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Outline

Prediction of epidemic on a fixed graph,
given past infection data

Prediction of future temporal graphs,
given its graph sequence in the past  
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Markovian SIS epidemics in networks

3

Infection process: Poisson with infection strength 𝛽!" = 𝛽      (per link)
Curing process:    Poisson with curing strength 𝛿! = 𝛿          (per node)

Each node j possesses a health state 𝑋$(𝑡) at time t :
𝑋! 𝑡 = 0: node j is not infected at time t
𝑋! 𝑡 = 1: node j is infected at time t 

Infection probability of node j at time t :  𝑣$ 𝑡 = Pr 𝑋$ 𝑡 = 1

𝑋$ 𝑡
𝑡0

1

Susceptible
𝑋$ = 0

Infected
𝑋$ = 1

𝛽

𝛿

Markov state 𝑋! ∈ 0,1  of node j
is a Bernoulli random variable

Pr 𝑋$ 𝑡 = 1 = 𝐸 𝑋$ 𝑡
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Governing Markovian SIS equation for node j
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if infected  (Xj =1):
probability of
curing per
unit time

time-change of
𝐸 𝑋! =Pr 𝑋! = 1
probability that 
node j is infected

if not infected (Xj =0):
probability of infection per
unit time from 
infected neighbors

R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, 
“Epidemic processes in complex networks”, Review of Modern Physics, 
Vol. 87, No. 3, pp. 925-979, 2015

𝑑𝐸 𝑋$(𝑡)
𝑑𝑡

= 𝐸 −𝛿𝑋$(𝑡) + (1 − 𝑋$(𝑡)) 𝛽1
*∈+,-./012($)

𝑋*(𝑡)

56 7#
58 = −𝛿𝐸 𝑋$ + 𝛽∑*9:; 𝑎*$ 𝐸 𝑋* − 𝛽∑*9:; 𝑎*$ 𝐸 𝑋$𝑋*

Complication
𝐸 𝑋!𝑋" =Pr 𝑋! = 1, 𝑋" = 1
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Mean-field approximation: 
replace random variable by its mean
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𝑑𝐸 𝑋$
𝑑𝑡 = 𝐸 −𝛿𝑋$ + (1 − 𝑋$)𝛽1

*9:

;
𝑎*$ 𝑋*

𝑋$ ⟹ 𝐸 5𝑋$ = 𝑤$

𝑑𝑤$
𝑑𝑡 = −𝛿𝑤$ + (1 − 𝑤$)𝛽1

*9:

;
𝑎*$ 𝑤*

From 2; linear Markov differential equations to
N non-linear mean-field approximating diff. equations

P. Van Mieghem, "The N-Intertwined SIS epidemic network model", 
Computing (Springer), Vol. 93, Issue 2, p. 147-169, 2011

NIMFA
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Graph Reconstruction from epidemics

Aim: Determine the 𝑁×𝑁 adjacency matrix 𝐴 of the contact graph from a 
given the time series of infection probabilities of all 𝑁 nodes
and the governing equations of epidemic spread on a graph (i.e. NIMFA)

Viral state observation = infection 
probability 𝑣! 𝑡 = Pr 𝑋! 𝑡 = 1 over time, 
instead of {0,1} bit sequence 𝑋!(𝑡)

Topology 
𝐴 = ?

Solution: only partially possible

Prasse, B. and P. Van Mieghem, 2018, "Exact Network Reconstruction 
from Complete SIS Nodal State Infection Information Seems Infeasible", 
IEEE Transactions on Network Science and Engineering, Vol. 6, No. 4, 
October-December, pp. 748-759.
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https://www.nas.ewi.tudelft.nl/people/Piet/papers/Computing2011_N_intertwined_SIS_virus_spread.pdf
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Agitation modes

𝑁 differential equations  &'$ (
&(

= 𝑓)*),+ 𝑤 𝑡 ,
𝑖 = 1,… ,𝑁

𝑚 < 𝑁 differential equations  &,% (
&(

≈ 𝑦-.𝑓)*) ∑-/01 𝑐- 𝑡 𝑦- , 𝑙 = 1,… ,𝑚

Projection on agitation modes 𝑦&

𝑦', … , 𝑦(: orthonormal agitation modes
𝑐& 𝑡 = 𝑦&)𝑤 𝑡 : scalar, projection of w 𝑡 on 𝑦&

Proper orthogonal decomposition (POD) of the viral state vector
𝑤 𝑡 ≈ ∑&*'( 𝑐& 𝑡 𝑦&

If the POD is accurate with 𝑚 < 𝑁, we do not need
𝑁 differential equations: 

𝑤 𝑡

𝑒:

𝑒?

𝑦@ = 𝑒@

𝑦:

𝑤 0

Prasse, B. and P. Van Mieghem, 2022, "Predicting network dynamics without 
requiring the knowledge of the interaction graph", Proceedings of the 
National Academy of Sciences (PNAS), Vol. 119, No. 44, e2205517119
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Accurate prediction of epidemic outbreaks 
without accurate network reconstruction

Basis of the Network Inference Prediction Algorithm (NIPA)
Real-time data loading from RIVM (Dutch ministry of health):

https://www.nas.ewi.tudelft.nl/nipa/covid-prediction

Prediction Reconstruction

AUC = 0.51

B. Prasse and P. Van Mieghem, 2020, “Network Reconstruction and Prediction 
of Epidemic Outbreaks for General Group-Based Compartmental Epidemic 
Models”, IEEE Transactions on Network Science and Engineering, 
Vol. 7, No. 4, October-December, pp. 2755-2764 

Process: only a few agitation modes Graph: nearly all 𝑁 eigenmodes
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Outline

Prediction of epidemic on a graph,
given past infection data

Prediction of future temporal graphs,
given its graph sequence in the past  
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Problem Statement

What can we infer about the process? How can we model the observed 
dynamics of the network?
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Shvydun, S. and P. Van Mieghem, 2024, "System Identification for
Temporal Networks", IEEE Transactions on Network Science and 

Engineering, Vol. 11, No. 2, pp. 1885-18895.
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https://www.nas.ewi.tudelft.nl/people/Piet/papers/IEEE_TNSE2023_System_Identification_Temporal_Networks.pdf
https://www.nas.ewi.tudelft.nl/people/Piet/papers/IEEE_TNSE2023_System_Identification_Temporal_Networks.pdf
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Data is generated by a process
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𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑢[𝑘]
𝑦 𝑘 = 𝐶𝑥 𝑘 + 𝐷𝑢[𝑘]

𝑢'[𝑘]
𝑢+[𝑘]
𝑢,[𝑘]

𝑦'[𝑘]
𝑦+[𝑘]
𝑦,[𝑘]
𝑦-[𝑘]

𝑢#[𝑘]

k

𝑦$[𝑘]

kDiscrete-time linear system

Given: input vectors 𝑢 1 , 𝑢 2 ,⋯ , 𝑢[𝐾]  and matrices A, B, C, D
 output vectors 𝑦 1 , 𝑦 2 ,⋯ , 𝑦[𝐾] can be computed 

Inverse process
Given: 𝑢 1 , 𝑢 2 ,⋯ , 𝑢[𝐾]  and 𝑦 1 , 𝑦 2 ,⋯ , 𝑦[𝐾]
Find  : matrices A, B, C, D

De Moor, B., J. Vandewalle, M. Moonen, L. Vandenberghe and P. Van Mieghem, "A Geometrical 
Strategy for the Identification of State Space Models of Linear Multivariable Systems 
with Singular Value Decomposition", Proceedings of the 8th IFAC/IFORS Symposium on 
Identification and System Parameter Estimation, Beijing Aug. 27-31, 1988, pp. 493-497.
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Linear Time-invariant State Space model
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𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑢[𝑘]
𝑦 𝑘 = 𝐶𝑥 𝑘 + 𝐷𝑢[𝑘]

𝑥 𝑘 + 1
𝑦 𝑘 = 𝐴 𝐵

𝐶 𝐷
𝑥[𝑘]
𝑢[𝑘]

Matrix Form

𝑥[𝑘 + 1]
𝑦[𝑘] = 𝑄

𝑥[𝑘]
𝑢[𝑘]

𝑄 = 𝐴 𝐵
𝐶 𝐷

Blocksystem matrix

𝑢 𝑘 :𝑚×1 input vector at discrete time k
𝑦 𝑘 : 𝑙×1 output vector at discrete time k
𝑥 𝑘 : 𝑛×1 state vector at (discrete) time k
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Temporal Network Representation
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13

Linear Time-invariant State Space model 
applied to Temporal Graphs
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How to generate more than 1 graph?

Input: Graph 𝐺*, 𝐿×1 binary vector.
Output: Graph 𝐺*J:, 𝐿×1 binary vector.

𝑥[𝑘 + 1]
𝑦[𝑘] = 𝑄 E 𝑥[𝑘]𝑢[𝑘]

14
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Subspace Graph Generator (SG-Gen)
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𝑘-th output: 𝑥[𝑘 + 1]
'𝑎[𝑘 + 1] = 𝑄U

𝑥[1]
𝑎[1]

𝑢 𝑘 = 𝑦 𝑘 − 1 = F𝑎 𝑘
and 𝑢 1 = 𝑎[1]

All eigenvalues of Q must lie on the unit circle

𝑥[𝑘 + 1]
𝑦[𝑘] = 𝑄 E

𝑥[𝑘]
𝑢[𝑘]
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LG-gen: Real Data
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Datasets: Hospital data, LyonSchool, InVS13 (sociopatterns.org) 
▪ Dynamics of real networks can be accurately approximated by a small 

number of periodic graph sequences;
▪ Exponential decrease in the MSE if 𝐺" ≈ 𝑟𝑜𝑢𝑛𝑑 𝐺"

' + 𝐺"
+ +⋯+ 𝐺"

& ;

Example:
▪ For 𝑙 = 5, the MSE is 

1.07 (≈1 incorrect 
contact per timestamp).

▪ For 𝑙 = 11, the LG-gen 
generates the 
LyonSchool network 
exactly.
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Summary prediction

• Prediction of ”local-rule, global emergent” dynamics:
o Possible without knowing the (assumed fixed) interaction graph!
o Explanation of success of “deep learning methods”

Ø Autonomous dynamic in high dimensions only evolves in a small 
subspace

• Emulation (or reproduction) of a sequence of temporal graphs is possible with 
high accuracy
o Prediction is depressingly bad
o Is it possible to predict, given only one realization (i.e. one sequence of 

temporal graph)?  
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Thank You

Piet Van Mieghem
NAS, TUDelft

P.F.A.VanMieghem@tudelft.nl
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