

Outline

Background: Electrical matrix equations

New graph metrics
Best nodal spreader

Function of network

- Usually, the function of a network is related to the transport of items over its underlying graph
- In man-made infrastructures: two major types of transport
- Item is a flow (e.g. electrical current, water, gas,...)
- Item is a packet (e.g. IP packet, car, container, postal letter,...)
- Flow equations (physical laws) determine transport (Maxwell equations (Kirchoff \& Ohm), hydrodynamics, NavierStokes equation (turbulent, laminar flow equations, etc.)
- Protocols determine transport of packets (IP protocols and IETF standards, car traffic rules, etc.)

Adjacency matrix A

$$
A_{N \times N}=\left[\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & \mathrm{Q} & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

For an undirected graph: $A=A^{\top}$ is symmetric
Number of neighbors of node i is the degree: $\quad d_{i}=\sum_{k=1}^{N} a_{i k}$
if there is a link between node i and j, then $a_{i j}=1$
else $a_{i i}=0$

Incidence matrix B

Col sum B is zero: $\quad u^{T} B=0$
where the all-one vector $u=(1,1, \ldots, 1)$

B specifies the directions of links
THDelft

Laplacian matrix Q

$$
Q_{N \times N}=\left[\begin{array}{cccccc}
3 & -1 & -1 & 0 & 0 & -1 \\
-1 & 4 & -1 & 0 & -1 & -1 \\
-1 & -1 & 3 & -1 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 \\
0 & -1 & 0 & -1 & 3 & -1 \\
-1 & -1 & 0 & 0 & -1 & 3
\end{array}\right]
$$

$Q=B B^{T}=\Delta-A \quad$ Since $B B^{T}$ is symmetric, so are
$\Delta=\operatorname{diag}\left(\begin{array}{llll}d_{1} & d_{2} & \ldots & d_{N}\end{array}\right)$ A and Q. Although B specifies directions, A and Q lost this info here.

Basic property: $Q u=0$
u is an eigenvector of Q Belonging to eigenvalue $\mu=0$

$$
Q u=B B^{T} u=0 \quad \text { because } 0=u^{T} B=B^{T} u \quad \text { TUDelft }
$$

Electrical Circuits as Graphs

- An electrical circuit can be represented as a graph $G(N, L)$:
- Terminals, buses
- Lines, branches

Nodes
Links

Its undirected \& directed graph

Analysis of Electrical Circuits

- Find all link currents ($y_{i j}$) and node voltages $\left(v_{i}\right)$ from the known parameters in the network
- Two important laws apply:

Kirchhoff's Current Law (a conservation law): The sum of all the directed currents at each node i in a circuit equals zero:

$$
\sum_{j \in \text { neighbors }(i)} y_{i j}=\sum_{j=1}^{N} a_{i j} y_{i j}=0
$$

Ohm's Law: The current through a conductor equals the potential difference over the conductor multiplied by its resistance. For any link between two nodes i and j with a resistance $r_{i j}$:

$$
v_{i}-v_{j}=r_{i j} y_{i j}
$$

Current-voltage relation for any graph

Ohm's Law: $v_{i}-v_{j}=r_{i j} y_{i j} \longrightarrow y_{i j}=\frac{1}{r_{i j}}\left(v_{i}-v_{j}\right)$
Kirchhoff's law (conservation law): $\quad x_{i}=\sum_{j \in \text { neighbors(i) }} y_{i j}=\sum_{j=1}^{N} a_{i j} y_{i j}$
Substituting Ohm's law into Kirchhoff's law:

$$
x_{i}=\sum_{j=1}^{N} \frac{a_{i j}}{r_{i j}}\left(v_{i}-v_{j}\right)=v_{i} \sum_{j=1}^{N} \frac{a_{i j}}{r_{i j}}-\sum_{j=1}^{N} \frac{a_{i j}}{r_{i j}} v_{j}
$$

We define a weighted Laplacian by $\tilde{Q}=\tilde{\Delta}-\tilde{A}$, where the elements in the weighted adjacency matrix \tilde{A} are $\tilde{a}_{i j}=\frac{1}{r_{i j}} a_{i j}$ Finally:

$$
x=\tilde{Q} v
$$

Clearly, if all $r_{i j}=1$, then $\tilde{Q}=Q$

Pseudo-inverse of the Laplacian (1)

Since $\operatorname{det} \mathrm{Q}=0$, we cannot solve $x=Q v$ as $v=Q^{-1} X$
The spectral decomposition of the Laplacian: $\mathbf{Q}=\mathbf{Z M Z}{ }^{T}$ where Z is the orthogonal eigenvector matrix $\left(Z^{\top} Z=Z Z^{\top}=I\right)$ and M is the diagonal matrix with the ordered eigenvalues

$$
\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{N-1} \geq \mu_{N}=0
$$

Expanding $\boldsymbol{Q}=\mathbf{Z} \mathbf{M Z}^{T}: \quad Q=\sum_{k=1}^{N} \mu_{k} z_{k} z_{k}^{T}=\sum_{k=1}^{N-1} \mu_{k} z_{k} z_{k}^{T}+\frac{\mu_{N}}{N} u u^{T}=\sum_{k=1}^{N-1} \mu_{k} z_{k} z_{k}^{T}$
Since G is connected, $\mu_{k}>0$ for $0<k<N$, so that the matrix

$$
\hat{Q}^{-1}=\sum_{k=1}^{N-1} \frac{1}{\mu_{k}} z_{k} z_{k}^{T}
$$

exists and is called the pseudo-inverse of Q.

Pseudo-inverse of the Laplacian (2)

The pseudo-inverse of Q

$$
\hat{Q}^{-1}=\sum_{k=1}^{N-1} \frac{1}{\mu_{k}} z_{k} z_{k}^{T}
$$

obeys

$$
\hat{Q}^{-1} Q=Q \hat{Q}^{-1}=I-\frac{1}{N} J
$$

Indeed, use orthogonality $\mathrm{Z}_{\mathrm{k}}{ }^{\top} \mathrm{Z}_{\mathrm{j}}=\delta_{\mathrm{kj}}$ and $\mathrm{Z}^{\top} \mathrm{Z}=\mathrm{ZZ}{ }^{\top}=\mathrm{I}$
$\hat{Q}^{-1} Q=\sum_{k=1}^{N-1} \frac{1}{\mu_{k}} z_{k} z_{k}^{T} \sum_{j=1}^{N-1} \mu_{j} z_{j} z_{j}^{T}=\sum_{k=1}^{N-1} \sum_{j=1}^{N-1} \mu_{j} \frac{1}{\mu_{k}} z_{k}\left(z_{k}^{T} z_{j}\right) z_{j}^{T}=\sum_{k=1}^{N-1} z_{k} z_{k}^{T}=I-\frac{u}{\sqrt{N}} \frac{u^{T}}{\sqrt{N}}=I-\frac{1}{N} J$
An alternative form is $\hat{Q}^{-1}=(Q+\alpha J)^{-1}-\frac{1}{N^{2}} J \quad$ for any $\alpha \neq 0$

Matrix Representations of the Basic Laws

Using the pseudo-inverse on $x=Q v$

$$
\hat{Q}^{-1} x=\hat{Q}^{-1} Q v=\left(I-\frac{1}{N} J\right) v
$$

Further

$$
\left(I-\frac{1}{N} J\right) v=v-u\left(\frac{u^{T} v}{N}\right)=v-v_{\text {average }} u
$$

Hence, from the spectral decomposition of the Laplacian matrix

$$
Q=\sum_{k=1}^{N} \mu_{k} z_{k} z_{k}^{T}
$$

the pseudo-inverse is constructed as $\hat{Q}^{-1}=\sum_{k=1}^{N-1} \frac{1}{\mu_{k}} z_{k} z_{k}^{T}$
The potential vector v is determined from the injected current vector x
$v-v_{\text {average }} u=\hat{Q}^{-1} x \longrightarrow$ • Only potential differences matter!

- Choose e.g. $\mathrm{v}_{\text {average }}=0$

Observe that $u^{T} \hat{Q}^{-1}=0$ so that $u^{T} v-v_{\text {average }} u^{T} u=0 \Longrightarrow v_{\text {average }}=\frac{u^{T} v}{N}$

Effective Resistance Matrix Ω

We consider a network in which a flow with magnitude I_{c} is injected in node a and the flow leaves the network at node b The injected current vector $x=I_{c}\left(e_{a}-e_{b}\right)$, where the basic vector e_{k} has components $\left(e_{k}\right)_{\mathrm{j}}=\delta_{k j}$
The general voltage-injected current vector relation $v=\hat{Q}^{-1} x$ shows

$$
v=I_{c} \hat{Q}^{-1}\left(e_{a}-e_{b}\right)
$$

The aim is to determine the effective resistance matrix Ω with elements $\omega_{a b}$ that satisfy $v_{a}-v_{b}=I_{c} \omega_{a b}$
Since $v_{a}-v_{b}=\left(e_{a}-e_{b}\right)^{T} v$, we have $v_{a}-v_{b}=I_{c}\left(e_{a}-e_{b}\right)^{T} \hat{Q}^{-1}\left(e_{a}-e_{b}\right)$

$$
\omega_{a b}=\left(e_{a}-e_{b}\right)^{T} \hat{Q}^{-1}\left(e_{a}-e_{b}\right)
$$

Effective Resistance Matrix Ω

Multiplying out $\omega_{a b}=\left(e_{a}-e_{b}\right)^{T} \hat{Q}^{-1}\left(e_{a}-e_{b}\right)$
yields

$$
\omega_{a b}=\left(\hat{Q}^{-1}\right)_{a a}+\left(\hat{Q}^{-1}\right)_{b b}-2\left(\hat{Q}^{-1}\right)_{a b}
$$

so that the effective resistance matrix is

$$
\Omega=u \zeta^{T}+\zeta u^{T}-2 \hat{Q}^{-1}
$$

where the vector ζ is

$$
\zeta=\left(\left(\hat{Q}^{-1}\right)_{11},\left(\hat{Q}^{-1}\right)_{22}, \ldots,\left(\hat{Q}^{-1}\right)_{N N}\right)
$$

Effective Resistance Matrix Ω

Properties of $\Omega=u \zeta^{T}+\zeta u^{T}-2 \hat{Q}^{-1}$

1. Symmetric: $\Omega^{\top}=\Omega$
2. All diagonal elements of Ω are zero
3. Triangular inequality: $\omega_{i j} \leq \omega_{i k}+\omega_{k j}$

The effective graph resistance is defined as $R_{G}=\frac{1}{2} u^{T} \Omega u$
R_{G} measures the difficulty of transport in a graph G : low R_{G} corresponds to a "good conducting" network (i.e. low resistance to flows)

Since $u^{T} \hat{Q}^{-1} u=0$ (each eigenvector z_{k} with $\mathrm{k}<\mathrm{N}$ is orthogonal to $\mathrm{z}_{\mathrm{N}}=\mathrm{u}$)
we find $\quad R_{G}=N u^{T} \zeta=N \operatorname{trace}\left(\hat{Q}^{-1}\right)=N \sum_{k=1}^{N-1} \frac{1}{\mu_{k}}$

More general than resistor networks

$x(s)=Q(s) v(s)$ for link impedances $r_{l}+s L_{l}+\frac{1}{s} C_{l}$
Processes 'proportional' to the network topology (graph) The analogy with voltage is in brackets:

- water flow networks (height of water column)
- spring-mass systems (energy stored in spring)
- gas networks (pressure)
- warmth diffusion in networks (temperature)

Processes described by a weighted Laplacian

- Any Markovian continuous-time processes, where the infinitesimal generator is minus a weighted Laplacian of the Markov state graph)

Outline

Background: Electrical matrix equations
New graph metrics
Best nodal spreader

New electrical matrix equations

Recall the inverse current-voltage relations

$$
x=Q v
$$

$$
v=Q^{\$ x}
$$

Matrix Ohm law:

$$
v=-\frac{1}{2 N}(N I-J) \Omega x
$$

where the effective resistance matrix is denoted by Ω
Power \wp dissipated in the network: $\wp=-\frac{1}{2} x^{T} \Omega x$
Current/flow eigenvalue equation: $Q \Omega x=-2 x$

Relation between "function" and "structure" of a network

Block inverse (inspired by Fiedler, "Geometry of Laplacian", LAA, 1998):

$$
\left[\begin{array}{cc}
0 & u^{T} \\
u & \Omega
\end{array}\right]=-2\left[\begin{array}{cc}
\zeta^{T} Q \zeta+\frac{4 R_{G}}{N^{2}} & -\left(Q \zeta+\frac{2}{N} u\right)^{T} \\
-\left(Q \zeta+\frac{2}{N} u\right) & Q
\end{array}\right]^{-1}
$$

where $\left(Q \zeta+\frac{2}{N} u\right)$ is the eigenvector of $\mathrm{Q} \Omega$ belonging to the zero eigenvalue.
$\zeta=\left(\left(Q^{s}\right)_{11},\left(Q^{s}\right)_{22}, \ldots,\left(Q^{s}\right)_{N N}\right)$
THDelft

Geometry

Spectral decomposition: $\quad Q^{\$}=Z M^{\$} Z^{T}=\left(Z \sqrt{M^{\$}}\right)\left(Z \sqrt{M^{\$}}\right)^{T}$
The matrix $S^{\$}=\left(Z \sqrt{M^{\$}}\right)^{T}$ has rank $N-1$ (row $N=0$ due to $\mu_{N}=0$)
The i-th column vector $s_{i}=$ point p_{i} in ($N-1$)-dim space AND

$$
\left\|s_{i}-s_{j}\right\|_{2}^{2}=\omega_{i j}
$$

All N points p_{j} form a hyperacute simplex with volume V_{G}

$$
V_{G}=\frac{1}{N!\sqrt{2 \xi}}
$$

where the number of (weighted) spanning trees ξ is

$$
\xi=\frac{1}{N} \prod_{k=1}^{N-1} \mu_{k}
$$

Graph metrics

The volume V_{G} (or the weighted complexity)

$$
\xi=\frac{1}{N} \prod_{k=1}^{N-1} \mu_{k}=\frac{1}{2\left(N!V_{G}\right)^{2}}
$$

provides similar information as the effective graph resistance

$$
R_{G}=N \sum_{k=1}^{N-1} \mu_{k}
$$

by concavity of $\log (x)$ function:
Small volume \rightarrow large number of spanning trees
\rightarrow good conductance
\rightarrow low effective graph resistance

Graph metrics

Average $\frac{1}{N} \sum_{k=1}^{N} \zeta_{k}=\frac{R_{G}}{N^{2}} \quad \longrightarrow R_{G}=N \sum_{k=1}^{N-1} \frac{1}{\mu_{k}}$
R_{G} is the effective graph resistance
Variance $\frac{1}{N} \sum_{k=1}^{N}\left(\zeta_{k}-\frac{R_{G}}{N^{2}}\right)^{2} \leq \frac{\nabla R}{N^{2}} \Rightarrow \nabla R=(N-1) \sum_{k=1}^{N-1} \frac{1}{\mu_{k}^{2}}-\left(\sum_{k=1}^{N-1} \frac{1}{\mu_{k}}\right)^{2}$
Most ζ_{k} lie in the interval $\left(\frac{R_{G}}{N^{2}}-\frac{\sqrt{\nabla R}}{N}, \frac{R_{G}}{N^{2}}+\frac{\sqrt{\nabla R}}{N}\right)$
$\longrightarrow \nabla R$ reflects the nodal spreading heterogeneity in the graph
$\zeta=\left(\left(Q^{\S}\right)_{11},\left(Q^{\S}\right)_{22}, \ldots,\left(Q^{\S}\right)_{N N}\right)$
TGUDelft

Open problem: when is $\mathbf{Q}^{\$}$ a (weighted) Laplacian?

1. $\left(Q^{\$}\right)_{i i} \geq\left(Q^{\$}\right)_{i j}$
2. $\left(Q^{\$}{ }_{i i}(Q)_{i i} \geq\left(1-\frac{1}{N}\right)^{2}\right.$ Similar to Heisenberg's uncertainty relation

$$
R_{G} \geq(N-1)^{2} E\left[\frac{1}{D}\right]
$$

3. $\left(\widehat{Q}^{-1}\right)_{i i} \leq \frac{1}{d_{i}}\left(1-\frac{1}{N}\right)+\max _{k \neq i}\left(\widehat{Q}^{-1}\right)_{i k}$
4. If $\widehat{\mathbf{Q}}^{-1}$ is a weighted Laplacian then

$$
\frac{1}{d_{i}}\left(1-\frac{1}{N}\right)^{2} \leq\left(\widehat{Q}^{-1}\right)_{i i} \leq \frac{1}{d_{i}}\left(1-\frac{1}{N}\right)
$$

Outline

Background: Electrical matrix equations
New graph metrics
Best nodal spreader

Inverses: $x=Q v$ and $v=Q^{\$} X$ with the convention for voltages $u^{T} v=0$
Q : weighted Laplacian of the graph
$\mathrm{Q}^{\$}$: pseudo-inverse of the weighted Laplacian: $\mathrm{Q} \cdot \mathrm{Q}^{\dagger}=\mathrm{Q}^{\dagger} . \mathrm{Q}=\mathrm{I}-1 / \mathrm{N} \mathrm{J}$ x : vector with external nodal current v : vector with nodal potentials

$$
v_{i}=\left(Q^{\$}\right)_{i i} \quad \text { If } \mathrm{x}=\mathrm{e}_{\mathrm{i}}-1 / \mathrm{N} \mathrm{u}
$$

The best spreader is the node k with minimum $\left(Q^{\phi}\right)_{k k}$

$$
\zeta=\left(\left(Q^{\varsigma}\right)_{11},\left(Q^{\varsigma}\right)_{22}, \ldots,\left(Q^{\varsigma}\right)_{N N}\right) \quad \text { TUDelft }
$$

Interpretation: best spreader node

Inverses: $x=Q v$ and $v=Q^{\$} X \quad$ Clearly: $u^{T} x=0$ and $u^{T} v=0$
$\boldsymbol{v}_{\boldsymbol{i}}=\left(Q^{\$}\right)_{i i} \quad$ is same as $\quad\left(Q^{\$}\right)_{i i}=v_{i}-u^{T} v=\frac{1}{N} \sum_{k=1}^{N}\left(v_{i}-v_{k}\right)$

The best spreader minimizes the sum of potential differences between its and all other node potentials

"closeness" minimization of average distance to all other nodes
best spreader lies in center of "gravity"

$$
\zeta=\left(\left(Q^{\S}\right)_{11},\left(Q^{\S}\right)_{22}, \ldots,\left(Q^{\S}\right)_{N N}\right)
$$

Closeness Cl_{i} and $\left(Q^{\$}\right)_{i i}$

Closeness $\mathbf{C l}_{\boldsymbol{i}}$ of a node \boldsymbol{i} is the reciprocal of the total hopcount of all shortest path at this node i to all other nodes in the graph G :

$$
C l_{i}=\frac{1}{\sum_{j \in G \backslash\{i\}} H\left(P_{i \rightarrow j}^{*}\right)}
$$

Concept of distance in both $C l_{i}$ and $\left(Q^{S}\right)_{i i}$

- All paths $\left[\left(Q^{\S}\right)_{i i}\right]$ versus only the shortest path $\left[C_{i}\right]$
- $\left(Q^{\varsigma}\right)_{i i}$ lowerbounds Cl_{i} $\left(\left(Q^{S}\right)_{i i}=\mathrm{Cl}_{1}\right.$ in trees with unit link weights)
$\left(Q^{\S}\right)_{i i}$ is more analytically tractable than a shortest path computation (closeness)

Contemplation: best spreader node

- Valid for any weighted Laplacian
- Not heuristic, but based on the law of conservation
- If resistances $\mathrm{r}_{\mathrm{ij}}=1$: pure graph focus
- The infinitesimal generator of a continuous-time Markov chain (MC) is minus a weighted Laplacian (which is not necessarily symmetric!)
>Huge potential as nearly all processes can be approximated by a MC, provided the state space is sufficiently large
- Interpretations:
- Ranking of nodes according to "diffusive centrality" or dynamic connectivity to all others
- Resilience/Robustness: Safe-guarding nodes in this ranking to secure dynamic processes

Books	
Performance Analysis of Complex Networks and Systems Piet Van Mieghem Graph Spectra for Complex Networks Piet Van Mieghem CAMBRIDGE	Data Communications Networking
Articles: http://www.nas.ewi.tudelft.nl	32
	荣UDelft

