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Abstract

The class of graphs G∗D(n1, n2, ..., nD+1), consisting of D+1 cliques Kn1 ,Kn2 , ...,KnD+1 , placed
on a line and fully-interconnected between neighboring cliques, contains the graph with the largest
possible algebraic connectivity (second smallest eigenvalue of the Laplacian matrix) and the graph
with the largest possible spectral radius (largest eigenvalue of the adjacency matrix) among all
graphs with N nodes and diameter D. The spectrum of both the Laplacian and adjacency matrix

of G∗D is computed: N−D−1 eigenvalues are exactly known, while the remaining D+1 eigenvalues
— among which the algebraic connectivity and spectral radius, respectively — are the zeros of an
orthogonal polynomial. For the Laplacian, the coefficients of these orthogonal polynomials are
exactly determined and bounds on the algebraic connectivity and spectral radius are given.

1 Introduction

Let G be a graph and let N denote the set of nodes and L the set of links, with N = |N | nodes
and L = |L| links, respectively. The Laplacian matrix of G with N nodes is a N × N matrix

Q = ∆−A, where ∆ = diag(di) and di is the degree of node i ∈ N and A is the adjacency matrix of

G. The Laplacian eigenvalues are all real and nonnegative [2]. The set of all N Laplacian eigenvalues

μN = 0 ≤ μN−1 ≤ ... ≤ μ1 is called the Laplacian spectrum of G. We denote the set of eigenvalues of

the adjacency matrix by λN ≤ λN−1 ≤ · · · ≤ λ1, where λ1 is called the spectral radius.

In a companion article [14], we determine, among all graphs with fixed diameter D and same

number of nodes N , the largest possible second smallest eigenvalue μN−1, also called after Fiedler’s

seminal paper [4], the algebraic connectivity. The algebraic connectivity is the eigenvalue of the

Laplacian, that is studied in most detail, because it features many interesting properties. In our

investigations, a particular class of graphs with extremal properties is constructed as follows. The

class of graphs G∗D(n1, n2, ..., nD+1) is composed of D + 1 cliques Kn1 ,Kn2 ,Kn3 , ...,KnD and KnD+1 ,

where the variable ni ≥ 1 with 1 ≤ i ≤ D + 1 is the size or number of nodes of the i-th clique.

Each clique Kni is fully connected with its neighboring cliques Kni−1 and Kni+1 for 2 ≤ i ≤ D. Two

graphs G1 and G2 are fully connected if each node in G1 is connected to all the nodes in G2. An

example of a member of the class G∗D(n1, n2, ..., nD+1) is shown in Fig. 1. The total number of nodes
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Figure 1: A chain of cliques G∗4(8, 1, 3, 4)

in G∗D(n1, n2, ..., nD+1) is

N =
D+1X
j=1

nj (1)

The total number of links in G∗D is

L =
D+1X
j=1

µ
nj
2

¶
+

DX
j=1

njnj+1 (2)

where the first sum equals the number of intra-cluster links and the second the number of inter-cluster

links.

The main motivation to study the class of graphs G∗D(n1, n2, ..., nD+1) with nj ≥ 1 are its extremal
properties, that are proved elsewhere [14]:

Theorem 1 Any graph G(N,D) with N nodes and diameter D is a subgraph of at least one graph in

the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1).

Theorem 2 The maximum of any Laplacian eigenvalue μi(G
∗
D), i ∈ [1, N ] achieved in the class

G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) is also the maximum among all the graphs with N nodes and diameter

D.

Theorem 3 The maximum number of links in a graph with given size N and diameter D is Lmax(N,D) =¡N−D+2
2

¢
+D−3, which can only be obtained by either G∗D(1, ..., 1, nj = N−D, 1, ..., 1) with j ∈ [2,D],

where only one clique has size larger than one, or by G∗D(1, ..., 1, nj > 1, nj+1 > 1, 1, ..., 1) with

j ∈ [2,D − 1] where only two cliques have size larger than one and they are next to each other.

Another valuable theorem, due to Van Dam [12] and related to Theorem 3, is

Theorem 4 The graph G∗D(n1, n2, ..., nD+1) with n[D+12 ]
= N −D and all other nj = 1 is the graph

with largest spectral radius (i.e. largest eigenvalue of the adjacency matrix) among all graphs with a

same diameter D and number of nodes N .
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Since the spectral radius is bounded by dav =
2L
N ≤ λ1 ≤ dmax, a combination of Theorems 3 and

4 leads to

N − 2D + 3 + (D − 1)D − 4
N

≤ max
G(N,D)

λ1 ≤ N −D + 1

If D = N − 1, we see that
2− 2

N
≤ max

G(N,D)
λ1 ≤ 2

In this article, we show that the spectrum of the Laplacian and adjacency matrix of the graphs

G∗D(n1, n2, ..., nD+1) can be computed: N −D− 1 eigenvalues are exactly known, while the remaining
D + 1 eigenvalues are the zeros of an orthogonal polynomial. The focus of this article is to deduce

the spectrum and to link it to a class of yet unknown orthogonal polynomials. Although there is

an extensive classification being performed by Koekoek and Swarttouw [8], our set of orthogonal

polynomials is not easy to classify, due to the very general parametrization. For the special case of

ni = 1, G∗D(1, 1, ..., 1) reduces to a simple chain or line topology, whose spectrum is completely known

and thus also the related Chebyshev orthogonal polynomials. But, in general, little is known. Since

our orthogonal set of polynomials are related to a graph with extremal properties, we attempt to

provide as much properties as possible of this “new” general set.

Section 2 starts with the algebraic computation of the eigenvalues of the Laplacian QG∗D
of the

graph G∗D, from which a recursive structure or a continued fraction pops up, that is a basic property

of orthogonal polynomials, as shown in Section 3. We show that the non-trival eigenvalues of the

Laplacian QG∗D
, including the algebraic connectivity, are the zeros of an orthogonal polynomial pD (μ),

and equivalently, of a Jacobi (D + 1) × (D + 1) matrix. Likewise, all eigenvalues of the adjancency
matrix AG∗D

, different from λ = −1, are the zeros of an orthogonal polynomial wD (λ+ 1). The Jacobi

matrix is computationally interesting, because the eigenvalue problem is reduced from a N ×N to a

(D + 1)× (D + 1) tri-diagonal matrix. In addition, in most practical cases, the diameter D of a graph

is considerably smaller than its size N . Section 4 presents the exact coefficients of the orthogonal

polynomial pD (μ), while Section 5 gives bounds for the algebraic connectivity zD and the largest zero

z1 of pD (μ). The final Section 6 applies all previous deduced results for the Laplacian to the adjacency

matrix.

2 Eigenvalues of the Laplacian of G∗D(n1, n2, ..., nD+1)

Theorem 5 The characteristic polynomial of the Laplacian QG∗D
of G∗D(n1, n2, ..., nD+1) equals

det
³
QG∗D

− μI
´
= pD (μ)

QD+1
j=1 (dj + 1− μ)nj−1 (3)

where dj = nj−1 + nj + nj+1 − 1 denotes the degree of a node in clique j. The polynomial pD (μ) =QD+1
j=1 θj is of degree D + 1 in μ and the function θj = θj (D;μ) obeys the recursion

θj = (dj + 1− μ)−
µ
nj−1
θj−1

+ 1

¶
nj (4)

with initial condition θ0 = 1 and with the convention that n0 = nD+2 = 0.
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Two proofs are given of Theorem 5: an elementary one is given in Appendix B, while the proof

below uses the concept of a quotient matrix (see e.g. [6]), that we first define. Consider the k-

partition of a graph G that separate the node set N of G into k ∈ [1, N ] disjoint, non-empty subsets
{N1,N2, ...,Nk}. Correspondingly, the quotient matrix Aπ of the adjacency matrix of G is a k × k

matrix where Aπ
i,j is the average number of neighbors in Nj of nodes in Ni. Similarly, the quotient

matrix Qπ of the Laplacian matrix Q of G is a k × k matrix where

Qπ
i,j =

(
−Aπ

i,j , if i 6= jX
i6=k

Aπ
i,k, if i = j

A partition is called regular or equitable if for all 1 ≤ i, j ≤ k the number of neighbors in Nj is

the same for all the nodes in Ni. The eigenvalues derived from the quotient matrix Aπ (Qπ) of the

adjacency A (Laplacian Q) matrix are also eigenvalues of A(Q) given the partition is equitable.

Proof: The partition that separates the graphG∗D(n1, n2, ..., nD+1) into theD+1 cliquesKn1 ,Kn2 , ...,KnD+1

is equitable. The quotient matrix Qπ of the Laplacian matrix Q of G is

Qπ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n2 −n2
−n1 n1 + n3 −n3

−n2 n2 + n4 −n4
. . .

−nD−1 nD−1 + nD+1 −nD+1
−nD nD

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We apply the method of subsequent expansion using (39) to

det (Qπ − μI) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n2 − μ −n2
−n1 n1 + n3 − μ −n3

−n2 n2 + n4 − μ −n4
. . .

−nD−1 nD−1 + nD+1 − μ −nD+1
−nD nD − μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (n2 − μ) det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n1 + n3 − μ− n1n2
n2−μ −n3

−n2 n2 + n4 − μ −n4
. . .

−nD−1 nD−1 + nD+1 − μ −nD+1
−nD nD − μ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
We repeat the method and obtain

det (Qπ − μI) = (n2 − μ)

µ
n1 + n3 − μ− n1n2

n2 − μ

¶
×

det

⎡⎢⎢⎢⎢⎢⎣
n2 + n4 − μ− n2n3

n1+n3−μ− n1n2
n2−μ

−n4
. . .

−nD−1 nD−1 + nD+1 − μ −nD+1
−nD nD − μ

⎤⎥⎥⎥⎥⎥⎦
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Eventually, we find

det (Qπ − μI) =
YD+1

j=1
θj

where θj follows the recursion

θj = (nj−1 + nj+1 − λ)− nj−1nj
θj−1

with initial condition θ0 = 1 and with the convention that n0 = nD+2 = 0. When written in terms of

the degree dj = nj−1 + nj + nj+1 − 1, we obtain (4).
Any two nodes s and t in a same clique Kni of G

∗
D are connected to each other and they are

connected to the same set of neighbors. The two rows in det
³
QG∗D

− μI
´
corresponding to node s

and t are the same when μ = di + 1, where di is the degree of all nodes in clique Kni . In this case,

det
³
QG∗D

− μI
´
= 0 since the rank of QG∗D

− μI is reduced by 1. Hence, μ = di + 1 is an eigenvalue

of the Laplacian matrix QG∗D
. The corresponding eigenvector x has only two non-zero components,

xs = −xt 6= 0. Since the D+ 1 partitions of G∗D(n1, n2, ..., nD+1) are equitable, the D+ 1 eigenvalues
of Qπ, which are the roots of det (Qπ − μI) = 0, are also the eigenvalues of the Laplacian matrix

QG∗D
. Each eigenvector of QG∗D

, belonging to the D+ 1 eigenvalues, has the same elements xs = xt if

the nodes s and t belong to the same clique. Hence, the Laplacian matrix QG∗D
has D + 1 nontrivial

eigenvalues, which are the roots of det (Qπ − μI) = 0 and trivial eigenvalues dj + 1 with multiplicity

nj − 1 for 1 ≤ j ≤ D + 1. ¤
Theorem 5 shows that the Laplacian QG∗D

has eigenvalues at μj = nj−1 + nj + nj+1 = dj +1 with

multiplicity nj − 1 for 1 ≤ j ≤ D + 1, with the convention that n0 = nD+2 = 0. The less trivial zeros

are solutions of the polynomial pD (μ), where θj is recursively defined via (4). Thus, the polynomial

of interest is

pD (μ) =
QD+1

j=1 θj (D;μ) =
D+1X
k=0

ck (D)μ
k =

D+1Y
k=1

(zk − μ) (5)

where the dependence of θj on the diameter D and on μ is explicitly written and where the product

with the non-negative zeros zD+1 ≤ zD ≤ · · · ≤ z1 follows from the definition of the eigenvalue

equation (see [13, p. 435-436]). Moreover, each zj ∈ [0, N ] because each Laplacian eigenvalue of any
graph is contained in the interval [0,N ].

Corollary 1 At least three Laplacian eigenvalues of G∗D, the two smallest Laplacian eigenvalues μN =
0 and μN−1 and the largest one μ1, are equal to the zero zD+1 = 0, zD and z1 of the polynomial pD (μ),

respectively.

Proof: Since all the explicit Laplacian eigenvalues μj = dj + 1 of G∗D in (3) are larger than zero

and since μ = 0 is an eigenvalue of any Laplacian, the polynomial pD (μ) must have a zero at μ = 0.

Grone and Merris [7] succeeded to improve Fiedler’s lower bound and proved that, for any graph,

μN−1 ≤ dmin, where dmin is the minimum degree in the graph. All trivial eigenvalues are larger than

the minimum degree since μj = dj + 1 > dj ≥ dmin, which implies that the algebraic connectivity

μN−1 = zD, the smallest positive zero of pD (μ).

The largest Laplacian eigenvalue obeys μ1 ≥ dmax+1. Brouwer and Haemers [3] further show that

the equality holds if and only if there is a node connecting to all the other nodes in the graph. Hence,
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when the diameter D > 2, the largest eigenvalue is always a nontrivial eigenvalue, i.e. μ1 = z1. When

D = 2, the zeros of

pD (μ) = μ
¡
μ2 − (N + n2)μ+Nn2

¢
= μ (μ−N) (μ− n2)

are z3 = 0, z2 = n2 and z1 = N . Since the largest eigenvalue μ1 ∈ [0, N ] , μ1 = z1. ¤
Since pD (0) = 0, we rewrite (5) as

pD (μ) = μ
DX
k=0

ck+1 (D)μ
k = −μ

DY
k=1

(zk − μ)

Our main goal is to find the smallest positive zero zD of the polynomial

qD (μ) =
pD (μ)

−μ = −
DX
k=0

ck+1 (D)μ
k =

DY
k=1

(zk − μ) (6)

which is the algebraic connectivity zD = μN−1 of the Laplacian QG∗D
. Notice that all coefficients of

qD (−μ) = pD(−μ)
μ are strict positive.

3 Orthogonal polynomials

In the sequel, we will show that pD (μ) belongs to a set of orthogonal polynomials. We refer to Szego’s

classical book [11] for the beautiful theory of orthogonal polynomials.

3.1 The recursive nature of (4)

Lemma 6 For all j ≥ 0, the functions θj (D;x) are rational functions

θj (D;x) =
tj (D;x)

tj−1 (D;x)
(7)

where tj (x) is a polynomial of degree j in x = −μ and t0 (D;x) = 1.

Proof: It holds for j = 1 as verified from (4) because θ0 (D;x) = 1. Let us assume that (4) holds

for j − 1 (induction argument). Substitution of (7) into the right hand side of (4),

θj (D;x) =

(
(x+nj−1+nj+1)tj−1(D;x)−nj−1njtj−2(D;x)

tj−1(D;x)
1 ≤ j ≤ D

(x+nD)tD(D;x)−nDnD+1tD−1(D;x)
tD(D;x)

j = D + 1

indeed shows that the left hand side is of the form (7) for j. This demonstrates the induction argument

and proves the lemma. ¤
Introducing (7) into the definition (5) yields

pD (−x) =
QD+1

j=1 tj (D;x)QD+1
j=1 tj−1 (D;x)

= tD+1 (D;x)

We rewrite (7) as tj (D;x) = θj (D;x) tj−1 (D;x) and with (4), we obtain the set of polynomials⎧⎪⎨⎪⎩
tD+1 (D;x) = (x+ nD) tD (D;x)− nDnD+1tD−1 (D;x)

tj (D;x) = (x+ nj−1 + nj+1) tj−1 (D;x)− nj−1njtj−2 (D;x) for 1 ≤ j ≤ D

t1 (D;x) = (x+ n2) t0 (D;x)

(8)
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where t0 (D;x) = 1. By iterating the equation upwards, we find that

tj (D; 0) =

⎧⎪⎪⎨⎪⎪⎩
j+1Y
m=2

nm 1 ≤ j ≤ D

0 j = D + 1

(9)

Thus, tD+1 (D; 0) = 0 (and thus θD+1 (D; 0) = 0) implies that pD (μ) must have a zero at μ = 0, which

is, indeed, a general property of any Laplacian as mentioned in Corollary 1. From (7), it then follows

that

θj (D; 0) = nj+1 > 0

For a fixed D, the sequence {tj (D;x)}0≤j≤D+1 is an orthogonal set of polynomials because it obeys
Favard’s three-term recurrence relation (see e.g. [5]). The zeros of any set of orthogonal polynomials

are all simple, real and lying in the orthogonality interval [a, b], which is here for the Laplacian equal to

[0, N ]. Moreover, the zeros of tj (D;x) and tj−1 (D;x) are interlaced. In other words, in between two

zeros of tj−1 (D;x), there is precisely one zero of tj (D;x) and between two zeros of tj (D;x) there is

at least one zero of tk (D;x) with k > j. This property shows that the set {tj (D;x)}0≤j≤D+1 is finite
and cannot be extended beyond D + 1, because the smallest zero of the highest degree polynomial

tD+1 (D;x) coincides with the lower boundary of the orthogonality interval. The special equation for

tD+1 (D;x) in (8), with nD instead of nD−1 + nD+1, guarantees this zero at x = 0; it is the basic

difference in structure compared to the orthogonal set (33) of the corresponding adjacency matrix (see

Section 6).

3.2 Jacobi Matrix of the set {tj (D, x)}1≤j≤D+1
As known in the theory of orthogonal polynomials [5], it is instructive to rewrite the j-equation in (8)

as

xtj−1 (D;x) = nj−1njtj−2 (D;x)− (nj−1 + nj+1) tj−1 (D;x) + tj (D;x)

and, in matrix form by defining the vector τ (D;x) =
h
t0 (D;x) t1 (D;x) · · · tD−1 (D;x) tD (D;x)

iT
,

x

⎡⎢⎢⎢⎢⎢⎢⎢⎣

t0

t1
...

tD−1

tD

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−n2 1

n1n2 − (n1 + n3) 1
. . . . . . . . .

nD−1nD − (nD−1 + nD+1) 1

nDnD+1 −nD

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

t0

t1
...

tD−1

tD

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

tD+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where tj = tj (D;x). Thus, the three-term recursion set of polynomials (8) is written in matrix form

as

xτ (D;x) =Mτ (D;x) + tD+1 (D;x) eD+1 (10)
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where the basic vector eD+1 =
h
0 0 · · · 0 1

iT
and the (D + 1)× (D + 1) Jacobi matrix is

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−n2 1

n1n2 − (n1 + n3) 1
. . . . . . . . .

nD−1nD − (nD−1 + nD+1) 1

nDnD+1 −nD

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(11)

When x = zk is a zero of tD+1 (D;x) = pD (−x), then (10) reduces to the eigenvalue equation

Mτ (D; zk) = zkτ (D; zk)

such that zk is an eigenvalue of M belonging to the eigenvector τ (D; zk). This eigenvector is never

equal to the zero vector because the first component t0 (x;D) = 1. The special case where zD+1 = 0

leads again to (9) and all components of τ (D; 0) are positive.

The quotient matrixQπ has the same eigenvalues as the JacobianM , such that both are also related

by a similarity transform. In addition, there must be a similarity transform to make the matrixM sym-

metric (since all eigenvalues are real). The simplest similarity transform is H = diag(h1, h2, . . . , hD+1)

such that

fM = HMH−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−n2 h1
h2

h2
h1
n1n2 − (n1 + n3)

h2
h3

. . . . . . . . .
hD

hD−1
nD−1nD − (nD−1 + nD+1)

hD
hD+1

hD+1
hD

nDnD+1 −nD

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Thus, in order to have fM = fMT , we need to require that

³fM´
i,i−1

=
³fM´

i−1,i
for all 2 ≤ i ≤ D+1,

implying that
hi
hi−1

ni−1ni =
hi−1
hi

whence,
hi−1
hi

=
√
ni−1ni

and hi =
1√

ni−1ni
hi−1 for 2 ≤ i ≤ D + 1 and h1 = 1. Thus,

H = diag

⎛⎜⎜⎜⎜⎜⎝1,
1√
n1n2

, . . . ,
1

√
n1nj

j−1Y
k=2

nk

, . . . ,
1

√
n1nD+1

DY
k=2

nk

⎞⎟⎟⎟⎟⎟⎠
and the eigenvector belonging to zero equals eτ (D; 0) = Hτ (D; 0) =

h
1
q

n2
n1

· · ·
q

nD−1
n1

q
nD
n1

iT
.
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After the similarity transform H, the result is

fM = HMH−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−n2
√
n1n2√

n1n2 − (n1 + n3)
√
n2n3

. . . . . . . . .
√
nD−1nD − (nD−1 + nD+1)

√
nDnD+1

√
nDnD+1 −nD

⎤⎥⎥⎥⎥⎥⎥⎥⎦
In summary, all non-trivial eigenvalues of QG∗D

are also eigenvalues of the (much simpler and

smaller) matrix −M or −fM .

3.3 Deductions from the Jacobian fM
A number of consequence can be deduced. First, Gerschgorin’s theorem [9] tells us that there lies a

zero zk of pD (x) centered around nj−1 + nj+1 with radius 1+ njnj−1 or, from −fM , centered around

nj−1+nj+1 with radius
√
nj
¡√

nj−1 +
√
nj+1

¢
, which leads to sharper bounds. However, not always.

In particular as follows from −M , there lies a zero of pD (x) in the interval [n2 − 1, n2 + 1].
A second consequence from the Jacobian symmetric matrix −fM is the following asymptotic result

Theorem 7 For a constant diameter D and large N , all non-trivial eigenvalues of both the adjacency

and Laplacian matrix of any graph in the class G∗D(n1, n2, ..., nD, nD+1) scale linearly with N , the

number of nodes.

Proof: Each non-trivial eigenvalue μ of the Laplacian satisfies the eigenvalue equation−fMy = μy,

where y is the corresponding normalized eigenvector such that the Euclidian norm yT y = kyk22 = 1.
We now define the rational number αj =

nj
N , for each 1 ≤ j ≤ D + 1. It follows from (1) and nj ≥ 1

that 0 < αj < 1 and
PD+1

j=1 αj = 1. The Jacobian matrix then becomes fM = N. eR, where

eR =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

−α2
√
α1α2√

α1α2 − (α1 + α3)
√
α2α3

. . . . . . . . .
√
αD−1αD − (αD−1 + αD+1)

√
αDαD+1

√
αDαD+1 −αD

⎤⎥⎥⎥⎥⎥⎥⎥⎦
For small N , the dependence1 of αj on N will influence μ. For large N , on the other hand, since the

norm of eR is bounded for a constant D independent of N , and the eigenvector y is normalized, we

observe from the eigenvalue equation that μ = −NyT eRy = N (c+ o (1)), where c is only dependent

on D. This means that, for large N , the eigenvalue μ scales linearly with N . Since the argument

holds as well for the adjacency matrix (see Section 6), the theorem is proved. ¤
Combining Theorem 7 and 2 and Corollary 1 implies that, for large N , the highest possible

achievable algebraic connectivity in networks G (N,D) is a linear function of N , provided the diameter

D is independent from N .

1 In particular, for n1 = nD+1 = 1, the dependence on N is obvious because α1 = αD+1 =
1
N
.
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Finally, we mention that the corresponding squareroot matrix B of the Gram matrix −M = BTB

can be computed explicitly as

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

√
n2 −

√
n1

0
√
n3 −√n2
. . . . . . . . .

0
√
nD+1 −

√
nD

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
in contrast to the general theory of orthogonal polynomials, where each element of the squareroot

matrix of a positive semi-definite Jacobi matrix is a continued fraction. Although all eigenvalues and

eigenvectors of B are explicitly known, there does not seem to exist a general method to link these
√
nj eigenvalues of B to those of M (or fM).
4 Coefficients ck (D) of the polynomial pD (x)

In this section, we will show that all the coefficients of the characteristic polynomial of M , i.e. the

polynomial pD (x), can be exactly computed.

For 1 ≤ j ≤ D + 1, we write the polynomials as

tj (D;x) =

jX
k=0

bk (j;D)x
k (12)

and (5) relates bk (D + 1;D) = (−1)kck (D). Moreover, (9) shows that, for 1 ≤ j ≤ D,

b0 (j;D) =

j+1Y
m=2

nm (13)

while b0 (D + 1;D) = 0. Introduction of (12) into the recursive set (8) of polynomials yields, for

j = D + 1,

D+1X
k=0

bk (D + 1;D)x
k = (x+ nD)

DX
k=0

bk (D;D)x
k − nDnD+1

D−1X
k=0

bk (D − 1;D)xk

=
D+1X
k=1

bk−1 (D;D)x
k +

DX
k=0

nDbk (D;D)x
k −

D−1X
k=0

nDnD+1bk (D − 1;D)xk

= nDb0 (D;D)− nDnD+1b0 (D − 1;D) + bD (D;D)x
D+1

+
DX
k=1

{bk−1 (D;D) + nDbk (D;D)− nDnD+1bk (D − 1;D)}xk

After equating corresponding powers in x (higher than zero),

bD+1 (D + 1;D) = bD (D;D)

bk (D + 1;D) = bk−1 (D;D) + nDbk (D;D)− nDnD+1bk (D − 1;D)

10



Similarly, we find for 1 ≤ j ≤ D, that

bj (j;D) = bj−1 (j − 1;D)
bk (j;D) = bk−1 (j − 1;D) + (nj−1 + nj+1) bk (j − 1;D)− nj−1njbk (j − 2;D)

while for j = 1, t1 (D;x) = x + n2 and t1 (D;x) = b1 (1;D)x + b0 (1;D). Thus, b1 (1,D) = 1, which

shows that bj (j;D) = 1 for all 1 ≤ j ≤ D + 1.

In summary, the coefficients ck (D) = (−1)kbk (D + 1;D) of pD (μ) obey the recursion

bk (D + 1;D) = bk−1 (D;D) + nDbk (D;D)− nDnD+1bk (D − 1;D) (14)

and

bk (j;D) = bk−1 (j − 1;D) + (nj−1 + nj+1) bk (j − 1;D)− nj−1njbk (j − 2;D) (15)

for all 1 ≤ j ≤ D and 0 < k < D + 1, while cD+1 (D) = (−1)D+1 and c0 (D) = 0. Since all zeros of

pD (μ) are real and non-negative, bk (D + 1;D) > 0 for all k > 0.

4.1 A two-term recursion for bk (j;D)

Lemma 8 The k-th coefficient bk (j;D) of the polynomial tj (D;x) =
Pj

k=0 bk (j;D)x
k obeys, for

j ≤ D and k ≥ 1, beside the three-term recursion (15), also the two-term recursion,

bk (j;D) =

jX
q=k

qX
m=k

bk−1 (m− 1;D)
nqnq+1

j+1Y
s=m

ns (16)

Proof: We can rewrite (15) as

bk (j;D)− nj+1bk (j − 1;D) = bk−1 (j − 1;D) + nj−1 {bk (j − 1;D)− njbk (j − 2;D)}

Let

rk (j;D) = bk (j;D)− nj+1bk (j − 1;D) (17)

then the recursion equation (15) is

rk (j;D) = bk−1 (j − 1;D) + nj−1rk (j − 1;D)

Iterating l = j − k + 1 times until bk−1 (j − l;D) = bk−1 (k − 1;D) = 1 yields

rk (j;D) = bk−1 (j − 1;D) + nj−1bk−1 (j − 2;D) + nj−2nj−1rk (j − 2;D)
= bk−1 (j − 1;D) + nj−1bk−1 (j − 2;D) + nj−2nj−1bk−1 (j − 3;D)
+ nj−3nj−2nj−1rk (j − 3;D)
= · · ·

such that

rk (j;D) =

j−k+1X
l=1

⎛⎝ j−1Y
s=j+1−l

ns

⎞⎠ bk−1 (j − l;D)

11



or, with m = j − l,

rk (j;D) =

j−1X
m=k−1

Ã
j−1Y

s=m+1

ns

!
bk−1 (m;D) (18)

from which (or from the definition (17))

rk (k;D) = bk (k;D)− nj+1bk (k − 1;D) = 1

Analogously, for a given rk (j;D), the definition (17) of rk (j;D) is also a recursion in bk (j;D)

that can be iterated,

bk (j;D) = rk (j;D) + nj+1bk (j − 1;D)
= rk (j;D) + nj+1rk (j − 1;D) + nj+1njbk (j − 2;D)
= rk (j;D) + nj+1rk (j − 1;D) + nj+1njrk (j − 2;D) + nj+1njnj−1bk (j − 3;D)
= · · ·

=

j−kX
l=0

⎛⎝ j+1Y
s=j+2−l

ns

⎞⎠ rk (j − l;D)

Combined with (18) leads, for j ≤ D, to

bk (j;D) =

j−kX
l=0

j−k−lX
m=0

⎛⎝ j+1Y
s=j+2−l

ns

⎞⎠⎛⎝ j−l−1Y
s=j−l−m

ns

⎞⎠ bk−1 (j − l −m− 1;D) (19)

With
j+1Y

s=j+2−l
ns

j−l−1Y
s=j−l−m

ns =
1

nj−lnj+1−l

j+1Y
s=j−l−m

ns, we have

bk (j;D) =

j−kX
l=0

j−k−lX
m=0

bk−1 (j − l −m− 1;D)
nj−lnj+1−l

j+1Y
s=j−l−m

ns

After letting q = j − k, we obtain a closed expression that relates, for j ≤ D, the coefficients bk (j;D)

to bk−1 (j;D),

bk (j;D) =

jX
q=k

q−kX
m=0

bk−1 (q −m− 1;D)
nqnq+1

j+1Y
s=q−m

ns

which is (16). ¤
A number of consequences can be drawn from Lemma 8. First, relation (19) shows that, since

b0 (j;D) is an integer, all bk (j;D) are integers and, hence, all coefficients ck (D). Moreover, an increase

in any size nj ≥ 1 of clique j cannot decrease bk (j;D).
Next, relation (14) is simplified with the definition (17) as

bk (D + 1;D) = bk−1 (D;D) + nDrk (D;D) (20)

Introducing (18) in (20) and the convention that
bY

j=a

f (j) = 1 if a > b yields

bk (D + 1;D) =
DX

m=k−1

Ã
DY

s=m+1

ns

!
bk−1 (m;D) (21)

12



The general relation (16) immediately leads, for k = 1 and using (13), to

b1 (j;D) =

jX
q=1

q−1X
m=0

1

nqnq+1

j+1Y
s=q−m

ns

q−mY
k=2

nk

=

j+1Y
s=2

ns

jX
q=1

1

nqnq+1

q−1X
m=0

nq−m

Thus, for j ≤ D, we have

b1 (j;D) =

j+1Y
s=2

ns

jX
q=1

Pq
k=1 nk

nqnq+1
(22)

Using (13) in (21) yields, with (1),

c1 (D) = −b1 (D + 1;D) = −N
DY

m=2

nm (23)

From (6), it follows that

c1 (D) = −
DY
k=1

zk

The number of minimum spanning trees, also called the complexity ξ (G∗D), of G
∗
D equals, using (23)

and (3),

ξ (G∗D) =
1

N

N−1Y
j=1

μj =
1

N

QD+1
j=1 (dj + 1)

nj−1
DY
k=1

zk

=
QD+1

j=1 (dj + 1)
nj−1

DY
m=2

nm

4.2 The general solution

Lemma 9 The k-th coefficient bk (j;D) of the polynomial tj (D;x) =
Pj

k=0 bk (j;D)x
k is, for j ≤ D

and k ≥ 1, equal to

bk (j;D) =

j+1Y
s=2

ns

j+1X
qk+1=k+1

1

nqk+1−1nqk+1

qk+1−1X
qk=k

³Pqk+1−1
t=qk

nt

´
nqk−1nqk

qk−1X
qk−1=k−1

³Pqk−1
t=qk−1

nt

´
nqk−1−1nqk−1

· · ·
q3−1X
q2=2

³Pq3−1
t=q2

nt

´
nq2−1nq2

q2−1X
q1=1

nq1

(24)

while b0 (j;D) is given by (13).

Proof (by induction): The case for k = 1, given in (22), is of the form of (24). We assume that

(24) is correct and compute bk+1 (j;D) by substituting (24) into (16),

bk+1 (j;D) =

Ã
j+1Y
s=2

ns

!
jX

q=k+1

qX
m=k+1

nm
nqnq+1

mX
qk+1=k+1

1

nqk+1−1nqk

qk+1−1X
qk=k

³Pqk+1−1
t=qk

nt

´
nqk−1nqk

· · ·
q3−1X
q2=2

³Pq3−1
t=q2

nt

´
nq2−1nq2

q2−1X
q1=1

nq1

Reversing the m- and qk+1-sum

bk+1 (j;D) =

Ã
j+1Y
s=2

ns

!
jX

q=k+1

1

nqnq+1

qX
qk+1=k+1

Pq
m=qk+1

m

nqk+1−1nqk

qk+1−1X
qk=k

³Pqk+1−1
t=qk

nt

´
nqk−1nqk

· · ·
q3−1X
q2=2

³Pq3−1
t=q2

nt

´
nq2−1nq2

q2−1X
q1=1

nq1

13



After letting q = qk+2 − 1, we verify that bk+1 (j;D) satisfies (24) for k + 1. The proves the lemma.
¤

Theorem 10 The k-th coefficient ck (D) of the polynomial pD (μ), defined in (5), is an integer and,
for k ≥ 2, equal to

(−1)kck (D) =
Ã

DY
s=2

ns

!
D+1X
qk=k

³PD+1
t=qk

nt

´
nqk−1nqk

qk−1X
qk−1=k−1

³Pqk−1
t=qk−1

nt

´
nqk−1−1nqk−1

qk−1−1X
qk−2=k−2

³Pqk−1−1
t=qk−2

nt

´
nqk−2−1nqk−2

· · ·
q3−1X
q2=2

³Pq3−1
t=q2

nt

´
nq2−1nq2

q2−1X
q1=1

nq1

(25)

while c0 (D) = 0 and c1 (D) is given by (23).

Proof: The fact that all coefficients ck (D) are integers has been shown in Section 4.1. Introducing
(24) in (21) yields

bk (D + 1;D) =

Ã
DY
s=2

ns

!
DX

m=k−1

m+1X
qk=k

nm+1
nqk−1nqk

qk−1X
qk−1=k−1

³Pqk−1
t=qk−1

nt

´
nqk−1−1nqk−1

· · ·
q3−1X
q2=2

³Pq3−1
t=q2

nt

´
nq2−1nq2

q2−1X
q1=1

nq1

=

Ã
DY
s=2

ns

!
D+1X
m=k

mX
qk=k

nm
nqk−1nqk

qk−1X
qk−1=k−1

³Pqk−1
t=qk−1

nt

´
nqk−1−1nqk−1

· · ·
q3−1X
q2=2

³Pq3−1
t=q2

nt

´
nq2−1nq2

q2−1X
q1=1

nq1

Reversing the m- and qk- sum leads to (25). ¤
Theorem 10 specifies all coefficients of the characteristic polynomial of QG∗D

, as follows from (3).

Moreover, since all coefficients of pD (μ) = μ
PD

k=0 ck+1 (D)μ
k are integers and cD+1 (D) = (−1)D+1,

pD (μ) cannot have rational zeros, but only integer zeros and irrational zeros.

4.2.1 Case k = D

Although (25) also specifies cD (D), we present an alternative, simpler form. Using (1), the coefficient

cD = (−1)D
PD+1

j=1 zj = (−1)Dtrace(−M) directly follows from the Jacobi matrix M in (11) as

cD = (−1)D (2N − n1 − nD+1) (26)

We conclude, knowing that zD+1 = 0, that

DX
j=1

zj = 2N − n1 − nD+1

Thus, the average of the zeros is

z =
1

D

DX
j=1

zj =
2N − n1 − nD+1

D
(27)

which is extremal for n1 = nD+1 = 1, given N and D.
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4.2.2 Case k = D − 1

Recursion (14) gives, for k = D,

bD (D + 1;D) = bD−1 (D;D) + nDbD (D;D)− nDnD+1bD (D − 1;D)
= bD−1 (D;D) + nD

while (15) gives, for j = k + 1 and k < D,

bk (k + 1;D) = bk−1 (k;D) + (nk + nk+2) bk (k;D)− nknk+1bk (k − 1;D)
= bk−1 (k;D) + nk + nk+2

Let y [k] = bk (k + 1;D), then y [0] = b0 (1; 1) = n2 and

y [k] = y [k − 1] + nk + nk+2

This difference equation2 has the general solution

y [k] = bk (k + 1;D) =
kX

j=1

nj +
k+2X
j=2

nj (28)

Turning to the case k = D − 1, recursion (14) gives

bD−1 (D + 1;D) = bD−2 (D;D) + nDbD−1 (D;D)− nDnD+1bD−1 (D − 1;D)
= bD−2 (D;D) + nDbD−1 (D;D)− nDnD+1

and with (28),

bD−1 (D + 1;D) = bD−2 (D;D) + nD

⎛⎝D−1X
j=1

nj +
DX
j=2

nj

⎞⎠ (29)

The term bD−2 (D;D) obeys the (15) for j = k + 2 and k ≤ D − 2,

bk (k + 2;D) = bk−1 (k + 1;D) + (nk+1 + nk+3) bk (k + 1;D)− nk+1nk+2

With (28) and denoting w [k] = bk (k + 2;D), we obtain

w [k] = w [k − 1] + (nk+1 + nk+3)

⎛⎝ kX
j=1

nj +
k+2X
j=2

nj

⎞⎠− nk+1nk+2

= w [k − 1] + nk+1

kX
j=1

nj + nk+1

k+1X
j=2

nj + nk+3

kX
j=1

nj + nk+3

k+2X
j=2

nj

2The difference equation

y [k] = y [k − 1] + f [k]

has the general solution y [k] = y [a− 1] + k
j=a f [j] for some integer a. Indeed, summing both sides over a ≤ k ≤ K

verifies the claim.
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whose solution is, with w [0] = b0 (2;D) = n2n3 by (9),

w [k] = n2n3 +
kX

j=1

nj+1

jX
q=1

nq +
kX

j=1

nj+1

j+1X
q=2

nq +
kX

j=1

nj+3

jX
q=1

nq +
kX

j=1

nj+3

j+2X
q=2

nq

= n2n3 +
k+1X
j=2

nj

j−1X
q=1

nq +
k+1X
j=2

nj

jX
q=2

nq +
k+3X
j=4

nj

j−3X
q=1

nq +
k+3X
j=4

nj

j−1X
q=2

nq

= n2n3 + n1

⎛⎝k+1X
j=2

nj +
k+3X
j=4

nj

⎞⎠+ 2 k+1X
j=2

nj

j−1X
q=2

nq + 2
k+3X
j=4

nj

j−3X
q=2

nq

+
k+1X
j=2

n2j +
k+3X
j=4

njnj−1 +
k+3X
j=4

njnj−2

Using this expression for k = D − 2 into (29) yields, for D > 1,

bD−1 (D + 1;D) = n2n3 + n1

⎛⎝D−1X
j=2

nj +
D+1X
j=4

nj

⎞⎠+ 2D−1X
j=2

nj

j−1X
q=2

nq + 2
D+1X
j=4

nj

j−3X
q=2

nq

+ nD

⎛⎝D−1X
j=2

nj +
DX
j=1

nj

⎞⎠+ D−1X
j=2

n2j +
D+1X
j=4

njnj−1 +
D+1X
j=4

njnj−2 (30)

Since cD−1 = (−1)D−1bD−1 (D + 1;D) and
PD

j=1 z
2
j = c2D−2cD−1, the variance of the zeros equals

Var [z] =
1

D

DX
j=1

(zj − z)2 =
1

D

µ
1− 1

D

¶
c2D −

2cD−1
D

4.3 Explicit expressions

We end this section by listing some explicit expression. From (25) in Theorem 10, and with N =PD+1
m=1 nm, we have

c0 (D) = 0

−c1 (D) =
Ã

DY
s=2

ns

!
N

c2 (D) =

Ã
DY
s=2

ns

!
D+1X
q=2

³
N −

Pq−1
k=1 nk

´
nq−1nq

q−1X
k=1

nk

−c3 (D) =
Ã

DY
s=2

ns

!
D+1X
q=3

³
N −

Pq−1
k=1 nk

´
nq−1nq

q−1X
i=2

³Pq−1
t=i nt

´
ni−1ni

i−1X
k=1

nk

c4 (D) =

Ã
DY
s=2

ns

!
D+1X
q=4

³
N −

Pq−1
k=1 nk

´
nq−1nq

q−1X
i=3

Pq−1
t=i nt

ni−1ni

i−1X
l=2

Pi−1
t=l nt

nl−1nl

l−1X
k=1

nk

...

cD = (−1)D (2N − n1 − nD+1)

cD+1 = (−1)D+1
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Listing the first few polynomials qD (μ), using (1),

q1 (μ) = − (μ−N)

q2 (μ) = μ2 − (N + n2)μ+Nn2 = (μ−N) (μ− n2)

q3 (μ) = −μ3 + (2N − n1 − n4)μ
2 −

¡
n22 + n23 + n1n2 + n1n3 + n1n4 + 3n2n3 + n2n4 + n3n4

¢
μ+Nn2n3

q4 (μ) = μ4 − (2N − n1 − n5)μ
3

+
¡
n22 + n23 + n24 + n4n5 + n3 (3n4 + n5) + n2 (3n3 + 3n4 + 2n5) + n1 (n2 + n3 + 2n4 + n5)

¢
μ2

−
¡
n3n4 (n3 + n4 + n5) + n2

©
n23 + n24 + 4n3n4 + (n3 + n4)n5 + n2 (n3 + n4 + n5)

ª
+ n1 (n2 + n4) (n3 + n4 + n5))μ+Nn2n3n4

shows that the coefficients rapidly become involved without a simple structure. There is one exception:

G∗D(n1, n2, ..., nD−1, nD, nD+1) with all unit size cliques, nj = 1, is a D-hop line topology, whose

spectrum is exactly known such that

qD

³
μ; {nj = 1}1≤j≤D+1

´
=

DY
k=1

µ
2

µ
1− cos

µ
kπ

D + 1

¶¶
− μ

¶

5 Bounds for the smallest positive zero of pD (μ) or qD (μ)

In this section, we present bounds of three different types deduced from: (a) the interlacing prop-

erties of zeros of orthogonal polynomials, (b) the Newton identities and (c) Rayleigh’s principles of

eigenvalues.

5.1 Interlacing properties of zeros of orthogonal polynomials

The general lower bound of Grone and Merris [7] for the algebraic connectivity in any graph is

μN−1 ≤ dmin = min
1≤j≤D+1

(ni−1 + ni + ni+1 − 1) ≤ n2 + n1 − 1

The interlacing properties of the zeros of orthogonal polynomials imply that the smallest positive zero

of tj (D;−μ) forD+1 ≥ j > 1, lies within [0, n2], irrespective of the value of n1, because t1 (x) = x+n2.

Further, since

t2 (D;x) = x2 − (n1 + n2 + n3)x+ n2n3

with zeros

x± =
1

2

µ
(n1 + n2 + n3)±

q
(n1 + n2 + n3)

2 − 4n2n3
¶

we thus find that, for all tj (D;x) with D + 1 ≥ j > 2,

zD <
1

2

µ
(n1 + n2 + n3)−

q
(n1 + n2 + n3)

2 − 4n2n3
¶
< n2

and that the largest zero z1 ≤ N is larger than

z1 >
1

2

µ
(n1 + n2 + n3) +

q
(n1 + n2 + n3)

2 − 4n2n3
¶
> n2
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Maximizing the bounds for zD implies minimizing (n1 + n2 + n3)
2 − 4n2n3 and, consequently, also

minimizing the bounds for z1. The sequence of increasingly sharper upper bounds for zD can be

continued for j > 2. Indeed,

t3 (D;x) = −x3 + (n1 + 2n2 + n3 + n4)x
2 −

¡
n1n2 + n22 + n2n3 + n1n4 + n2n4 + n3n4

¢
x+ n2n3n4

whose zeros can be determined by Cardano’s formula.

5.2 Newton identities and Laguerre’s method

The logarithmic derivative of qD (μ) is

q
0
D (μ)

qD (μ)
= −

DX
k=1

1

zk − μ

from which
q
0
D (0)

qD (0)
= −

DX
k=1

1

zk
=

c2 (D)

c1 (D)

Since 0 < zD ≤ zD−1 ≤ · · · ≤ z1, we see that

1

zD
≤ −c2 (D)

c1 (D)
=

DX
k=1

1

zk
≤ D

zD

or
c1 (D)

−c2 (D)
< zD <

Dc1 (D)

−c2 (D)

It seems that zD ≈ (D+1)c1(D)
−2c2(D) , which is the mean of the above lower and upper bounds.

We can proceed with
DX
k=1

1

z2k
=

µ
c2 (D)

c1 (D)

¶2
− 2

µ
c3 (D)

c1 (D)

¶
(and higher powers via Newton’s relations (see e.g. [13, pp. 472-477])) to find closer bounds. Following

Laguerre’s method (see e.g. [1]), we now deduce a lower bound for the algebraic connectivity zD. The

above relation shows that
1

zD
+

D−1X
k=1

1

zk
= −c2 (D)

c1 (D)

By the Cauchy-Schwarz inequality, Ã
D−1X
k=1

1

zk

!2
≤ (D − 1)

D−1X
k=1

1

z2k

we arrive at µ
c2 (D)

c1 (D)
+
1

zD

¶2
≤ (D − 1)

Ãµ
c2 (D)

c1 (D)

¶2
− 2

µ
c3 (D)

c1 (D)

¶
− 1

z2D

!
or, with y = 1

zD
,

y2 +
2

D

c2
c1
y −

µ
D − 2
D

¶µ
c2
c1

¶2
+ 2

µ
D − 1
D

¶
c3
c1
≤ 0

18



Solving the quadratic equation yields

y± = −
c2
Dc1

±

s
1

D2

µ
c2
c1

¶2
+

µ
D − 2
D

¶µ
c2
c1

¶2
− 2

µ
D − 1
D

¶
c3
c1

= − c2
Dc1

±

sµ
1− 1

D

¶2µc2
c1

¶2
− 2

µ
D − 1
D

¶
c3
c1

= − c2
Dc1

±
µ
1− 1

D

¶sµ
c2
c1

¶2
− 2D

D − 1
c3
c1

such that y ∈ [y−, y+] and

zD ≥

⎛⎝− c2
Dc1

+

µ
1− 1

D

¶sµ
c2
c1

¶2
− 2D

D − 1
c3
c1

⎞⎠−1 (31)

Again, sharper bounds can be deduced, however, by incorporating higher order coefficients ck. Nu-

merical computations, presented in [14], show that (31) is a fairly accurate.

5.3 Rayleigh’s principle for the largest zero of pD (μ) or qD (μ)

The Rayleigh principle [9] applied to the symmetric Jacobi matrix (11) for any vector y shows that

the largest eigenvalue z1 is bounded by

N ≥ z1 ≥
yT
³
−fM´ y
yT y

The common choice of the all one vector u is here inappropriate because, with uTu = D + 1,

uT
³
−fM´u

D + 1
=
(2N − n1 − nD+1)− 2

PD
j=1
√
njnj+1

D + 1
< z

where z is the average of the zeros (27). As shown in Section 3.2, the eigenvector eτ (D; 0) of the
symmetric matrix fM belonging to zD+1 = 0 has all positive components (and only equal to u if all

nj = 1). This means that the eigenvector belonging to z1 must have components with both signs (since

eigenvectors of a symmetric matrix are orthogonal). This argument shows that the lower bound may

be sharpened by considering a vector y in the Rayleigh inequality with some negative components.

The choice, where the i-th vector component is yi = (−1)i and yT y = D + 1, leads to a better lower

bound

z <
yT
³
−fM´ y

D + 1
=
(2N − n1 − nD+1) + 2

PD
j=1
√
njnj+1

D + 1
≤ z1

Notice that uT
³
−fM´u and yT

³
−fM´ y are the sum of the elements and the sum of the absolute

value of the elements of −fM , respectively.
6 Spectrum of the adjacency matrix

The spectrum of the adjacency matrix AG∗D
can be derived from its quotient matrix, since the parti-

tion that separates the graph G∗D(n1, n2, ..., nD+1) into cliques Kn1 ,Kn2 , ...,KnD+1 is equitable. The
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corresponding quotient matrix of the adjacency matrix of G∗D, as defined in Section 2, is

Aπ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n1 − 1 n2

n1 n2 − 1 n3

n2 n3 − 1 n4
. . .

nD−1 nD − 1 nD+1

nD nD+1 − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Using the same method and arguments as in the proof of Theorem 5, we find that the non-trivial

eigenvalues of AG∗D
are the zeros of

det (Aπ − λI) =
YD+1

j=1
φj

where φj follows the recursion

φj = nj − 1− λ− nj−1nj
φj−1

(32)

with initial condition φ0 = 1 and with the convention that n0 = nD+2 = 0.

The characteristic polynomial of the adjacency matrix AG∗D
can be also deduced from Theo-

rem 5. The eigenvalues of the adjacency matrix AG∗D
, presented in Section B, are the solutions

of det
³
AG∗D

− λI
´
= 0, where

det
³
AG∗D

− λI
´
=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J − xI Jn1×n2
Jn2×n1 J − xI Jn2×n3

. . .

Jni×ni−1 J − xI Jni×ni+1
. . .

JnD×nD−1 J − xI JnD×nD+1
JnD+1×nD+1 J − xI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and where x = λ + 1. This determinant is equal to (−1)N det

³
QG∗D

− μI
´
with δj = x, for all

1 ≤ j ≤ D + 1. Theorem 5 shows that the characteristic polynomial of the adjacency matrix AG∗D
of

G∗D(n1, n2, ..., nD+1) equals

det
³
AG∗D

− λI
´
= (−1)N wD (x)x

N−D−1

where the polynomial wD (x) =
QD+1

j=1 φj is of degree D+1 in x = λ+1 and the function φj = φj (D;x)

obeys the recursion (32).

Clearly all eigenvalues, different from λ = −1 (or x = 0), are the zeros of wD (x). Similarly as

for pD (x), wD (x) is also an orthogonal polynomial that obeys, with φj (x) =
vj(x)

vj−1(x)
, the three-term

recursion

vj (x) = (x− nj) vj−1 (x)− nj−1njvj−2 (x) for 1 ≤ j ≤ D + 1 (33)
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where v−1 (x) = 0 and v0 (x) = 1. Thus, wD (x) =
QD+1

j=1 φj = vD+1 (x), whose zeros yD+1 < yD <

· · · < y1 are all real and simple, and lying in the orthogonality interval, which is here [−N + 2,N ],

as follows from the general properties of the adjacency spectrum after a unit-shift because x = λ+ 1.

The corresponding symmetrized Jacobi matrix is

eA =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

n1
√
n1n2√

n1n2 n2
√
n2n3

. . . . . . . . .
√
nD−1nD nD

√
nDnD+1

√
nDnD+1 nD+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The sum of all non-trivial eigenvalues is trace

³ eA´ = N , while the product

D+1Y
j=1

yj = det eA = 1{D 6=3N+1} (−1)(D+1)mod 3 D+1Y
k=1

nk

Thus, det eA = 0 if D = 1, 4, 7, . . . , 3N + 1, implying that in those cases wD (x) has a zero at x = 0.

In addition, inspite that the structure of (33) is simpler than that of (8), it turns out that finding an

explicit expression for the coefficients of wD (x) is more complicated due to the lack of a two-term

recursion derived in Section 4.1 for the Laplacian.

The largest eigenvalue y1 is found by the Raileigh principle (section 5.3) applied to the non-

symmetric Jacobian as Jacobian A instead of eA
dmax + 1 = max

1≤j≤D+1
(nj−1 + nj + nj+1) ≥ y1 ≥

uTAu

D + 1
=

N +D +
PD

j=1 njnj+1

D + 1

that, for small diameters D, can be better than the classical lower bound is E [d] + 1 = 2L
N + 1,

where the number of links is given in (2). The classical lower bound is very near to wTAw
wTw

with

w =
h √

n1
√
n2 · · · √nD+1

iT
,

y1 ≥
1

N

⎛⎝D+1X
j=1

njnj−1 +
D+1X
j=1

n2j +
D+1X
j=1

njnj+1

⎞⎠
The recursion (33) is simpler than the recursion (8) of the Laplacian, because of two reasons.

First, the Laplacian recursion (8) had a special equation for j = D + 1 which is crucial to establish a

zero eigenvalue. As mentioned, this zero lies at the boundary of the orthogonality interval and, thus,

prevents to extend that set for j > D + 1. The set (33) has no such limitations which implies that,

for all diameters D (but not constant N), the zeros of wD (x) are all interlacing (as opposed to pD (μ)

for the Laplacian)!

6.1 When eA is bisymmetric

Numerical computations in [14] show that the largest algebraic connectivity is achieved, in most (but

not in all) cases, when G∗D(n1, n2, ..., nD+1) is symmetric, nj = nD+2−j for all 1 ≤ j ≤ D + 1.
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Theorem 4 also confirms that a symmetric graph G∗D attains the highest possible spectral radius. For

the adjacency matrix, consequences of symmetry are tractable to analyse algebraically, as we will show

below. Matters are more complicated for the Laplacian (mainly due to the asymmetry nD, instead of

nD−1 + nD+1, in the bottom diagonal element of M (or fM) as mentioned earlier).
A matrix B is bisymmetric [10] if B is symmetric, B = BT , and, in addition, persymmetric,

B = BF , where the flip-transpose BF flips a matrix across its skew-diagonal (the lower-left to upper-

right diagonal). Thus, a 2n× 2n bisymmetric matrix B must have the block structure

B =

"
B1 BT

2

B2 BF
1

#

where the n × n matrix B1 = BT
1 is symmetric and B2 = BF

2 is persymmetric. Reid [10] shows that

the eigenvalues of B are the eigenvalues of B1 + RB2 and B1 − RB2, where the matrix R has all

ones on the skew-diagonal and zeros elsewhere. Also, R = RT and BF = RBTR. In addition, if y is

an eigenvector of B1 + RB2, then [y,Ry]
T is an eigenvector of B belonging to the same eigenvalue.

Likewise, if w is an eigenvector of B1 −RB2, then [−w,Rw]T is an eigenvector of B belonging to the

same eigenvalue.

Let D = 2m− 1, then the 2m× 2m matrix eA is bisymmetric if nj = nD+2−j for all 1 ≤ j ≤ D+1

such that eA2m×2m = " eAm×m nmeme
T
1

nme1e
T
m

eAF
m×m

#
The eigenvalues of eA2m×2m are those of the matrix T± = eAm×m ± nmRe1e

T
m. Since Re1e

T
m = eme

T
m is

the zero matrix with element Omm = 1, we have explicitly that

T± =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n1
√
n1n2√

n1n2 n2
√
n2n3

. . . . . . . . .
√
nm−2nm−1 nm−1

√
nm−1nm

√
nm−1nm nm ± nm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Thus,

det (T± − xI) =

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

n1 − x
√
n1n2√

n1n2 n2 − x
√
n2n3

. . . . . . . . .
√
nm−2nm−1 nm−1 − x

√
nm−1nm

√
nm−1nm nm − x± nm

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

We expand the determinant in cofactors of the last row

det (T± − xI) = −√nm−1nmcofactorm;m−1T± + (nm − x± nm) cofactorm;mT±

The first cofactor is

−√nm−1nmcofactorm;m−1T± = −
√
nm−1nmcofactorm;m−1 eAm×m

= −nm−1nm det
³ eA(m−2)×(m−2) − xI

´
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and the second is

(nm − x± nm) cofactorm;mT± = (nm − x± nm) cofactorm;m eAm×m

= (nm − x± nm) det
³ eA(m−1)×(m−1) − xI

´
Since

det
³ eAm×m − xI

´
= −√nm−1nmcofactorm;m−1 eAm×m + (nm − x) cofactorm;m eAm×m

we obtain

det (T± − xI) = det
³ eAm×m − xI

´
± nm det

³ eA(m−1)×(m−1) − xI
´

Reid’s theorem states that

det
³ eA2m×2m − xI

´
= det

¡
(T−)m×m − xI

¢
det

¡
(T+)m×m − xI

¢
which leads to a relation for the “bisymmetric” orthogonal polynomials, denoted by w∗m (x), in terms

of vm (x),

w∗2m (x) = (vm (x)− nmvm−1 (x)) (vm (x) + nmvm−1 (x)) (34)

= v2m (x)− n2mv
2
m−1 (x)

In case of a bisymmetric Laplacian, the corresponding det (T± − xI) cannot be rewritten solely

in terms of det
³fMm×m − xI

´
, but Reid’s theorem still tells us that the bisymmetric orthogonal

polynomial p∗2m (x) can be factorized into two polynomials of degree m.

7 Conclusion

The Laplacian spectrum of the class G∗D(n1, n2, ..., nD+1) with extremal eigenvalue properties is com-

puted and shown to be related to orthogonal polynomials. Afterall, it is not so surprising to see

orthogonal polynomials appearing because of the block tri-diagonal structure of either the adjacency

AG∗D
or Laplacian QG∗D

matrix. Moreover, orthogonal polynomials are often optimizers of problems.

Although a first step is made, we believe that still more properties may be discovered such as

spacing and other properties of the zeros of pD (μ) and of wD (x). More fundamentally, the numerically

observed fact that a bi-symmetric Jacobian [10], where nj = nD+2−j , almost always provides the

largest possible algebraic connectivity is still open to prove rigorously. In some cases, though, small

deviations from symmetry occur, that, at first glance, are unusual because they lead to an asymmetric

graph G∗D.
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A Results from linear algebra

If

Xm×m = (J − (λ+ 1) I)m×m (35)

then the inverse matrix of X is

X−1 = − 1

(λ+ 1) (λ+ 1−m)
(J + (λ+ 1−m) I)m×m (36)

We now compute

Y = J(N−m)×mX
−1
m×mJm×(N−m)

= − 1

(λ+ 1) (λ+ 1−m)
J(N−m)×m (Jm×m + (λ+ 1−m) Im×m)Jm×(N−m)

Using Jk×nJn×l = nJk×l gives

Y = − 1

(λ+ 1) (λ+ 1−m)

¡
mJ(N−m)×m + (λ+ 1−m)J(N−m)×m

¢
Jm×(N−m)

= − 1

(λ+ 1) (λ+ 1−m)

¡
m2J(N−m)×(N−m) +m (λ+ 1−m)J(N−m)×(N−m)

¢
whence

Y = − m

(λ+ 1−m)
J(N−m)×(N−m) (37)

Finally, it is shown in [13, p. 481] that,

det (J − xI)n×n = (−1)nxn−1 (x− n) (38)
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and we will need [9]

det

"
A B

C D

#
= detAdet

¡
D − CA−1B

¢
(39)

where D − CA−1B is called the Schur complement of A.

B Second proof of Theorem 5

The adjacency matrix of G∗D(n1, n2, ..., nD+1) is

AG∗D
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eJn1×n1 Jn1×n2
Jn2×n1 eJn2×n2 Jn2×n3

. . .

Jni×ni−1 eJni×ni Jni×ni+1
. . .

JnD×nD−1 eJnD×nD JnD×nD+1
JnD+1×nD+1 eJnD+1×nD+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where eJ = J − I. The eigenvalues of corresponding Laplacian QG∗D

= ∆G∗D
− AG∗D

are the solutions

of det
³
QG∗D

− μI
´
= 0, where

det
³
QG∗D

− μI
´
=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1I − J −Jn1×n2
−Jn2×n1 δ2I − J −Jn2×n3

. . .

−Jni×ni−1 δiI − J −Jni×ni+1
. . .

−JnD×nD−1 δDI − J −JnD×nD+1
−JnD+1×nD+1 δD+1I − J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where we have defined

δ1 =n1 + n2 − μ

δi =ni−1 + ni + ni+1 − μ for i ∈ [2,D]
δD+1 =nD + nD+1 − μ

The dimensions of the block diagonal matrix are ni × ni (and omitted to make the matrix fit on the

page). Clearly, the degree di of a node in clique i equals δi when μ = 1. The submatrix of QG∗D
− μI

consisting of the last D + 2− j block rows and block columns is denoted by Tj ; thus, Tj is the right

bottom
XD+1

i=j
ni×

XD+1

i=j
ni sub-matrix of QG∗D

− μI, where 1 ≤ j ≤ D + 1 and T1 = QG∗D
− μI.
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Applying (39) yields

detT1 = det (δ1I − Jn1×n1) det

⎛⎜⎝T2 −

⎡⎣ Jn2×n1
0 Pi=D+1

i=3 ni ×n1

⎤⎦ (δ1I − Jn1×n1)
−1

⎡⎣ Jn2×n1
0 Pi=D+1

i=3 ni ×n1

⎤⎦T
⎞⎟⎠

= det (δ1I − Jn1×n1) det

⎛⎜⎜⎝T2 −

⎡⎢⎢⎣
Jn2×n1 (δ1I − Jn1×n1)

−1 Jn1×n2 0
n2×

Pi=D+1
i=3 ni

0 Pi=D+1
i=3 ni ×n2

0 Pi=D+1
i=3 ni ×

Pi=D+1
i=3 ni

⎤⎥⎥⎦
⎞⎟⎟⎠

Using (35) and (37) results in

Jn2×n1 (δ1I − Jn1×n1)
−1 Jn1×n2 =

n1
δ1 − n1

Jn2×n2

while application of (38) yields

det (δ1I − Jn1×n1) = δn1−11 (δ1 − n1)

Thus, with the definition

θ1 = δ1 − n1

we obtain

detT1 = δn1−11 θ1 det eT2
where

eT2 = T2 −

⎡⎢⎢⎣
n1
θ1
Jn2×n2 0

n2×
Pi=D+1

i=3 ni

0 Pi=D+1
i=3 ni ×n2

0 Pi=D+1
i=3 ni ×

Pi=D+1
i=3 ni

⎤⎥⎥⎦
We observe that the matrix at the right hand side has the same structure as that of T2, except that

the first block row and block column is now δ2I −
³
1 + n1

θ1

´
Jn2×n2 = δ2I − δ1

δ1−n1Jn2×n2 . We apply

the same operations on

det eT2 = detµδ2I − δ1
δ1 − n1

Jn2×n2

¶
×

det

⎛⎜⎝T3 −

⎡⎣ Jn3×n2
0 Pi=D+1

i=4 ni ×n2

⎤⎦µδ2I − δ1
δ1 − n1

Jn2×n2

¶−1 ⎡⎣ Jn3×n2
0 Pi=D+1

i=4 ni ×n2

⎤⎦T
⎞⎟⎠

= δn2−12

µ
δ2 −

δ1n2
δ1 − n1

¶
det

⎛⎜⎜⎝T3 −

⎡⎢⎢⎣
n2

δ2− δ1n2
δ1−n1

Jn3×n3 0
n3×

Pi=D+1
i=4 ni

0 Pi=D+1
i=4 ni ×n3

0 Pi=D+1
i=4 ni ×

Pi=D+1
i=4 ni

⎤⎥⎥⎦
⎞⎟⎟⎠

= δn2−12 θ2 det

⎛⎜⎜⎝T3 −

⎡⎢⎢⎣
n2
θ2
Jn3×n3 0

n3×
Pi=D+1

i=4 ni

0 Pi=D+1
i=4 ni ×n3

0 Pi=D+1
i=4 ni ×

Pi=D+1
i=4 ni

⎤⎥⎥⎦
⎞⎟⎟⎠

where θ2 = δ2 − δ1n2
δ1−n1 = δ2 −

³
n1
θ1
+ 1
´
n2. Since the matrix

eT3 = T3 −

⎡⎢⎢⎣
n2
θ2
Jn3×n3 0

n3×
Pi=D+1

i=4 ni

0 Pi=D+1
i=4 ni ×n3

0 Pi=D+1
i=4 ni ×

Pi=D+1
i=4 ni

⎤⎥⎥⎦
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again possesses a similar structure, we claim that

eTj = Tj −

⎡⎢⎢⎣
nj−1
θj−1

Jnj×nj 0
nj×

Pi=D+1
i=j+1 ni

0 Pi=D+1
i=j+1 ni ×nj

0 Pi=D+1
i=j+1 ni ×

Pi=D+1
i=j+1 ni

⎤⎥⎥⎦ (40)

obeys the recursion

det eTj = δ
nj−1
j θj det eTj+1 (41)

where θj is defined by the recursion (4) with the convention that n0 = 0 and θ0 = 1, because

θ1 = δ1 − n1.

We have shown that (40), (41) and (4) hold for j = 1 and j = 2. Assuming that (40) holds for

j + 1 (induction argument), we compute det eTj+1 similarly,
det eTj+1 = detµδj+1I −µnj

θj
+ 1

¶
Jnj+1×nj+1

¶
×

det

⎛⎜⎝Tj+2 −

⎡⎣ Jnj+2×nj+1
0 Pi=D+1

i=j+3 ni ×nj+1

⎤⎦µδj+1I −µnj
θj
+ 1

¶
Jnj+1×nj+1

¶−1
×

⎡⎣ Jnj+2×nj+1
0 Pi=D+1

i=j+3 ni ×nj+1

⎤⎦T
⎞⎟⎠

= δ
nj
j+1

µ
δj+1 −

µ
nj
θj
+ 1

¶
nj+1

¶

× det

⎛⎜⎜⎝Tj+2 −

⎡⎢⎢⎣
nj+1

δj+1−
nj
θj
+1 nj+1

Jnj+2×nj+2 0
nj+2×

Pi=D+1
i=j+3 ni

0 Pi=D+1
i=j+3 ni ×nj+2

0 Pi=D+1
i=j+3 ni ×

Pi=D+1
i=j+3 ni

⎤⎥⎥⎦
⎞⎟⎟⎠

= δ
nj
j+1θj+1 det

⎛⎜⎜⎝Tj+2 −

⎡⎢⎢⎣
nj+1
θj+1

Jnj+2×nj+2 0
nj+2×

Pi=D+1
i=j+3 ni

0 Pi=D+1
i=j+3 ni ×nj+2

0 Pi=D+1
i=j+3 ni ×

Pi=D+1
i=j+3 ni

⎤⎥⎥⎦
⎞⎟⎟⎠

where θj+1 = δj+1 −
³
nj
θj
+ 1
´
nj+1. Hence, (40) holds for j + 2 and the recursion (41) are (4) are

followed. By induction, (40), (41) and (4) hold for any 1 ≤ j ≤ D + 1. But,

eTD+1 = TD+1 −
nD
θD

JnD+1×nD+1

= δD+1I −
µ
1 +

nD
θD

¶
JnD+1×nD+1

such that, with (38),

det eTD+1 = δ
nD+1−1
D+1

µ
δD+1 −

µ
1 +

nD
θD

¶
nD+1

¶
= δ

nD+1−1
D+1 θD+1

Iterating (41) back finally yields

det
³
QG∗D

− μI
´
=
QD+1

j=1 δ
nj−1
j

QD+1
j=1 θj

which is (3).

27


