Epidemics on Networks

Piet Van Mieghem

in collaboration with Eric Cator, Ruud van de Bovenkamp, Cong Li, Stojan Trajanovski, Dongchao Guo, Annalisa Socievole and Huijuan Wang

Fudan Univerity, Shanghai 17 June 2016

1

Outline

Exact SIS model

NIMFA: N-intertwined MF approximation

Recent developments

Local rule – Global emergent property models on networks

- Opinion models
- Synchronization
- Automata
- Ising-Spin model
- Sandpile models

Many feature a phase transition

All crucially depend on the graph

 Epidemics on networks

3

Continuous-time SIS model on networks

- Constant infection rate β on all links
- Constant curing rate δ for all nodes $\tau = \beta / \delta$: effective spreading rate

SIS model on networks (1)

- Each node *j* can be in either of the two states:
 - "0": healthy
 - "1": infected
- Markov continuous time:
 - infection rate β
 - curing rate δ
- At time t:
 - $X_j(t)$ is the state of node j• infinitesimal generator $Q_j(t) = \begin{bmatrix} -q_{0j} & q_{0j} \\ q_{1j} & -q_{1j} \end{bmatrix} = \begin{bmatrix} -q_{0j} & q_{0j} \\ \delta & -\delta \end{bmatrix}$

SIS model on networks (2)

• Nodes are interconnected in graph: $Q_{j}(t) = \begin{bmatrix} -q_{0j} & q_{0j} \\ \delta & -\delta \end{bmatrix}$

where the infection rate is due all infected neighbors of node *j*:

$$q_{0j}(t) = \beta \sum_{k=1}^{N} a_{jk} X_k(t)$$

and where the adjacency matrix of the graph is

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NN} \end{bmatrix}$$

6

SIS model on networks (3)

- Markov theory requires that the infinitesimal generator is a matrix whose elements are **not** random variables
- However, this is not the case in our simple model:

$$q_{0j}(t) = \beta \sum_{k=1}^{N} a_{jk} X_k(t) \xrightarrow{\text{NIMFA}} q_{0j}(t) = \beta \sum_{k=1}^{N} a_{jk} E[X_k(t)]$$

- By conditioning to each possible combination of infected states, we finally arrive to the exact Markov continuous SIS model
- *Drawback*: this exact model has 2^N states, where *N* is the number of nodes in the network.

P. Van Mieghem, J. Omic, R. E. Kooij, "Virus Spread in Networks", IEEE/ACM Transaction on Networking, Vol. 17, No. 1, pp. 1-14, (2009).

Governing SIS equation for node j

$$\frac{dE[X_j]}{dt} = -\delta E[X_j] + \beta \sum_{k=1}^N a_{kj} E[X_k] - \beta \sum_{k=1}^N a_{kj} E[X_j X_k]$$

R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, "Epidemic processes in complex networks", Review of Modern Physics, Vol. 87, No. 3, pp. 925-979, 2015

g

Joint probabilities

$$\frac{dE[X_iX_j]}{dt} = E\left[\left\{-\delta X_i + \beta(1-X_i)\sum_{k=1}^N a_{ik}X_k\right\}X_j + X_i\left\{-\delta X_j + \beta(1-X_j)\sum_{k=1}^N a_{jk}X_k\right\}\right]$$
$$= -2\delta E\left[X_iX_j\right] + \beta \sum_{k=1}^N a_{ik}E\left[X_jX_k\right] + \beta \sum_{k=1}^N a_{jk}E\left[X_iX_k\right] - \beta \sum_{k=1}^N \left(a_{jk} + a_{ik}\right)E\left[X_iX_jX_k\right]$$

Next, we need the $\begin{pmatrix} N \\ 3 \end{pmatrix}$ differential equations for E[X_iX_jX_k]...

In total, the SIS process is defined by $2^N = \sum_{k=1}^N \begin{pmatrix} N \\ k \end{pmatrix} + 1$ linear equations

E. Cator and P. Van Mieghem, 2012, "Second-order mean-field SIS epidemic threshold", Physical Review E, vol. 85, No. 5, May, p. 056111.

Outline

Exact SIS model

NIMFA: N-intertwined MF approximation

Recent developments

NIMFA: N-intertwined mean-field approxim.

in SIS epidemics on networks," Physical Review E, Vol. 91, No. 3, p. 032812. TUDelft

NIMFA: replace rv by its mean

Lower bound for the epidemic threshold

$$\frac{dv_j(t)}{dt} = -\delta v_j + \beta \sum_{k=1}^N a_{kj} v_k - \beta \sum_{k=1}^N a_{kj} E[X_i X_k] \qquad \qquad v_k(t) = E[X_k(t)]$$

Ignoring the correlation terms

$$\frac{dV(t)}{dt} \leq \left(-\delta I + \beta A\right) V(t) \qquad \longrightarrow \qquad V(t) \leq e^{\left(-\delta I + \beta A\right)t} V(0)$$

If all eigenvalues of $\beta A - \delta I$ are negative, v_j tends exponentially fast to zero for sufficiently large time *t*. Hence, if

The NIMFA epidemic threshold is precisely

$$\tau_{c}^{(1)} = \frac{1}{\lambda_{1}(A)} < \tau_{c}$$

$$\tau_{c}^{(1)} = \frac{1}{\lambda_{1}(A)} < \tau_{c}^{(2)} = \frac{1}{\lambda_{1}(H)} < \tau_{c}$$

$$\tau_{c}^{(1)} = \frac{1}{\lambda_{1}(A)} < \tau_{c}$$

$$TUDelft$$

Below the epidemic threshold: $x = \lambda_1 \tau < 1$

P. Van Mieghem, 2016, "Approximate formula and bounds for the time-varying SIS prevalence in networks", Physical Review E, Vol. 93 No. 5, p. 052312.

What is so interesting about epidemics?

Extensions of the NIMFA

• **In-homogeneous**: each node i has own β_i and δ_i : P. Van Mieghem and J. Omic, 2008, "<u>In-homogeneous Virus Spread in Networks</u>", (arxiv.org/1306.2588)

 SAIS (Infected, Susceptible, Alert) and SIR instead of SIS: F. Darabi Sahneh and C. Scoglio, 2011, "Epidemic Spread in Human Networks", 50th IEEE Conf. Decision and Contol, Orlando, Florida.
 "M. Youssef and C. Scoglio, 2011, <u>An individual-based approach to SIR epidemics in contact networks</u>" Journal of Theoretical Biology 283, pp. 136-144.

• Generalized Epidemic mean-field model (**GEMF**): general extension of NIMFA to m compartments (includes both SIS, SAIS, SIR,...):

F. Darabi Sahneh, C. Scoglio, P. Van Mieghem, 2013, "<u>Generalized Epidemic Mean-Field</u> <u>Model for Spreading Processes over Multi-Layer Complex Networks</u>", IEEE/ACM Transactions on Networking, Vol. 21, No. 5, pp. 1609-1620.

• NIMFA on Interdependent networks

Wang, H., Q. Li, G. D'Agostino, S. Havlin, H. E. Stanley and P. Van Mieghem, 2013, <u>"Effect of the Interconnected Network Structure on the Epidemic Threshold"</u>, Physical Review E, Vol. 88, No. 2, August, p. 022801.

Outline

Exact SIS model

NIMFA: N-intertwined MF approximation

Recent developments

- > Accuracy Criterion NIMFA
- > Non-Markovian epidemics
- Time-dependent rates
- > Upper bound SIS epidemic τ_c
- Survival time

Accuracy criterion $\frac{dE[X_j]}{dt} = -\delta E[X_j] + \beta (1 - E[X_j]) \sum_{k=1}^{N} a_{kj} E[X_k] - \beta \sum_{k=1}^{N} a_{kj} Cov[X_j X_k]$ NIMFA: upper bounds SIS

For each node *j*, R_j assesses the deviation of NIMFA from exact $R_j = \sum_{k=1}^N a_{jk} c_{kj} \qquad c_{kj} = Cov[X_j X_k] \ge 0$

Choose the norm $//R//_1$ to assess accuracy of the graph

$$\|R\|_{1} = \sum_{j=1}^{N} |R_{j}| = \sum_{j=1}^{N} \sum_{k=1}^{N} a_{jk} c_{kj} = trace(AC) = \sum_{k=1}^{N} \lambda_{k} (AC)$$
²⁰
FUDelft

Accuracy criterion

Since:

$$\|R\|_{l} = \sum_{j=1}^{N} \sum_{k=1}^{N} a_{jk} c_{kj} \leq \frac{1}{4} \sum_{j=1}^{N} \sum_{k=1}^{N} a_{jk} = \frac{L}{2}$$
Normalized criterion:

$$r_{T} = \frac{2\|R\|_{l}}{L}$$
Bounds for $\|R\|_{l} = \sum_{k=1}^{N} \lambda_{k} (AC)$
Wielandt-Hoffman :

$$\sum_{k=1}^{N} \lambda_{k} (AC) \leq \sum_{k=1}^{N} \lambda_{k} (A) \lambda_{k} (C)$$
Graph energy:

$$\sum_{k=1}^{N} \lambda_{k} (A) \lambda_{k} (C) \leq \frac{E_{G}}{2} (\lambda_{1} (C) - \lambda_{N} (C))$$

Outline

Exact SIS model

NIMFA: N-intertwined MF approximation

Recent developments

- Accuracy Criterion NIMFA
- > Non-Markovian epidemics
- Time-dependent rates
- > Upper bound SIS epidemic τ_c
- Survival time

C. Doerr, N. Blenn and P. Van Mieghem, "Lognormal infection times of Online information spread", PLOS ONE, Vol. 8, No. 5, p. e64349, 2013

Non-Markovian infection times

T is the time to infect a neighboring node

Non-Markovian epidemic threshold

Non-exponential infection time has a dramatic influence!

P. Van Mieghem and R. van de Bovenkamp, "Non-Markovian infection spread dramatically alters the SIS epidemic threshold", Physical Review Letters, vol. 110, No. 10, March, p. 108701.

Outline

Exact SIS model

NIMFA: N-intertwined MF approximation

Recent developments

- Accuracy Criterion NIMFA
- > Non-Markovian epidemics

> Time-dependent rates

- > Upper bound SIS epidemic τ_c
- Survival time

Time-dependent rates in NIMFA for regular graphs

$$\frac{dv(t)}{dt} = v\beta(t)v(t)(1-v(t)) - \delta(t)v(t)$$

$$v(t) = \frac{\exp\left(\int_{0}^{t} \left\{r\beta(u) - \delta(u)\right\} du\right)}{\frac{1}{v(0)} + \int_{0}^{t} r\beta(s) \exp\left(\int_{0}^{s} \left\{r\beta(u) - \delta(u)\right\} du\right) ds}$$

Application: modeling of the time evolution of the Internet Conficker worm (submitted)

P. Van Mieghem, 2014, "SIS epidemics with time-dependent rates describing ageing of information spread and mutation of pathogens", Delft University of Technology, report20140615.

28

t

Outline

Exact SIS model

NIMFA: N-intertwined MF approximation

Recent developments

- Accuracy Criterion NIMFA
- > Non-Markovian epidemics
- Time-dependent rates
- > Upper bound SIS epidemic τ_c
- Survival time

Upper bounds for τ_c

From $\frac{dy(t^*)}{dt^*} = -y(t^*) + \frac{\tau}{N} E[w^T Q w]$ where the fraction of infected nodes is $S = \frac{1}{N} \sum_{i=1}^{N} X_i = \frac{u^T w}{N}$ and y = E[S]

we have au

$$T_{c} \leq \frac{1}{\mu_{N-1} \left(1 - 2\sqrt{Var[S_{\infty}(\tau_{c}))} \right)}$$

Ring/Cycle graph:

$$\left(\tau_{c}\right)_{C} = \frac{1}{2\left(1 - 2\sqrt{Cov[X_{1\infty}, X_{2\infty})}\right)}$$

P. Van Mieghem, 2016, "Approximate formula and bounds for the time-varying SIS prevalence in networks", Physical Review E, Vol. 93 No. 5, p. 052312.

Outline

Exact SIS model

NIMFA: N-intertwined MF approximation

Recent developments

- Accuracy Criterion NIMFA
- > Non-Markovian epidemics
- Time-dependent rates
- > Upper bound SIS epidemic τ_c
- Survival time

Spreading and survival time

For the effect of different initial conditions, see also Fig. 17.2 on p. 457 in P. Van Mieghem, *Performance Analysis of Complex Networks and Systems*, Cambridge University Press, 2014.

Average Time to Absorption (Survival time)

Ganesh, Massoulie, Towsley (2005):

$$E[T] \leq \frac{1}{\delta} \frac{\log N + 1}{(1 - \tau \lambda)_1} \qquad \tau < \tau_c$$
$$E[T] = O(e^{bN^a}) \qquad \tau > \tau_c$$
$$E[T] = O(e^{cN})$$

Mountford *et al.* (2013): (regular trees w. bounded degree)

Complete graph K_N :

$$E[T] = F(\tau) = \frac{1}{\delta} \sum_{j=1}^{N} \sum_{r=0}^{j-1} \frac{(N-j+r)!}{j(N-j)!}$$

$$x = \tau N \approx \frac{\tau}{\tau_c} > 1 \qquad F\left(\frac{x}{N}\right) \sim \frac{1}{\delta} \frac{x\sqrt{2\pi}}{\left(x-1\right)^2} \frac{e^{N\left(\log x + \frac{1}{x}-1\right)}}{\sqrt{N}}$$

P. Van Mieghem, "Decay towards the overall-healthy state in SIS epidemics on networks", arxiv1310.3980 (2013). R. van de Bovenkamp and P. Van Mieghem, "Survival time of the SIS infection process on a graph", PRE, vol. 92, p. 032806 (2015).

34

Average survival time in K_N

Second smallest eigenvalue Q in graphs

Pdf of the spreading time

With Zhidong He: in preparation

Challenges for epidemics on networks

- A general mean-field criterion: for which graphs is NIMFA accurate? Is the conjecture true?
- Tight upper bound of the epidemic threshold (for any graph), or near to exact determination of τ_{c}
- Time-dependent analysis of SIS epidemics: beyond the tanh-formula
- Non-Markovian epidemics
- Epidemics on *evolving, adaptive* and *temporal* networks
- Competing and mutating viruses on networks
- Modeling of social contagion
- Control of epidemics on networks
- **Measured data** of epidemics (e.g. fraction of infected nodes, the underlying topology of the `contact' network) in real-world networks!

Books

Graph Spectra

Performance Analysis of Complex Networks and Systems

Piet Van Mieghem

Data Communications Networking

Piet Van Mieghem

39

Articles: http://www.nas.ewi.tudelft.nl

Thank You

Piet Van Mieghem NAS, TUDelft P.F.A.VanMieghem@tudelft.nl

40