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Epidemic compartments
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Susceptible Infected Removed
𝛽 𝛿

Susceptible Infected
𝛽

𝛿

Single disease realization 

Diseases with re-infections 

Essence: item can be only in 1 compartment at time t

3

SIS Virus spread in networks
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Given:

Compute: Probability that node j is infected at time t > 0

Infection process: Poisson with infection strength 𝛽!"
Curing process: Poisson with curing strength 𝛿!

time t = 0

infected

Not infected

j
k

m

1. SIS model: only 2 compartments: S & I
2. graph is static (not time-varying) and known
3. all processes are independent Poisson processes
4. infection and curing have constant strength 
   (not time-varying, no mutations)

Assumptions:
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Markovian SIS epidemics in networks
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Infection process: Poisson with infection strength 𝛽!" = 𝛽      (per link)
Curing process:    Poisson with curing strength 𝛿! = 𝛿          (per node)

Each node j possesses a health state 𝑋$(𝑡) at time t :
𝑋! 𝑡 = 0: node j is not-infected at time t
𝑋! 𝑡 = 1: node j is infected at time t 

Infection probability of node j at time t :  𝑣$ 𝑡 = Pr 𝑋$ 𝑡 = 1

𝑋$ 𝑡
𝑡0

1

Susceptible
𝑋$ = 0

Infected
𝑋$ = 1

𝛽

𝛿

Markov state 𝑋! ∈ 0,1  of node j
is a Bernoulli random variable

Pr 𝑋! 𝑡 = 1 = 𝐸 𝑋! 𝑡
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Continuous-time Markov process
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Chapman-Kolmogorov governing equation of a continuous-time Markov 
process with m states is a linear differential equation:

𝑑𝑠(𝑡)
𝑑𝑡

= −𝑄𝑠(𝑡)

where

𝑠(𝑡): 𝑚 × 1 vector with 𝑠# 𝑡 = Pr 𝑋 𝑡 = 𝑖
𝑄: 𝑚 ×𝑚 weighted, directed Laplacian of the Markov graph 

= - infinitesimal generator

with solution                  𝑠(𝑡)=𝑒$%& 𝑠(0)

Epidemics with c compartments in a graph with N nodes: 𝑚 = 𝑐' 

Sahneh, F. D., C. Scoglio and P. Van Mieghem, 2013, "Generalized Epidemic
Mean-Field Model for Spreading Processes over Multi-Layer Complex 

Networks", IEEE/ACM Transactions on Networking, Vol. 21, No. 5, pp. 1609-1620.

All transition times (infection, curing, etc.) are exponential random 
variables

6

https://www.nas.ewi.tudelft.nl/people/Piet/papers/IEEEToN_%20Generalized_%20Epidemic_%20Mean-Field_%20Model_over%20Multi-Layer_%20Complex_%20Networks.pdf
https://www.nas.ewi.tudelft.nl/people/Piet/papers/IEEEToN_%20Generalized_%20Epidemic_%20Mean-Field_%20Model_over%20Multi-Layer_%20Complex_%20Networks.pdf
https://www.nas.ewi.tudelft.nl/people/Piet/papers/IEEEToN_%20Generalized_%20Epidemic_%20Mean-Field_%20Model_over%20Multi-Layer_%20Complex_%20Networks.pdf
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Twitter Epidemic times are not exponential
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time

tweet
sent

t0

tweet
received

by follower

t1

tweet
observed

by follower

t2

tweet
retweeted

t3} } }
D D Dnetwork observe reaction

C. Doerr, N. Blenn and P. Van Mieghem, “Lognormal infection times of
Online information spread”, PLOS ONE, Vol. 8, No. 5, p. e64349, 2013
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Each Weibull 
distribution has 
the same mean

𝐸 𝑇 =
1
𝛽

T is time to infect a neighboring node
fT (t) is probability density of T : Pr 𝑡 ≤ 𝑇 ≤ 𝑡 + Δ𝑡

Weibull :

Non-Markovian infection times

𝑓/ 𝑡 =
𝛼
𝑏

𝑡
𝑏

012
𝑒1

3
4

(

1
𝑏
= 𝛽Γ 1 +

1
𝛼

Poisson infection time: 𝑓/ 𝑡 = 𝛽𝑒193

a: shape
parameter
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10Non-exponential infection time has a dramatic influence!
P. Van Mieghem and R. van de Bovenkamp, “Non-Markovian infection spread
dramatically alters the SIS epidemic threshold”, Physical Review Letters, 
vol. 110, No. 10, March 2013, p. 108701.

SIS epidemics
ER-graph
N = 500
p = 2 pc
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Non-Markovian epidemic threshold
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Cauchy Integral

13

𝑓 𝑧: =
1
2𝜋𝑖

5
; <)

𝑓(𝑧)
𝑧 − 𝑧:

𝑑𝑧

𝑉 𝑟 =
𝑓

𝑟 − 𝑟!

𝑟

𝑉(𝑟)

𝑧:

Evaluation along a circle    𝑓 𝑧 = "
#$% ∫!

#$ &((!)*+"#)
*+"# 𝑑 𝑅𝑒%-

𝑓 𝑧 =
1
2𝜋

5
:

=>

𝑓(𝑧: + 𝑅𝑒?@)𝑑𝜃

Evaluation along a circle
With radius 𝑅 centered at 𝑧:

13

k-th derivate of a function
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;
𝑑A𝑓 𝑤
𝑑𝑤A

BC<)

=
𝑘!
2𝜋𝑖

5
; <)

𝑓(𝑧)
𝑧 − 𝑧: AD2 𝑑𝑧

Formal extension of integer k
to complex 𝛼

;
𝑑0𝑓 𝑤
𝑑𝑤A

BC<)

=
Γ 𝛼 + 1
2𝜋𝑖

5
; <)

𝑓(𝑧)
𝑧 − 𝑧: 0D2 𝑑𝑧

14
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Riemann surface of 𝒇 𝒛 = 𝒛𝜶 = 𝒆𝜶𝐥𝐨𝐠(𝒛)
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Wikipedia: Riemann surface for the function 𝑓 𝑧 = 𝑧, thus 𝛼 = $
%

. The two horizontal axes represent the 
real and imaginary parts of z, while the vertical axis represents the real part of 𝑧. The imaginary part of 
𝑧 is represented by the coloration of the points.

If 𝛼 ∉ ℤ, then
the negative real 
axis is a branch 
cut in complex 
plane
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𝜶-fractional derivate of a function
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;
𝑑0𝑓 𝑤
𝑑𝑤A

BC<)

=
Γ 𝛼 + 1
2𝜋𝑖

5
; <)

𝑓(𝑧)
𝑧 − 𝑧: 0D2 𝑑𝑧

𝑧 − 𝑧: 0 is not defined if
𝑧 − 𝑧: is a negative real number,
which creates a branch cut

Area enclosed by the contour
𝐶 𝑧:  is not analytic!
Contour cannot be closed
over branch cut

𝑧:

Re(𝑧)

Im(𝑧)

0

𝐶 𝑧:

16
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𝑧:

Deformation of the contour
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Re(𝑧)

Im(𝑧)

0

𝐶 𝑧:

Infinitely many ways to 
define an 𝜶-fractional 
derivate !  

𝑝D

𝑝1Branch cut

Van Mieghem, P., ”Origin of the fractional derivative and 
fractional non-Markovian continuous-time processes", 
Physical Review Research, Vol 4, No. 2, June 2022, p. 023242.

Contour 𝐶 𝑧!  depends
upon the points
𝑝) and 𝑝. 
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https://www.nas.ewi.tudelft.nl/people/Piet/papers/PhysRevResearch2022_FractionalDerivative.pdf
https://www.nas.ewi.tudelft.nl/people/Piet/papers/PhysRevResearch2022_FractionalDerivative.pdf
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Fractional Calculus for non-Markovian epidemics?
Chapman-Kolmogorov governing equation of a continuous-time Markov 
process with N states:

19

𝑑𝑠(𝑡)
𝑑𝑡

= −𝑄𝑠(𝑡)
s(t): N x 1 vector with 𝑃𝑟 𝑋 𝑡 = 𝑖
Q: N x N weighted Laplacian Markov graph

= - infinitesimal generatorReplace D = 2
2& by 

Caputo fractional 
derivative 𝐷3

with solution 𝑠(𝑡)=𝑒$%& 𝑠(0)

Van Mieghem, P., ”Origin of the fractional derivative and 
fractional non-Markovian continuous-time processes", 
Physical Review Research, Vol 4, No. 2, June 2022, p. 023242.

Open problem: physical explanation of a-fractional non-Markovian process

𝐸4,6 𝑧 = ∑"789 :/

; 4"<6
: Mittag-Leffler function

𝐷3 𝑠3(𝑡) = −𝑄3𝑠3(𝑡) with solution 𝑠3(𝑡)= 𝐸3,= −(𝑄𝑡)3 𝑠3(0)

0 < 𝛼 ≤ 1

𝐸=,= 𝑧 = 𝑒:

19
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Fractional 𝛼-extension of classical Chapman-Kolmogorov governing 
equation of a continuous-time Markov process

General m Caputo fractional derivative

Van Mieghem, P., ”Origin of the fractional derivative and 
fractional non-Markovian continuous-time processes", 
Physical Review Research, Vol 4, No. 2, June 2022, p. 023242.

𝐷8;?3 𝑠(𝑡) = −𝑄3𝑠(𝑡) Initial conditions: 𝑠3
@ (0)

8A@B?

Solution: 𝑠3 𝑡 = ∑@78?$= 𝑡@𝐸3,@<= −(𝑄𝑡)3 𝑠3
@ (0)

Axiom probability theory: ∑#7=' Pr 𝑋3 𝑡 = 𝑖 = 1 

𝑠3 𝑡 # = Pr 𝑋3 𝑡 = 𝑖

𝑢C 𝑠3 𝑡 = 1

Necessary condition (with 𝑄𝑢 = 0): 𝑢C𝑠3 0 = 1 and 𝑢C𝑠3
@ 0 = 0 for 𝑛 > 0

Necessary condition is insufficient for all 𝛼 (proof by counter example)
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https://www.nas.ewi.tudelft.nl/people/Piet/papers/PhysRevResearch2022_FractionalDerivative.pdf
https://www.nas.ewi.tudelft.nl/people/Piet/papers/PhysRevResearch2022_FractionalDerivative.pdf
https://www.nas.ewi.tudelft.nl/people/Piet/papers/PhysRevResearch2022_FractionalDerivative.pdf
https://www.nas.ewi.tudelft.nl/people/Piet/papers/PhysRevResearch2022_FractionalDerivative.pdf
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The solution 𝑠3(𝑡) can only be 
a probability if 𝑚 = 1 which
implies 0 < 𝛼 ≤ 1

Range 𝟎 < 𝜶 ≤ 𝟏 for probability theory

Mittag-Leffler function 𝐸4,= 𝑧 for real 𝑧 = −𝑡 is monotonic 𝐸4,= −𝑡 > 0
if 0 < 𝛼 ≤ 1

Van Mieghem, P., 2020, "The Mittag-Leffler function", Delft University 
of Technology, report20200528 (http://arxiv.org/abs/2005.13330).

21

Linear time-dependent first-order diff. equation

𝛼 − fractional (non-Markovian) process with N states:

22

𝐷3 𝑠3(𝑡) = −𝑄3𝑠3(𝑡) with solution 𝑠3(𝑡)= 𝐸3,= −(𝑄𝑡)3 𝑠3(0)

𝑑𝑠(𝑡)
𝑑𝑡

= −𝑄 𝑡; 𝛼 𝑠(𝑡)

Assumption: Q is diagonalizable, 
𝑄3 = ∑"7=' 𝜇"3𝑥"𝑦"C

equivalent

𝑄 𝑡; 𝛼 = H
"7=

'

𝜇"(𝑡; 𝛼)𝑥"𝑦"C = 𝑋𝑀(𝑡; 𝛼)𝑌C

𝜇" 𝑡; 𝛼 = 𝑡3$=
𝐸3,3 −𝜇"3𝑡3

𝐸3,= −𝜇"3𝑡3
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https://www.nas.ewi.tudelft.nl/people/Piet/papers/TUD20200528_Mittag_Leffler.pdf
http://arxiv.org/abs/2005.13330
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Ɛ -SIS Epidemics on complete graph 𝑲𝑵
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Birth-death process

P. Van Mieghem, 2014, Performance Analysis of Complex Networks
And Systems, Cambridge University Press; Sec. 17.6
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𝜶 −fractional 𝜺 -SIS Epidemics on 𝑲𝑵
𝑁 = 5 nodes, 𝛽 = 1, 𝛿 = 0.4, 𝜀 = 2 < 10.0

24
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Time-dependent matrix elements

25

Weibull and Mittag-Leffler pdf
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Van Mieghem, P., 2020, "The Mittag-Leffler function", 
Delft University of Technology, report20200528
(http://arxiv.org/abs/2005.13330).

Lin-Lin scale

Surprise :
Weibull r.v:: all moments exist
Mittag-Leffler r.v: no moment exists
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https://www.nas.ewi.tudelft.nl/people/Piet/papers/TUD20200528_Mittag_Leffler.pdf
http://arxiv.org/abs/2005.13330
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Weibull and Mittag-Leffler pdf
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Log-Lin scale
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Fractional theory & SIS simulations
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Conclusions

• Real epidemics are (very) likely non-Markovian

• We do not understand Non-Markovian fractional 
epidemics:
o Exact mathematical theory is attractive
o However, the “physics” is lagging behind

30

30
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Thank You

Piet Van Mieghem
NAS, TUDelft

P.F.A.VanMieghem@tudelft.nl
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