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Compartmental Epidemic Models
• Simplest epidemic model: every individual is either Infected (I) 

or Susceptible (S)

• More compartments may be more accurate:
E.g., Exposed (E) but not contagious and Recovered (R)

• Almost all compartmental epidemic models are special cases of 
GEMF (Generalized Epidemic Mean-Field)

• Here: focus on SIS model, but results apply to all GEMF models

SIS epidemic 
model:

E RS Iinfection incubation curingSEIR epidemic 
model:
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infection

curing

Sahneh, F. D., C. Scoglio and P. Van Mieghem, "Generalized Epidemic Mean-
Field Model for Spreading Processes over Multi-Layer Complex Networks", 
IEEE/ACM Transactions on Networking, Vol. 21, No. 5, pp. 1609-1620, 2013.



Group-Based SIS Epidemic Model

At any discrete time ! = 1, 2, …, every group ' = 1,… , ( has a viral 
state vector )* ! = +* ! , ,* ! -

• +*[!]: fraction of Susceptible individuals in group '
• ,* ! : fraction of Infected individuals in group '

Ø ,* ! + +* ! = 1 for every group ' at every time !

Nodes (Groups): Households, cities, countries, …
Links: Streets, Highways, flight routes, …

Group 1

Group 2

Group 3

Epidemic spread between ( groups of individuals

B. Prasse and P. Van Mieghem, “Network Reconstruction and Prediction 
of Epidemic Outbreaks for NIMFA Processes”, arXiv:1811.06741, 
November 2018.



SIS Governing Mean-field Equations
• Nonlinear difference equation of infection probability Ii[k] of 

node i :

o !": Curing probability of group #
o $"%: Infection probability from group & to group #

• Group interactions are specified by the infection probability 
matrix 

• Problem : matrix ' unknown for real epidemics
• Solution attempt : estimate ' from observing the epidemic

(" ) + 1 = 1 − !" (" ) + ."[)]1
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curing infections
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⋮ ⋱ ⋮
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Prasse, B. and P. Van Mieghem, 2019, "The Viral State Dynamics of the 
Discrete-Time NIMFA Epidemic Model", IEEE Transactions on Network 
Science and Engineering, to appear.
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Network Reconstruction from Epidemics (1)

Objective: Infer the N×# adjacency matrix 0 of the 
network from viral SIS state observations of all nodes

Prasse, B. and P. Van Mieghem, 2018, "Exact Network Reconstruction 
from Complete SIS Nodal State Infection Information Seems Infeasible", 
IEEE Transactions on Network Science and Engineering, Vol. 6, No. 4, 
October-December, pp. 748-759.

Viral state 
observation 
of node 1Topology 

0 = ?

45 1 , 45 2 , … , 45 :
45 ; ∈ 0,1 is the viral SIS 
state of node i at discrete time k

45 ; = 0: node i is healthy
45 ; = 1: node i is infected

Solution: Infeasible (NP-hard)



Network Reconstruction from Epidemics (2)

Objective: Infer the N×# adjacency matrix 0 of the graph from a set 
of viral probabilities over time of all nodes

Viral state observation is 
probability rather than {0,1} bit 
sequence 

Topology 
0 = ?

Solution: possible when using a mean-field model
Key observation: Governing mean-field equations are linear in the 
(weighted) adjacency matrix B

B. Prasse and P. Van Mieghem, “Maximum-Likelihood Network Reconstruction 
for SIS Processes is NP-Hard ‘, arXiv:1807.08630, July 2018.



Network Inference based Prediction 
algorithm (NIPA)
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R. Tibshirani, “Regression shrinkage and selection via the Lasso,”  
Journal of the Royal Statistical Society: Series B (Methodological), 1996

Network reconstruction is equivalent to a linear system 
for every group 0:

Vector !" and matrix $" follow from the viral state observations )" 1 , … , )"[.]

Obtain matrix estimate C3 by solving LASSO:



Network Reconstruction as Linear System
• Network reconstruction results in set of linear equations:

o Matrix ! and vector ": transformations of the viral state 
observations "# 0 , "# 1 , … of every node (

• Problem: Matrix ! is extremely ill-conditioned
o Lagrangian optimization with constraints (multipliers) 

ØA-priori estimates of the matrix B can be taken into 
account (Bayesian): e.g. mobility pattern between cities

Øconvexity (efficient algorithms) 
o basis pursuit (L1-norm regularisation)

² good without model errors nor a-priori estimate of the graph

!) = "

min
.

/ 0
1. 3. !) = "

Prasse, B. and P. Van Mieghem, 2018, “Network Reconstruction and 
Prediction of Epidemic Outbreaks for NIMFA Processes”, arXiv 1811.06741



Rank problem of Matrix F in Fb=v
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Solution of the rank problem of matrix F:
o Multiple outbreaks/realizations of epidemic on same network

o Assume that the curing rate changes around a mean value (curing rate control)

o Singular values of F decrease exponentially. Hence, model errors have significant effect
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Intuition: only the initial state agitates eigenstates; thereafter the epidemics process 
autonomously tends to its steady-state mainly steered by the principal eigenvector 
(corresponding to the largest eigenvalue)
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Prediction of Epidemic Outbreaks

• True viral state !"[$]: generated on the true network &
• Predicted viral state '!"[$]: generated on the reconstructed network (&

(& =
(*++ (*+, (*+-
(*,+ (*,, (*,-
(*-+ (*-, (*--

Reconstructed Network

Observations Prediction



Prediction Accuracy
• Barabasi-Albert network with ! = 200 nodes
• Only few observations: % = 50

• Very accurate prediction at every time ' ≥ 50
ØDoes the prediction accuracy imply )* ≈ * ?



Network Reconstruction Accuracy
1. AUC score: AUC = 0.51

o Tossing a coin for reconstructing every linkàAUC = 0.5
2. In-degree distribution:

AUC: Area under Receiver Operating Characteristic

True network ): Scale-free
Reconstructed network *): Regular



Conclusion

Accurate prediction of epidemic outbreaks
without accurate network reconstruction

Prediction Reconstruction

AUC = 0.51

B. Prasse and P. Van Mieghem, 2020, “Network Reconstruction and Prediction 
of Epidemic Outbreaks for General Group-Based Compartmental Epidemic 
Models”, IEEE Transactions on Network Science and Engineering, submitted 
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