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Function of network

» Usually, the function of a network is related to the
transport of items over its underlying graph

» In man-made infrastructures: two major types of
transport
o Item is a flow (e.g. electrical current, water, gas,...)
o Item is a packet (e.g. IP packet, car, container,
postal letter,...)

» Flow equations (physical laws) determine transport
(Maxwell equations (Kirchoff & Ohm), hydrodynamics, Navier-
Stokes equation (turbulent, laminar flow equations, etc.)

» Protocols determine transport of packets (IP protocols
and IETF standards, car traffic rules, etc.)
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For an undirected graph: A = AT is symmetric

Number of neighbors of node iis the degree: d; = 2 a,

if there is a link between node i and j, then a; = 1 &
else a; = 0 TUDelft




Incidence matrix B
N=6
+ Label links (e.g.: I, = (1,2), I, = (1,3), |l = (1,6),
ly =(2,3), 1s =(2,5), Is =(2,6), 1, =(34), Is =(4,5), Iy =(5,6))
» Col kfor link I, = (i,j) is zero, except:
sourcenodei=1 > b, =1
destination node j = -1 > by, =-1

1 1 -1 O O o o0 o

-1 0 O 1 -1 1 o 0 O

B o -1 0o -1 0 O 1 o O
NxL

0O O 0 o o o0 -1 -1 O

o o o0 o 1 o O 1 -1

o O 1 o o -1 0 O 1

Col sum Bis zero: u'B=0
where the all-one vector v = (1,1,...,1)

B specifies the directions of links 'ifu Delft

Laplacian matrix Q
N=6 -
3 -1 -1 O 0o -1
-1 4 -1 O -1 -1
-1 -1 3 -1 O 0
0 o -1 2 -1 O
o -1 0 -1 3 -1
| -1 -1 O o -1 3

0= BB =A—A4 Since BB’ is symmetric, so are
_ Aand Q. Although B specifies
A=diag(d, d, ... d,) directions, Aand Qlost this info here.

Ou=0 u is an eigenvector of Q
Belonging to eigenvalue u = 0

Basic property:

Qu=BB'u=0 because O0=u'B=B"u 14U Delft




Electrical Circuits as Graphs

» An electrical circuit can be represented as a graph G(N,L):
o Terminals, buses :> Nodes

o Lines, branches Links
5 L
T
I o T2
1.4 Vi Y,
A C) o) § Rs
1 1
An electrical circuit Its undirected & directed graph

North-Eastern Hill University, EE-304 Electrical Network Theory [Class Notes1] - 2013
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Analysis of Electrical Circuits

« Find all link currents (y;;) and node voltages (v;) from the
known parameters in the network

e Two important laws apply:

Kirchhoff’s Current Law (a conservation law): The sum of all
the directed currents at each noqve i in a circuit equals zero:

Yij =Ea,~]~y,-j =0
JjEneighbors(i) Jj=1
Ohm's Law: The current through a conductor equals the
potential difference over the conductor multiplied by its
resistance. For any link between two nodes jand j with a
resistance ry;:
V=V, =1,y

Recall that A = AT: thus a; = a;; A represents link existence; P
B specifies link directionality and the link current obeys y; = -y;. TU Delft
Both the vector vand v can have negative components




Current-voltage relation for any graph

. 1
Ohm'S LaW- VI'V]: Uyll — ylj =—(vl-—vj)
ij N
Kirchhoff’s law (conservation law): x, = E V= Eaijyij
JjEneighbors(i) j=1

Substituting Ohm'’s law into Kirchhoff’ Iaw

SRR RN

J=1 i J=1 l] J=1 tJ

We define a weighted Laplacian by O =A- A, where the

elements in the weighted adjacency matrix A are a;=—a;

= T

Finally: x=Q0v

T
Clearly, if all r; = 1, then Q =0 'i"U Delft

Pseudo-inverse of the Laplacian (1)
Since det Q = 0, we cannot solve x=Qvas v=Q'x

The spectral decomposition of the Laplacian: Q = ZMZ"
where Zis the orthogonal eigenvector matrix (Z72=22"=1)
and M is the diagonal matrix with the ordered eigenvalues

= U, —--->MN1 MN =0
N-1
u
Expanding Q = ZMZ": Q= Eukzkzk Eukzkzk + A’,V uu” = gukzkz,f

Since G is connected, p, > 0 for 0<k<N, so that the matrix

= E_Zkzk

klk

exists and is called the pseudo-inverse of Q.
1 R
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Pseudo-inverse of the Laplacian (2)

The pseudo-inverse of Q

A 1
0'=)>—zz
k=t M
obeys 0'0=00"=1- % J

Indeed, use orthogonality z,'z; = §,;and Z7Z2=ZZ"=I

0'0- E—zkzkzu, 22#1 zk(zk )z Ezkzk= TT_I_iJ

e M k=1 j=1
. .| A a1
An alternative form is (O™ =(Q+aJ) I—FJ for any a=0

P. Van Mieghem, Graph Spectra for Complex Networks,
Cambridge University Press, 2010, p.203-206 TU Delft

Matrix Representations of the Basic Laws
Using the pseudo-inverse on x = Qv

Q'lx = Q'le = (I —%J)v
Further ([—LJ)V V- u(” v)—v—vavemgeu

N N

Hence, from the spectral desomposition of the Laplacian matrix
0= E;ukzkzlz -

k= A~
the pseudo-inverse is constructed as O = Eizkz,f
=t M
The potential vector v is determined from the injected current

vector x

« Only potential differences matter!
» Choose e.9. Voyeraqe =0

vV—v u=Q‘1x

average

Observe that ' Q™' =0 sothat u'v— vavemgeuTu =0 m— Ve = ~




Effective Resistance Matrix Q
We consider a network in which a flow with magnitude I. is
injected in node a and the flow leaves the network at node b

The injected current vector x = I. (e, — €,), Where the basic
vector e, has components (€)= J;
1

The general voltage-injected current vector relation v=0Q" x
shows v=10"(e,~e,)

The aim is to determine the effective resistance matrix Q
with elements w,, that satisfy v, - v,= I. o,

A~

Since v, —v, = (e, —¢,) v, wehavev, —v, =1 (e, —¢,) 07 (e, —e¢,)

wab = (ea - eb)T Q_l (ea - eb)

P. Van Mieghem, Graph Spectra for Complex Networks,

<3
Cambridge University Press, 2010, p.203-206 TU Delft

Effective Resistance Matrix Q

A

Multiplying out |, = (e, —¢,) 0" (e, —e¢,)

yields w,=(07") +(0") -2(07)

so that the effective resistance matrix is
Q=ul"+Cu" —2Q‘1
where the vector (s

£ = ((Q‘l)“ ,(Q_l)22 & "(Q_l)NN)

T
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Effective Resistance Matrix Q

Properties of |Q = u&” +Eu’ -207"

1. Symmetric: QT = Q
2. All diagonal elements of Q are zero
3. Triangular inequality: w;; < w;,+ wy;

The effective graph resistance is defined as|R; = %uTQu

R measures the difficulty of transport in a graph G: low R corresponds
to a “good conducting” network (i.e. low resistance to flows)

Since ' Q™'u=0 (each eigenvector z, with k< N is orthogonal to z, = u)
N-1
A 1
. T -1
wefind R,=Nu = Ntrace(Q )= NEM_
i=1 M
TTTEETT——

Ellens, W. , F. A. Spieksma, P. Van Mieghem, A. Jamakovic and R. E. Kooij,
2011, "Effective Graph Resistance", Linear Algebra and its Applications,

Vol. 435, pp. 2491-2506. TUDelft

More general than resistor networks

x(s) = Q(s)v(s) for link impedances r; + sL; + %Cl
Processes ‘proportional’ to the network topology (graph)
The analogy with voltage is in brackets:

o water flow networks (height of water column)

o spring-mass systems (energy stored in spring)

o gas networks (pressure)

o warmth diffusion in networks (temperature)
Processes described by a weighted Laplacian

» Any Markovian continuous-time processes, where the
infinitesimal generator is minus a weighted Laplacian
of the Markov state graph)

T ———
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P. Van Mieghem, K. Devriendt and H. Cetinay, “"Pseudo-inverse of the 1,-‘U D Ift
Laplacian and best spreader node in a network”, unpublished, 2017 e

New electrical matrix equations

Recall the inverse current-voltage relations
x =Qv v=0Q%

1
Matrix Ohm law: v= _W(N I —))Ox

where the effective resistance matrix is denoted by Q

1
Power g dissipated in the network: g = _ExTQx

Current/flow eigenvalue equation: QQOx = —2x

3
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Relation between “function” and
“structure” of a network

1— —4

2 —
53— Black Box > > Qexe

Block inverse (inspired by Fiedler, "Geometry of Laplacian”, LAA, 1998):

o g Cenge ()|
w0l - (gt ) Q

where (QC + %u) is the eigenvector of QQ belonging to

the zero eiﬁenvalue.

£-((2),(2),(2"),,) 1,!U Delft

Geometry

T

Spectral decomposition: 0% = ZM*ZT = (Z\/M$) (Z\/M$)
T
The matrix 5% = (Z M$) has rank N-1 (row N =0 due to uy = 0)
The i-th column vector s; = point p; in (N-1)-dim space AND
2
lIsi = sll;, = @y

All' N points p; form a hyperacute simplex with volume V
1

TNz

where the number of (weighted) spanning trees ¢ is

K. Menger, “"New foundation of Euclidean geometry”,

N-1
_f_ﬁ ”k_
k=1

American Journal of Mathematics, 53(4):721-745, 1931 'I(';U Delft

10



Graph metrics

The volume V; (or the weighted complexity)

N-1
=il 1=z
= — ‘uk = ﬁ
N1l 2(N'V,)
provides similar information as the effective graph resistance

N-1
R =N Z Hi
k=1

by concavity of log(x) function:

Small volume — large number of spanning trees
— good conductance

3
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] -low effective graph resistance  |IIEIEN

Graph metrics

1 N R N—ll
Average — =G = _
g Ngék v R, N;Mk

R; is the effective graph resistance

1 N R 2 VR N-1 1 N-1 1
Variance — -S|l =— wmVR=(N=-1)) ——| } —
N z(g" N2) N? ( ); u

: k=1 U
Most ¢ lie in the interval R—‘;——“VR,R—‘;+—M
N N N N

VR reflects the nodal spreading heterogeneity in the graph

-((2%),,:(2°),-(2%),,) FUDelt
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Open problem: when is Q% a (weighted)
Laplacian?

L. (Q$)ii = (Q$)ij

1 (0. _ 1) Similar to Heisenberg's
2 (@ (@ = (1 N) uncertainty relation
1
R; = (N — 1)2E [E]
3. @ ") < dii(l - %)"'r}gglx Q@ Y
4, If ' is a weighted Laplacian then
1 1\? _5- 1 1 e
z(1=3) =@Yu=z(1-7) 5
TUDelft
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Inverses: x = Qv and v=Q°®x with the convention for voltages u’v=0
Q : weighted Laplacian of the graph
Q¢ : pseudo-inverse of the weighted Laplacian: Q.Q%=Q%.Q =1-1/NJ

X: vector with external nodal current
v: vector with nodal potentials

v, = (@%); Ifx=¢-1/Nu

The best spreader is the node k with minimum (Q#),,

T
2

g=((Q$)ll,(Q$)22’”.,(Q$)NN) TUDeIft

Technische Universiteit Delft

Interpretation: best spreader node

Inverses: x = Qv and v=0Q°%x Clearly: u"x=0 andu'v=0
N

z (v —vi)

k=1

The best spreader minimizes the sum of potential differences
between its and all other node potentials

2| =

v; = (@); issameas (Q°), =v;—u'v=

‘ “closeness” minimization of average distance to
all other nodes

mmmm)  best spreader lies in center of “gravity”

.
c-((2%),,:(2%),-(2%),,) fuDelrt

Technische Universiteit Delft
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Closeness Cl. and (@)

Closeness CI; of a node i is the reciprocal of the total
hopcount of all shortest path at this node /to all other
nodes in the graph G:

Cli =

1
Y jeaviy H(PL))
Concept of distance in both C/;and (@?);

o All paths [(@?),] versus only the shortest path [C/; ]

o (Q%); lowerbounds Cl;
((@%);; = Cl. in trees with unit link weights)

(Q?%);; is more analytically tractable than a shortest path
computation (closeness)

P. Van Mieghem, Performance Analysis of Complex Networks and Systems, (‘
Cambridge University Press, 2014, p. 370 TU Delft

Contemplation: best spreader node

» Valid for any weighted Laplacian
o Not heuristic, but based on the law of conservation
o If resistances r; = 1: pure graph focus

o The infinitesimal generator of a continuous-time
Markov chain (MC) is minus a weighted Laplacian
(which is not necessarily symmetric!)

» Huge potential as nearly all processes can be approximated
by a MC, provided the state space is sufficiently large

 Interpretations:

o Ranking of nodes according to “diffusive centrality” or
dynamic connectivity to all others

o Resilience/Robustness: Safe-guarding nodes in this

rinkinﬁ ii iiiiri ﬁinimli iriiiiiii
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number of removed nodes
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