the reasons for the slow wide-scale deployment

of IP multicast is the lack of a proper business model.
In this paper we proposed analytical expressions (1) and
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Figure 5: The average number of links (Caida measure-
ments and theoretical value)

(3) for assessing the gain/cost of Shortest Path. We have
compared the cost of Shortest path to Steiner Trees
using the analytical expression (3) for estimating the
gain/cost of Steiner Trees. From the extensive simula-
tions we were lead to conjecture that Pr [WN (m) ≤ x] ∼
exp

µ
− exp

µ
−π(x−E[WN (m)])√

2var[WN(m)]

¶¶
for large N .

Internet measurements seem to suggest that for the
small number of users m, the URT model we used to de-
rive the laws given above represents a reasonable model
for multicast trees in Internet. The measurement results
indicated that the average number of links in multicast
trees lies in the range E [HN (m)] ± 6σN (m) (where
σN (m) =

p
var (HN (m))) for all values of m. Since

σN (m) is much smaller than gN (m) for large N , the
number of links in the URT is well approximated by the
mean, HN (m) ≈ E [HN (m)] .
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A Proof of Conjecture (6) for
m = 1

In [13], the probability generating function of the
weight WN =WN (1) of the shortest path is derived

ϕWN
(z) = E
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The limit for N →∞ will be computed from which the
distribution then follows by taking the inverse Laplace

transform. With y =
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N
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+ z, we have
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The products can be written in terms of the Gamma
function,
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2
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Let the number of nodes be even N = 2M such that
y =

√
M2 + z ∼ M + z

2M (provided |z| < 2M). The
sum, denoted by S, can be rewritten

S =
M−1X
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such that
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For large M ,
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which makes us consider z → 2Mz since then, using [1,
6.1.47],

ϕW2M
(2Mz) ∼ (2M)

−z
Γ (z + 1)

× 1

2M − 1
M−1X

j=−(M−1)

µ
1 +O

µ
1

M

¶¶
∼ (2M)

−z
Γ (z + 1)

Hence,
lim

N→∞
NzϕWN

(Nz) = Γ (z + 1)

or equivalently,

lim
N→∞

E
h
e−(NWN−logN)z

i
= Γ (z + 1) (7)

The inverse Laplace transform of Γ (z + 1) is a Gumbel
distribution. Since E [WN ] ∼ logN

N and
p
var [WN ] ∼

π√
2N
, we arrive at the asymptotic distribution (6) for

the weight of the shortest path (m = 1).


