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Compartmental Epidemic Models

o Simplest epidemic model: every individual is either Infected (1)

or Susceptible (S) curing
SIS epidemic S I
model:
infection

 More compartments may be more accurate:
E.g., Exposed (E) but not contagious and Recovered (R)

SEIR epidecllTlilc @ infectioq/i_.\incubation;@ﬂ@
model: u ]

« Almost all compartmental epidemic models are special cases of
GEMF (Generalized Epidemic Mean-Field)

e Here: focus on SIS model, but results apply to all GEMF models

Sahneh, F. D., C. Scoglio and P. Van Mieghem, "Generalized Epidemic Mean- (;
Field Model for Spreading Processes over Multi-Layer Complex Networks",
IEEE/ACM Transactions on Networking, Vol. 21, No. 5, pp- 1609-1620, 2013. TU Delft



Group-Based SIS Epidemic Model

Epidemic spread between N groups of individuals

Group 2 Nodes (Groups): Households, cities, countries, ...
ﬁ‘ Links: Streets, Highways, flight routes, ...

Group 1 Group 3
fat fat

At any discretetime k = 1,2, ..., every group i = 1, ..., N has a viral
state vector v;[k| = (S;[k], I;[k])"

» S;[k]: fraction of Susceptible individuals in group i
« [;|k]: fraction of Infected individuals in group i
> I;|k] + S;[k] = 1 for every group i at every time k

B. Prasse and P. Van Mieghem, “"Network Reconstruction and Prediction ,;
of Epidemic Outbreaks for NIMFA Processes”, arXiv:1811.06741, TU D Ift
November 2018. e



SIS Governing Mean-field Equations

* Nonlinear difference equation of infection probability I,[k] of

node /: -
L[k + 1] =|(1 = 61| k] |+|S;[k] Bi;lilk]
. ']=1
curing infections

o 6;: Curing probability of group i
o B;j: Infection probability from group j to group i
* Group interactions are specified by the infection probability

matrix <,311 :81N>
B=| : =~
:BNl 18NN
Problem : matrix B unknown for real epidemics
Solution attempt . estimate B from observing the epidemic

Prasse, B. and P. Van Mieghem, 2019, "The Viral State Dynamics of the ,‘
Discrete-Time NIMFA Epidemic Model", IEEE Transactions on Network TU D If
Science and Engineering, to appear. e t
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Network Reconstruction from Epidemics (1)
. > {x (1], x12], ..., x;[n]}
Viral state

observation  x;[k] € {0,1} is the viral SIS
of node i state of node /at discrete time k

Topology
A=7?

x;|k] = 0: node i is healthy
x;[k] = 1: node i is infected

m> Objective: Infer the Nx N adjacency matrix A of the
network from viral SIS state observations of all nodes

m» Solution: Infeasible (NP-hard)
Prasse, B. and P. Van Mieghem, 2018, "Exact Network Reconstruction _

from Complete SIS Nodal State Infection Information Seems Infeasible”, (;
IEEE Transactions on Network Science and Engineering, Vol. 6, No. 4, TU D elft
October-December, pp. 748-759.



Network Reconstruction from Epidemics (2)

> Viral state observation is
probability rather than {0,1} bit

sequence
Topology % 0.06 | |
A=7 20.04} :
% 0.02| |
o
S O i | | | |
0 1,000 2,000

Discrete time &

Objective: Infer the NxN adjacency matrix A of the graph from a set
of viral probabilities over time of all nodes

‘ Solution: possible when using a mean-field model
Key observation: Governing mean-field equations are linear in the

iweiﬂhtedi ad'lacenci matrix B

B. Prasse and P. Van Mieghem, "Maximum-Likelihood Network Reconstructionf;
for SIS Processes is NP-Hard *, arXiv:1807.08630, July 2018. TU Delft



Network Inference based Prediction
algorithm (NIPA)

Observations I;[1], ..., I;[n] Network reconstruction | N XN infection
for every group i = 1, ..., N probability matrix B =?

n: number of observations

Network reconstruction is eguivalentto a linear system
for every group i: Bir
o-r(l)

Bin

Vector v; and matrix F; follow from the viral state observations I;[1], ..., I;[n]

Obtain matrix estimate B by solving LASSO:

B\ || N
min ||lv; — F;| : +piz |1Bi;] fori=1,..,N

Bi1,-BiN ﬁN j=1
l

R. Tibshirani, “"Regression shrinkage and selection via the Lasso,” f;
Journal of the Royal Statistical Society: Series B (Methodological), 1996 TU Delft




Network Reconstruction as Linear System

* Network reconstruction results in set of linear equations:
Fb=v
o Matrix F and vector v: transformations of the viral state
observations v;[0], v;[1], ... of every node i
* Problem: Matrix F is extremely ill-conditioned

o Lagrangian optimization with constraints (multipliers)

» A-priori estimates of the matrix B can be taken into
account (Bayesian): e.g. mobility pattern between cities

»convexity (efficient algorithms)

o basis pursuit (L1-norm regularisation)
min||B|l;

s.t. Fb=v
<> good without model errors nor a-priori estimate of the graph

Prasse, B. and P. Van Mieghem, 2018, "Network Reconstruction and
Prediction of Epidemic Outbreaks for NIMFA Processes”, arXiv 1811.06741 TU Delft




Rank problem of Matrlx F m Fb=v
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Intuition: only the initial state agitates eigenstates; thereafter the epidemics process
autonomously tends to its steady-state mainly steered by the principal eigenvector
(corresponding to the largest eigenvalue)

Solution of the rank problem of matrix F:
o Multiple outbreaks/realizations of epidemic on same network
o Assume that the curing rate changes around a mean value (curing rate control)

e Siniular values of F decrease exionentialli. Hence, model errors have siinificant effect
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Prediction of Epidemic Outbreaks

Observations Prediction
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e True viral state I;[k]: generated on the true network B
« Predicted viral state I;[k]: generated on the reconstructed network B
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Prediction Accuracy

e Barabasi-Albert network with N = 200 nodes

* Only few observations: n = 50
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« Very accurate prediction at every time k > 50

> Does the Erediction accuraci imﬁli B~B?
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Network Reconstruction Accuracy

1. AUC score: AUC = 0.51
o Tossing a coin for reconstructing every link>AUC = 0.5

2. In-degree distribution:
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AUC: Area under Receiver Operating Characteristic
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Conclusion

Prediction Reconstruction
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Accurate prediction of epidemic outbreaks
without accurate network reconstruction

B. Prasse and P. Van Mieghem, 2020, “"Network Reconstruction and Prediction (;

of Epidemic Outbreaks for General Group-Based Compartmental Epidemic
Models”, IEEE Transactions on Network Science and Engineering, submitted TU Delft
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