

Analysis of Electrical Circuits • Find all link currents (y_{ij}) and node voltages (v_i) from the known parameters in the network • Two important laws apply: Kirchhoff's Current Law (a conservation law): The sum of all the directed currents at each node *i* in a circuit equals zero: $\sum_{j \in \text{neighbors}(i)} y_{ij} = \sum_{j=1}^{i} a_{ij} y_{ij} = 0$ *Ohm's Law*: The current through a conductor equals the potential difference over the conductor multiplied by its resistance. For any link between two nodes *i* and *j* with a resistance r_{ij} : $v_i - v_i = r_{ii} y_{ii}$ Recall that $A = A^{T}$: thus $a_{ii} = a_{ij}$; A represents link existence; **T**UDelft *B* specifies link directionality and the link current obeys $y_{ij} = -y_{ji}$. Both the vector v and v can have negative components.

Pseudo-inverse of the Laplacian (1) Since det Q = 0, we **cannot** solve x = Qv as $v = Q^{-1}x$ The spectral decomposition of the Laplacian: $Q = ZMZ^T$ where Z is the orthogonal eigenvector matrix $(Z^TZ=ZZ^T=I)$ and M is the diagonal matrix with the ordered eigenvalues $\mu_1 \ge \mu_2 \ge ... \ge \mu_{N-1} \ge \mu_N = 0$ Expanding $Q = ZMZ^T$: $Q = \sum_{k=1}^{N} \mu_k z_k z_k^T = \sum_{k=1}^{N-1} \mu_k z_k z_k^T + \frac{\mu_N}{N} uu^T = \sum_{k=1}^{N-1} \mu_k z_k z_k^T$ Since G is connected, $\mu_k > 0$ for 0 < k < N, so that the matrix $\hat{Q}^{-1} = \sum_{k=1}^{N-1} \frac{1}{\mu_k} z_k z_k^T$ exists and is called the pseudo-inverse of Q.

Geometry
Spectral decomposition: $_{_{_{_{_{_{}}}}}Q^{\$}} = ZM^{\$}Z^{T} = (Z\sqrt{M^{\$}})(Z\sqrt{M^{\$}})^{T}$
The matrix $S^{\$} = \left(Z\sqrt{M^{\$}}\right)^{T}$ has rank <i>N-1</i> (row <i>N</i> =0 due to $\mu_{N} = 0$)
The <i>i</i> -th column vector s_i = point p_i in (<i>N</i> -1)-dim space AND
$\left\ s_i - s_j\right\ _2^2 = \omega_{ij}$
All N points p_j form a hyperacute simplex with volume V_G
$V_G = \frac{1}{N!\sqrt{2\xi}}$
where the number of (weighted) spanning trees ξ is
$\xi = \frac{1}{N} \prod_{k=1}^{N-1} \mu_k$
$k = 1$ 21 K. Menger, "New foundation of Euclidean geometry", K_{ij}
American Journal of Mathematics, 53(4):721-745, 1931

