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Network    Science 

Brain Biology 

Economy 

Designing robust infrastructures 
Internet, electricity grid, … 

Social 
networking 

Understanding Network 
Function & Topology 



Functional brain network 
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Collaboration with VU Medical Center, Amsterdam 
(http://home.kpn.nl/stam7883/index.html) 



Trends in Social Networks 

Monitoring entire communities (>1.5 billion relations) 

Your friends' influence on 
your opinions and decisions 

Evolution of social networks: organic 
growth, saturation or dying out? 

How does content spread?  
Keys to success? 

Predicting patterns of human  
behavior 

 How much does the Net know about you? 

Geo-tagged activities (blue), 
and positive (green) and 
negative (red) sentiments in NL 
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Robustness of Networks 

P. Van Mieghem, C. Doerr, H. Wang, J. Martin Hernandez, D. Hutchison, M. Karaliopoulos and R. E. 
Kooij, 2010, "A Framework for Computing Topological Network Robustness", Delft University of 
Technology, report20101218. 

Compute 
R-value 

R > Rthresh 
Desired 
Graph 

Modify 
Graph 

topology 
service 

yes no 

network 

Higher sensitivity results in better 
stability. 

Higher energy results in better 
average R-value. 

S. Trajanovski, J. Martin-Hernandez, W. Winterbach and P. Van Mieghem, 2013, ”Robustness 
Envelopes of networks", Journal of Complex Networks, vol 1., p. 44-62 

R-value: network robustness metric 
 R = 0: no robustness 
 R = 1: ideal 
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Graph theory 
Any graph G can be represented by an adjacency matrix A (and 

other graph related matrices such as the incidence matrix B and 
the Laplacian Q 

T
NN AA =

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×

010
101
010

011
010
100

001
110
100

011
101
110

1 

4 2 

6 5 

3 
N = 6 
L = 9 

Graph metrics: degree, clustering, path length, modularity, … 



Topology domain        Spectral domain 
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A = XΛXT

Most network problems: 
- shortest path 
- graph metrics 
- network algorithms 

1 

4 2 

6 5 

3 
N = 6 
L = 9 

X3-ary tree : green = 0 

What is the physical interpretation  
of eigenvalues and of eigenvectors of A? 



Local Rule – Global emergent property 

9 

Topology 

Process 

If orange, then infect a neigbor; 
after some time, become grey. 



Opinion model(s) 
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of neighbors 
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Coupled oscillators (Kuramoto model) 
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θk	


� 

˙ θ k = ωk + g akj sin θ j −θk( )
j=1

N

∑

natural frequency 
coupling strength 

Interaction equals sums of sinus of phase 
difference of each neighbor: 

J. G. Restrepo, E. Ott, and B. R. Hunt. Onset of synchronization in large  
networks of coupled oscillators, Phys. Rev. E, vol. 71, 036151, 2005   



Local rule – Global emergent property 
models on networks 

•  Opinion models 
•  Synchronization 
•  Automata 
•  Ising-Spin model 
•  Sandpile models 
•  … 

•  Epidemics on 
networks 
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Many feature a 
phase transition 

All crucially depend 
on the graph 
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Simple SIS model on networks 

•  Homogeneous birth (infection) rate β on all links 
between infected and susceptible nodes 

•  Homogeneous death (curing) rate δ for infected nodes 

Healthy 

β  

δ  

τ = β /δ : effective spreading rate	


Infected 

0 3 

2 

1 

Infected 

Infection and curing are independent Poisson processes 



SIS model on networks (1) 

•  Each node j can be in either of 
the two states: 
•  “0”: healthy 
•  “1”: infected 

•  Markov continuous time: 
•  infection rate β	

•  curing rate δ	


•  At time t: 
•  Xj (t) is the state of node j 
•  infinitesimal generator 
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SIS model on networks (2) 
•  Nodes are interconnected in 

graph: 
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q0 j t( ) = β ajkXk t( )
k=1
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where the infection rate is due all infected neighbors 
of node j:  
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and where the adjacency matrix of the graph is 

1 0 

q0j 

δ



SIS model on networks (3) 

•  Markov theory requires that the infinitesimal generator 
is a matrix whose elements are not random variables 

•  However, this is not the case in our simple model: 
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•  By conditioning to each possible combination of 
infected states, we finally arrive to the exact Markov 
continuous SIS model 

•  Drawback: this exact model has 2N states, where N is 
the number of nodes in the network.  

q0 j t( ) = β ajkXk t( )
k=1

N

∑
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2N states! 

Exact SIS model 
N = 4 nodes 

Absorbing state 

P. Van Mieghem, J. Omic, R. E. Kooij, “Virus Spread in Networks”, 
IEEE/ACM Transaction on Networking, Vol. 17, No. 1, pp. 1-14, (2009). 



Governing SIS equation for node j 
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dE[Xj ]

dt
= E −δXj + (1− Xj )β akjXk

k=1

N

∑










if infected: 
probability of 
curing per 
unit time 

time-change of 
E[Xj] = Pr[Xj = 1], 
probability that  
node j is infected 

if not infected (healthy): 
probability of 
infection per 
unit time 

dE[Xj ]

dt
= −δE Xj

 +β akjE Xk[ ]
k=1

N

∑ −β akjE X jXk
 

k=1

N

∑

R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, 
“Epidemic processes in complex networks”, Review of Modern Physics, 
2015 



Joint probabilities 
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E. Cator and P. Van Mieghem, 2012, "Second-order mean-field susceptible 
-infected-susceptible epidemic threshold", Physical Review E, vol. 85,  
No. 5, May, p. 056111. 
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Markov Theory 

•  SIS model is exactly described as a continuous-time Markov 
process on 2N states, with infinitesimal generator QN. 
 

•  Drawbacks: 
•  no easy structure in QN 
•  computationally intractable for N>20 
•  steady-state is the absorbing state (reached after 

unrealistically long time) 
•  very few exact results... 
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NIMFA: N-intertwined mean-field approxim. 
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dE[Xj ]

dt
= −δE Xj

 +β akjE Xk[ ]
k=1

N

∑ −β akjE X jXk
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dE[Xj ]
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"# $%+β 1−E Xj
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Cov X jXk
!" #$= E XjXk

!" #$−E Xj
!" #$ Xk[ ] ≥ 0

NIMFA: upper bounds SIS 

P. Van Mieghem, 2014, “Accuracy criterion for the mean-field approximation  
in SIS epidemics on networks,” unpublished. 

Rj >0 

E. Cator and P. Van Mieghem, 2014, “Nodal infection in Markovian SIS  
and SIR epidemics on networks are non-negatively correlated,” 
Physical Review E, Vol. 89, No. 5, p. 052802. 



Lower bound for the epidemic threshold  
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dvj (t)
dt

= −δvj +β akjvk
k=1

N

∑ −β akjE XiXk[ ]
k=1

N

∑ vk t( ) = E[Xk (t)]

Ignoring the correlation terms 

dV (t)
dt

≤ −δI +βA( )V (t)

If all eigenvalues of            are negative, vj tends exponentially  
fast to zero with t. Hence, if 

βA−δI

βλ1(A)−δ < 0 τ =
β
δ
<

1
λ1(A)

< τ c

The NIMFA epidemic threshold is precisely 

τ (1)c =
1

λ1(A)
< τ c τ (1)c =

1
λ1(A)

< τ (2)c =
1

λ1(H )
< τ c

V (t) ≤ e −δI+βA( )t V (0)



What is so interesting about epidemics? 

28 

� 

τ c = 1
λ1 A( )

Epidemic threshold 

rumors (social nets)  

propagation errors 

self-replicating  
objects (worms) 

network protection 

epidemic algorithms  
(gossiping) 

cybercrime : network 
 robustnes & security 

max E D[ ] 1+
Var[D]

E[D]( )
2
, d

max
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Transformation          & principal eigenvector 
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s = 1
τ

dy∞(s)
ds s=λ1
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(x1) j
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∑

(x1) j
3

j=1

N

∑

sc = λ1 
Van Mieghem, P., 2012, "Epidemic Phase  
Transition of the SIS-type in Networks",  
Europhysics Letters (EPL), Vol. 97, Februari, p. 48004. 
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Extensions of the NIMFA 
•  In-homogeneous: each node i has own βi and δi: 

P. Van Mieghem and J. Omic, 2008, “In-homogeneous Virus Spread in Networks”, (arxiv.org/
1306.2588) 

•  SAIS (Infected, Susceptible, Alert) and SIR instead of SIS: 
F. Darabi Sahneh and C. Scoglio, 2011,"Epidemic Spread in Human Networks”, 50th IEEE 
Conf. Decision and Contol, Orlando, Florida. 
"M. Youssef and C. Scoglio, 2011, An individual-based approach to SIR epidemics in contact 
networks” Journal of Theoretical Biology 283, pp. 136-144. 

•  Generalized Epidemic mean-field model (GEMF): general 
extension of NIMFA to m compartments (includes both SIS, 
SAIS, SIR,...): 

F. Darabi Sahneh, C. Scoglio, P. Van Mieghem, 2013, "Generalized Epidemic Mean-Field 
Model for Spreading Processes over Multi-Layer Complex Networks",, IEEE/ACM 
Transactions on Networking, Vol. 21, No. 5, pp. 1609-1620. 

•  NIMFA on Interdependent networks 
Wang, H., Q. Li, G. D'Agostino, S. Havlin, H. E. Stanley and P. Van Mieghem, 2013, "Effect of 
the Interconnected Network Structure on the Epidemic Threshold”, Physical Review E, Vol. 
88, No. 2, August, p. 022801. 
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- Non-Markovian epidemics 
- Time-dependent rates 
- Survival time 



Epidemic times are not exponential 
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time
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tweet
retweeted

t3} } }
D D Dnetwork observe reaction

C. Doerr, N. Blenn and P. Van Mieghem, “Lognormal infection times of 
Online information spread”, PLOS ONE, Vol. 8, No. 5, p. e64349, 2013 
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Non-Markovian infection times 
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Same mean 
E[T]: 

T is the time to infect a neighboring node 
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Non-Markovian epidemic threshold 

ER-graph 
N = 500 
p = 2 pc 

Non-exponential infection time has a dramatic influence! 
P. Van Mieghem and R. van de Bovenkamp, “Non-Markovian infection spread 
Dramatically alters the SIS epidemic threshold”, Physical Review Letters,  
vol. 110, No. 10, March, p. 108701. 
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dv t( )
dt

= rβ t( )v t( ) 1− v t( )( )−δ t( )v t( )

Time-dependent rates in NIMFA for 
regular graphs 

36 

v t( ) =
exp rβ u( )−δ u( ){ }du

0

t

∫
#

$
%

&

'
(

1
v 0( )

+ rβ s( )exp rβ u( )−δ u( ){ }du
0

s

∫
#

$
%

&

'
(ds

0

t

∫

v t( ) = 1
v 0( )

exp δ − rβ{ }{ }t( )+ 1− 1rτ
"

#
$

%

&
'
−1

1− exp δ − rβ{ }t( )( )
"

#
$$

%

&
''

−1
Reduces to the classical case (constant rates): Kephart & White (1992) 

P. Van Mieghem, 2014, “SIS epidemics with time-dependent rates describing 
ageing of information spread and mutation of pathogens”, 
Delft University of Technology, report20140615. 



Mutations 
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β(t) = eat cos2 ωβt( )
δ(t) = eat cos2 ωδt( )
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Spreading and survival time 
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Survival time 

Metastable state 



Average Time to Absorption (Survival time) 
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E T[ ] =O ebN
a( )

Ganesh,Massoulie,Towsley (2005): 

Complete graph KN: 

x = τN ≈
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τ c
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Mountford et al. (2013): 
(regular trees w. bounded degree) 

E T[ ] =O ecN( )

E T[ ] ≤ 1
δ
logN +1
1−τλ( )1

τ < τ c

τ > τ c

P. Van Mieghem, “Decay towards the overall-healthy state in SIS epidemics 
on networks”, arxiv1310.3980 (2013).  
R. van de Bovenkamp and P. Van Mieghem, “Survival time of the SIS 
infection process on a graph”, unpublished (2014). 

E T[ ] = F τ( ) = 1
δ

N − j + r( )!
j N − j( )!r=0

j−1

∑
j=1

N

∑



Average survival time in KN 
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E T[ ] = F τ( ) = 1
δ

N − j + r( )!
j N − j( )!r=0

j−1

∑
j=1

N

∑



Second smallest eigenvalue Q in graphs 
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ζ ≈
1

E T[ ]



Challenges for SIS epidemics on nets 

•  Tight upper bound of the epidemic threshold (for any 
graph), or near to exact determination of τc 

•  A general mean-field criterion that specifies the graphs 
for which NIMFA is accurate 

•  Time-dependent analysis of SIS epidemics 
•  Non-Markovian epidemics 
•  Epidemics on evolving and adaptive networks 
•  Competing and mutating viruses on networks 
•  Modeling of social contagion 
•  Measurements of epidemics (e.g. fraction of infected 

nodes) in real-world networks are scarce 
44 
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Books 

Articles:   http://www.nas.ewi.tudelft.nl 
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