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Markovian Epidemics on 
Networks without Re-infections
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Epidemic compartments
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Susceptible Infected Removed
𝛽 𝛿

Susceptible Infected
𝛽

𝛿

Single disease realization 

Diseases with re-infections 

Essence: item can be only in 1 compartment at time t
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Local Rule – Global Emergent behavior
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Structure:
Contact graph

Process
Virus spread

While infected until recovered 
then do infect healthy neighbors

LRGE dynamics:
!"!($)
!$ = 𝑓& 𝑥&(𝑡) +∑'()* 𝑎&'𝑔 𝑥& 𝑡 , 𝑥'(𝑡)
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Outline
Markovian epidemics on networks

SIR

Non-Markovian epidemic on networks
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SIS Virus spread in networks
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Given:

Compute: Probability that node j is infected at time t > 0

Infection process: Poisson with infection strength 𝛽'+
Curing process: Poisson with curing strength 𝛿'

time t = 0

infected

Not infected

j
k

m

1. SIS model: only 2 compartments: S & I
2. graph is static (not time-varying) and known
3. all processes are independent Poisson processes
4. infection and curing have constant strength 
   (not time-varying, no mutations)

Assumptions:
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Markovian SIS epidemics in networks
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Infection process: Poisson with infection strength 𝛽"# = 𝛽      (per link)
Curing process:    Poisson with curing strength 𝛿" = 𝛿          (per node)

Each node j possesses a health state 𝑋$(𝑡) at time t :
𝑋' 𝑡 = 0: node j is not-infected at time t
𝑋' 𝑡 = 1: node j is infected at time t 

Infection probability of node j at time t :  𝑣$ 𝑡 = Pr 𝑋$ 𝑡 = 1

𝑋$ 𝑡

𝑡0

1

Susceptible
𝑋$ = 0

Infected
𝑋$ = 1

𝛽

𝛿

Markov state 𝑋" ∈ 0,1  of node j
is a Bernoulli random variable

Pr 𝑋" 𝑡 = 1 = 𝐸 𝑋" 𝑡
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Governing Markovian SIS equation for node j
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if infected  (Xj =1):
probability of
curing per
unit time

time-change of
𝐸 𝑋' =Pr 𝑋' = 1
probability that 
node j is infected

if not infected (Xj =0):
probability of infection per
unit time from 
infected neighbors

R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, 
“Epidemic processes in complex networks”, Review of Modern Physics, 
Vol. 87, No. 3, pp. 925-979, 2015

𝑑𝐸 𝑋$(𝑡)
𝑑𝑡 = 𝐸 −𝛿𝑋$(𝑡) + (1 − 𝑋$(𝑡)) 𝛽1

.∈/0123456($)
𝑋.(𝑡)

9: ;$
9< = −𝛿𝐸 𝑋$ + 𝛽 ∑.=>? 𝑎.$ 𝐸 𝑋. − 𝛽 ∑.=>? 𝑎.$ 𝐸 𝑋$𝑋.

Complication
𝐸 𝑋!𝑋" =Pr 𝑋! = 1, 𝑋" = 1
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Mean-field approximation: 
replace random variable by its mean

8

𝑑𝐸 𝑋$
𝑑𝑡

= 𝐸 −𝛿𝑋$ + (1 − 𝑋$)𝛽1
.=>

?
𝑎.$ 𝑋.

𝑋$ ⟹ 𝐸 5𝑋$ = 𝑤$

𝑑𝑤$
𝑑𝑡

= −𝛿𝑤$ + (1 − 𝑤$)𝛽1
.=>

?
𝑎.$ 𝑤.

From 2? linear Markov differential equations to
N non-linear mean-field approximating diff. equations

P. Van Mieghem, "The N-Intertwined SIS epidemic network model", 
Computing (Springer), Vol. 93, Issue 2, p. 147-169, 2011

NIMFA
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https://www.nas.ewi.tudelft.nl/people/Piet/papers/Computing2011_N_intertwined_SIS_virus_spread.pdf
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Continuous-time Markov process
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Chapman-Kolmogorov governing equation of a continuous-time Markov 
process with m states is a linear differential equation:

𝑑𝑠(𝑡)
𝑑𝑡 = −𝑄𝑠(𝑡)

where

𝑠(𝑡): 𝑚𝑥 1 vector with 𝑠& 𝑡 = Pr 𝑋 𝑡 = 𝑖
𝑄: 𝑚 𝑥 𝑚weighted, directed Laplacian of the Markov graph 

= - infinitesimal generator

with solution                  𝑠(𝑡)=𝑒12$ 𝑠(0)

Epidemics with c compartments in a graph with N nodes: 𝑚 = 𝑐* 

Sahneh, F. D., C. Scoglio and P. Van Mieghem, 2013, "Generalized Epidemic
Mean-Field Model for Spreading Processes over Multi-Layer Complex 

Networks", IEEE/ACM Transactions on Networking, Vol. 21, No. 5, pp. 1609-1620.

All transition times (infection, curing, etc.) are exponential random 
variables
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2N states!

Markov graph of 
the SIS epidemics
on N = 4 nodes

0000
0

0001
1

0010
2

0100
4

1000
8

1001
9

0011
3

0101
5

0110
6

1010
10

1011
11

0111
7

1101
13

1100
12

1111
15

1110
14

Absorbing state

P. Van Mieghem, J. Omic, R. E. Kooij, “Virus Spread in Networks”,
IEEE/ACM Transaction on Networking, Vol. 17, No. 1, pp. 1-14, (2009).

Structure (graph)

Function (process)

1 2

3 4
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https://www.nas.ewi.tudelft.nl/people/Piet/papers/IEEEToN_%20Generalized_%20Epidemic_%20Mean-Field_%20Model_over%20Multi-Layer_%20Complex_%20Networks.pdf
https://www.nas.ewi.tudelft.nl/people/Piet/papers/IEEEToN_%20Generalized_%20Epidemic_%20Mean-Field_%20Model_over%20Multi-Layer_%20Complex_%20Networks.pdf
https://www.nas.ewi.tudelft.nl/people/Piet/papers/IEEEToN_%20Generalized_%20Epidemic_%20Mean-Field_%20Model_over%20Multi-Layer_%20Complex_%20Networks.pdf
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SIS infinitesimal generator: 
lower triangular part
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B(3)

B(2)

B(1)

B(0)
0

0

0

0

0

…

B(0)

B(1)
B(0)

B(0)

B(2)

B(1)

B(0)

B(0)

B(1)
B(0)

B(0)

Only function
of curing rate 𝛿

P. Van Mieghem, J. Omic, R. E. Kooij, “Virus Spread in Networks”,
IEEE/ACM Transaction on Networking, Vol. 17, No. 1, pp. 1-14, (2009).
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SIS infinitesimal generator: 
upper triangular part
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C(0)
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C(0)

Contains network links
and infection rates 𝛽1$

Van Mieghem, P. and E. Cator, 2012, "Epidemics in networks with nodal
self-infection and the epidemic threshold", Physical Review E, vol. 86, 

No. 1, July, p. 016116.

12

https://www.nas.ewi.tudelft.nl/people/Piet/papers/PhysRevE2012_selfinfection_SISEpidemics.pdf
https://www.nas.ewi.tudelft.nl/people/Piet/papers/PhysRevE2012_selfinfection_SISEpidemics.pdf
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Idea

When is the infinitesimal generator -Q a triangular matrix?
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If Q is a triangular matrix:
• Diagonal elements of Q are eigenvalues
• Dynamics can be analytically solved

Solution due to Massimo Achterberg:
 the infinitesimal generator Q is a triangular matrix
 if the compartment graph does not contain loops
 Thus, for epidemics without re-infections (SI, SIR,...)
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Outline
Markovian epidemics on networks

SIR

Non-Markovian epidemic on networks
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SIR epidemics on a network
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Susceptible

Infected

• Infection process
• Curing process

Two types of events

Recovered

15

SIR epidemics – Markov graph
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Each node is either:
- Susceptible = 0
- Infected     = 1
- Recovered  = 2

2 3

1

Contact graphMarkov graph

16
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SIR epidemics – Markov graph
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Markov graph

Procedure:
• Trinary numbering of 

states
• Number of states 3?

• If infection times are 
exponential, then the 
process is Markovian

• Exact, analytic solution 
possible!
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SIR infinitesimal generator 𝑸
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𝑧+,3 𝑖 = 1 45!6 +∈8% &4 3549&: &

If configuration 𝑖 = 0,1,2 , then 𝑧;,< 𝑖 = 𝑧;,; 𝑖 = 0 and 𝑧;,) 𝑖 = 1 

𝑑𝑠
𝑑𝑡 = −𝑄𝑠

18
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State space Markovian SIR

19

N 3N

1 3
2 9
3 27
4 81
5 243
6 729
7 2187
8 6561
9 19683
10 59049
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Linear differential equations 𝒅𝒔
𝒅𝒕
= −𝑸𝒔
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𝜆1 eigenvalues of 𝑄
𝐯1 right-eigenvectors of 𝑄

Solution (if all infection rates 𝛽1$ are different):

Prevalence (average fraction of infected nodes)

𝑠 𝑡 = $
?@A

B@CD

𝑐?𝑒CEAF𝑣?

𝑦 𝑡 = 1
1=B

C&D>

�̃�1𝑒DE!<

20
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Eigenvalue 𝝀𝒊 of configuration 𝒊
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𝜆1 = sum over the cut-set 
between S and I nodes
+ sum over curing rates of 
infected nodes in config. i

Susceptible
Infected

Recovered

𝜆& = ∑+()* ∑=()* 𝛽+= 𝑧+,)(𝑖)𝑧=,<(𝑖)+ ∑+()* 𝛿+𝑧+,;(𝑖)
𝑧+,3 𝑖 = 1 45!6 +∈8% &4 3549&: &
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Epidemic peak
• The epidemic 

peak time 
important for 
decision makers

• The epidemic 
peak can be 
determined up 
to arbitrary 
precision!

22
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Epidemic peak
The epidemic peak 𝑡F satisfies 𝑦G 𝑡F = 0:

o Newton-Raphson 𝑡.H> = 𝑡. −
I'(<()
I''(<()

o 2nd-order Newton-Raphson

𝑡.H> = 𝑡. −
I''(<()∓ I''(<() )DKI'(<()I'''(<()

I'''(<()

o If NR converges, then 𝑡F = lim
.→M

𝑡.
23

23

Epidemic Peak

• Graph with 7 nodes:
o Infection rates uniformly ∈ [0.05, 0.85]
o Curing rates uniformly ∈ [0.1, 0.9]

• Initially 1 infected node, the others susceptible
• 100 realizations

24

24
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Epidemic peak

25

Newton-Raphson

2nd-order Newton-Raphson finds the 
epidemic peak in just 3 iterations!

2nd-order Newton-
Raphson

25
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Outline
Markovian epidemics on networks

SIR

Non-Markovian epidemic on networks
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Fractional Calculus for non-Markovian epidemics?
Chapman-Kolmogorov governing equation of a continuous-time Markov 
process with N states:

28

𝑑𝑠(𝑡)
𝑑𝑡 = −𝑄𝑠(𝑡)

s(t): N x 1 vector with 𝑃𝑟 𝑋 𝑡 = 𝑖
Q: N x N weighted Laplacian Markov graph

= - infinitesimal generatorReplace D = *
*+

by 
Caputo fractional 
derivative 𝐷,

with solution 𝑠(𝑡)=𝑒12$ 𝑠(0)

Van Mieghem, P., ”Origin of the fractional derivative and 
fractional non-Markovian continuous-time processes", 
Physical Review Research, Vol 4, No. 2, June 2022, p. 023242.

Open problem: physical explanation of a-fractional non-Markovian process

𝐸B,C 𝑧 = ∑+(<D E(

F B+GC : Mittag-Leffler function

𝐷H 𝑠(𝑡) = −𝑄H𝑠(𝑡) with solution 𝑠(𝑡)= 𝐸H,) −(𝑄𝑡)H 𝑠(0)

0 < 𝛼 ≤ 1

𝐸),) 𝑧 = 𝑒E

28

Weibull and Mittag-Leffler pdf

29

Van Mieghem, P., 2020, "The Mittag-Leffler function", 
Delft University of Technology, report20200528
(http://arxiv.org/abs/2005.13330).

Lin-Lin scale

Surprise :
Weibull r.v:: all moments exist
Mittag-Leffler r.v: no moment exists

29

https://www.nas.ewi.tudelft.nl/people/Piet/papers/PhysRevResearch2022_FractionalDerivative.pdf
https://www.nas.ewi.tudelft.nl/people/Piet/papers/PhysRevResearch2022_FractionalDerivative.pdf
https://www.nas.ewi.tudelft.nl/people/Piet/papers/TUD20200528_Mittag_Leffler.pdf
http://arxiv.org/abs/2005.13330
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Weibull and Mittag-Leffler pdf

31

Log-Lin scale
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Fractional theory & simulations
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Conclusions

• Markovian epidemics without re-infections (as SIR, SI) 
are analytically computable

• Non-Markovian fractional epidemics are still a mystery

33
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Thank You

Piet Van Mieghem
NAS, TUDelft

P.F.A.VanMieghem@tudelft.nl
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