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Routing with more than one additive constraints is known to be an NP-complete

problem, and hence considered as intractable. We present a new QoS routing

algorithm, called Tunable Accuracy Multiple Constraints Routing algorithm

(TAMCRA), which solves the problem in a fast and accurate way.
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Although the current internet is a best-effort network, serious efforts are spent to offer QoS

and some notion of guarantee. The IETF working groups that focus on the broad

implications of providing QoS are QoSR (QoS based routing), RSVP (signalling for

resource reservations), Integrated Services (traffic aspects) and RTP (time information). In

the ATM Forum on the other hand, PNNI is promoted as the future-safe, powerful protocol

that inherits the full QoS capabilities of ATM. Thus, in short, QoS aspects in dynamic,

distributed networks deserve today due attention and we refer for a broad discussion on

aspects of QoS to the recent book by Ferguson and Huston (1998).
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A user may demand for several QoS requirements (such as delay, cost, bandwidth, cell loss,

etc.) which are further called QoS measures. In principle, all possible combinations of these

QoS measures should be provided by the network. QoS measures can be divided into two

classes. The QoS measure of a path can either be additive (the sum of the QoS measures

along the path) or it can be the minimum(maximum) of the QoS measures along the path.

Topology filtering applies to (min)max QoS measures: all nodes and links not satisfying

the requested min(max) QoS measure, are omitted from the graph before starting to

calculate a path. This explains why a multiple QoS constraints routing problem only

features additive QoS measures (as delay, hopcount, the cell loss ratio (after a logarithmic

transform), link cost,...).

The general QoS routing problem consists of choosing and determining which QoS

measures are relevant, of a QoS routing protocol that dynamically supplies each node in the

network with a consistent view of the topology and finally of the routing algorithm. Several

papers (Orda, 1998) treat a combination of the first and second topic. In this paper, we

merely confine ourselves to the routing algorithm and assume that a completely defined

topology with the relevant QoS measures per link are given. QoS routing with partial

information (Lorentz and Orda, 1998) due to hierarchical condensation are discussed in

Van Mieghem (1998a,b).

Routing with more than one additive constraints is a NP-complete problem (Garey and

Johnson, 1979) and hence it becomes intractable for large networks, demanding good

approximate solutions or heuristics. In the past a number of approximate algorithms for the

multiple constraints routing problem have been proposed, most of which rely on a linear

representation of the path length (Jaffe, 1984; Henig, 1985; Iwata, 1996; Lee, 1993; Wang,

1996). We propose a new algorithm which is based on a combination of a non-linear

representation of the path length (Vogel, 1996), a N-shortest path algorithm (Chong, 1995)



TAMCRA: a Tunable Accuracy Multiple Constraints Routing Algorithm 3

and the concept of non-dominated paths (Henig, 1985).  The accuracy of this algorithm is

expressed as the probability that a path satisfying all constraints is found when indeed such

a path exists. By tuning the single, integer parameter N of the N-shortest path algorithm, the

accuracy of the algorithm can be adapted. Therefore, we named the algorithm TAMCRA:

Tunable Accuracy Multiple Constraints Routing Algorithm. As opposed to several QoS

routing proposals that present approximate algorithms (e.g. based on ε-optimality (Guerin

and Orda, 1997;Hassin, 1992), TAMCRA yields H[DFW results for the integer constraints

problem.

The remainder of the paper is organized as follows. In section 2 to section 4 the principles

behind TAMCRA are explained. In section 5 we discuss the criterion to evaluate

TAMCRA and the type of random graphs used.. The results of this performance evaluation

are found in section 6.

����121�/,1($5�5(35(6(17$7,21�2)�7+(�3$7+�/(1*7+

Although the definition of the multiple constraints routing problem can be found in various

publications (Jaffe, 1984; Wang, 1996) we rephrase it to avoid any misconception.

Consider a graph *�9�(� with 9 nodes and (  links where each link connecting two nodes X

and Y is specified by a link vector O�X�Y� having P additive link metrics� O
L

�X�Y�� �!�� with

L ������P. On the additivity of the link metrics, a path 3�V�N�����O�G� connecting a source node

V and a destination node G is specified by a link vector O�3� where for each component the

following holds O
L

�3�� �O
L

�V�N����O
L

�N�U��������O
L

�X�O����O
L

�O�G���In order words, the link vector

O�3� of the path 3� consists of the vector sum of the link vectors corresponding to links

characterizing the path 3. Given P positive constraints /
L

, the multiple constraints routing
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problem asks for a path 3�V�N�����O�G���obeying the constraints O
L

�3��≤�/
L

 for each component

L ������P.

A first key problem is the definition of the concept of path length. In order to illustrate our

choice, the definition (7) below, and its impact, we start examining the straightforward

choice of a linear path length as presented by Jaffe (1984). Concentrating on P=2

constraints (/
�

��/
�

), Jaffe proposes to use the definition

( ) ( ) ( )YXOGYXOGYXO ,.,., 2211 +=  (1)

where G
�

 and G
�

 are positive real numbers. By replacing each link vector via (1) by a single

metric in the graph *, Jaffe reduces the m = 2 parameter problem to a single parameter one

allowing the use of Dijkstra’s well-known shortest path algorithm. Running the Dijkstra

algorithm on the reduced graph will return a path 3(V�N�����O�G) for which

( ) ( ) ( )[ ] ( ) ( )[ ]GOOGGOOGNVOGNVOG3O ,.,....,.,. 22112211 ++++=

                      [ ] [ ]),(...),(.),(...),(. 222111 GOONVOGGOONVOG +++++=

                           ( ) ( )= +G O 3 G O 31 1 2 2. . (2)

is minimal. Each path (2) between the source node V and the destination node G  can be

represented in a (O
�

(3),O
�

(3)) -plane.

      
1/d1

1/d2

l1(P)

l2(P)

L2

L1

)LJXUH�����GLVWULEXWLRQ�RI�SDWKV�LQ�WKH��O��3��O��3���SODQH��7KH�VROXWLRQ�UHWULHYHG�E\�WKH�'LMNVWUD�DOJRULWKP�LV

HQFLUFOHG�
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Each of the parallel lines

( ) ( )G O 3 G O 3 F1 1 2 2. .+ = (3)

intersects solutions with equal length� F. All solutions lying above a certain line have a

length (according to (1)) larger than the ones below or on the line. The shortest path

returned by Dijkstra after condensation of the two link metrics (O
�

�O
�

) to a single metric

O=G
�

�O
�

 +G
�

�O
�

 will be the first solution intersected by a set of parallel lines with slope (G
�

/G
�

)

as shown in Figure 1.

(a) (b) (c) (d)

L1

L2

)LJXUH����6FDQQLQJ�WKH�FRQVWUDLQW�DUHD�ZLWK�D�VWUDLJKW�HTXLOHQJWK�OLQH

When scanning the solution space with a straight equilength line as in Figure 2, the area

which is scanned outside the constraint region is minimized if the slope of the straight

equilength lines satisfies

1

2

2

1
/

/
G

G = (4)

With (4), always half of the constraint area is scanned before running the risk to select a

solution outside the constraint area. This is shown in Figure 3-a. The area which is scanned

outside the constraint area can be further reduced if the straight equilength lines are

replaced by curved equilength lines that more closely approach the boundary of the

constraints area as shown in Figure 3-b.
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l1(P)

l2(P)

L2

L1

( ) ( )O 3
/

O 3
/

FWH
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1

1

2

2
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
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


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
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
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l1(P)

l2(P)
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L1

( ) ( )O 3
/

O 3
/

FWH1

1

2

2

+ =

)LJXUH�����D��VWUDLJKW�HTXLOHQJWK�OLQHV����E��FXUYHG�HTXLOHQJWK�OLQHV

Sorting paths according to such curved equilength lines necessitates another definition of

the path length as

O 3
O 3
/

L

L

T

L P

T

( )
( )

,...,

/

=


















=
∑
1

1

(5)

with T�!�� and

( )O 3 O H
L

H V G
L

( )
:

=
→
Σ (6)

The definition (5) is known as Holder’s T-vector norm (Golub and Van Loan, 1983) and

fundamental in the theory of classical Banach spaces (see Royden, 1988, chapt. 6). Ideally

the equilength lines should perfectly match the boundaries of the rectangular constraints,

scanning the constraint area without ever selecting a solution outside the constraint area,

which is achieved when T→∞. In that case the value of  O�3� in (5) will be completely

dominated by the largest term in the sum (5) and expression (5) reduces to

O 3
O 3

/

O 3

/

O 3

/
P

P

( ) max
( )

,
( )

,...,
( )

=






1

1

2

2

(7)

When there are only two metrics, (7) can be visualised as in Figure 4.
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l1(P)/L1

l2(P)/L2

1

1

l(P)

)LJXUH����UHSUHVHQWDWLRQ�RI�D�SDWK��GRW��DQG�LWV�SDWKOHQJWK�O�3��DFFRUGLQJ�WR�����LQ�FDVH�WKH�SDWK�LV�VXEMHFW�WR

WZR�FRQVWUDLQWV�/��DQG�/��

This figure shows that the pathlength is determined by that metric (component) closest to

the constraints boundary. A similar approach can be found in Vogel (1996) where the

distance between the position of the path in the plane and the boundary for a specific

dimension is called the DYDLODELOLW\ of the path in that dimension. In this terminology, the

pathlength is determined by the dimension with the minimum availability.

With definition (7), the path length outside the constraint area is always larger than the path

length inside the constraint area. Thus, if the shortest path lies outside the constraint area

then there is no path satisfying all constraints. Hence, the problem of finding a path obeying

P constraints is "reduced" to the problem of finding the shortest path according to

definition of the path length in (7).

����7+(�7$0&5$�$/*25,7+0

As subsections of shortest paths in multiple dimensions are not necessarily shortest paths

(as demonstrated in Appendix A), a simple shortest path algorithm such as Dijkstra’s

algorithm will not always work satisfactorily. When the Dijkstra algorithm calculates the

shortest path between a source and a destination node, it stores only the shortest path to
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each intermediate node. When dealing with multiple constraints and the non-linear path

length corollary, the shortest path to an intermediate node does not always lead to the

shortest path to the final destination node. Therefore more than one path needs be stored for

each intermediate node. The need of storing several paths leads us to consider a k-shortest

path algorithm. The literature abounds with shortest path algorithms which calculate the N

shortest path but one of those algorithms, by Chong et al. (1995), turns out to be very useful

when combined with the definition of the pathlength as in (7). The k-shortest path

algorithm from Chong et al. operates like the Dijkstra algorithm except that the queue

which stores intermediate path lengths can contain more than one - in general N - entries per

node. Evidently, the larger the value of N, the larger the probability that the subpath

between the source and the intermediate node which eventually leads to the shortest path

between source and destination, belongs to the set of the N shortest paths contained in the

queue of the algorithm. The integer parameter N� then naturally arises as ‘accuracy tuning

index’, which has suggested to call our algorithm TAMCRA, a 7XQDEOH Accuracy Multiple

Constraints Routing Algorithm.

Yet, TAMCRA is more than a combination of the proper�N-shortest path algorithm with a

specially chosen non-linear definition of the pathlength as in (7). The third key idea is that

efficiency can be dramatically increased using GRPLQDWHG�SDWKV, a concept first introduced

by Henig (1985). Consider two paths 3
�

 and 3
�

 between the source and some intermediate

node for an P=2 constraints problem with pathlength vector ([
�

�� \
�

) and ([
�

�� \
�

)

respectively. Both paths can be represented in a plane and there are two possible scenarios,

shown in Figure 5 a-b.
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(a)

l2(P)/L2

1

1[ /2 1

[ /1 1

\ /1 2

\ /2 2

[ /3 1

\ /3 2

l1(P)/L1
l1(P)/L1

l2(P)/L2

1

1

\ /1 2

\ /2 2

[ /1 1

[ /2 1 (b)

)LJXUH����5HSUHVHQWDWLRQ�RI�WKH�WZR�SDWKV�EHWZHHQ�WKH�VRXUFH�QRGH�DQG�VRPH�LQWHUPHGLDWH�QRGH��7KH�OHQJWK

YHFWRU� �[��\��� UHSUHVHQWV� WKH� UHPDLQLQJ� SDUW� RI� WKH� VKRUWHVW� SDWK� EHWZHHQ� VRXUFH� DQG� GHVWLQDWLRQ�� 7KH

VKRUWHVW�SDWK�LV�HQFLUFOHG�WZLFH�

In scenario (D), 3
�

 is shorter than 3
�

. 3
�

 is even shorter both for metric 1 (x) and for metric

2 (y). In that case, DQ\�SDWK�EHWZHHQ�WKH�VRXUFH�DQG�ILQDO�GHVWLQDWLRQ�QRGH�ZKLFK�PDNHV�XVH

RI�3
�

�ZLOO�EH�VKRUWHU�WKDQ�DQ\�RWKHU�SDWK�EHWZHHQ�WKH�VRXUFH�DQG�GHVWLQDWLRQ��ZKLFK�PDNHV

XVH�RI�3
�

. This can be demonstrated as follows.

If

[ / [ /1 1 2 1<    and    \ / \ /1 2 2 2< (8)

then also

( ) ( )[ [ / [ [ /1 3 1 2 3 1+ < +    and   ( ) ( )\ \ / \ \ /1 3 2 2 3 2+ < + (9)

for any value of [
�

, \
��

and thus

max , max ,
[ [

/

\ \

/

[ [

/

\ \

/
1 3

1

1 3

2

2 3

1

2 3

2

+ +





 <

+ +





 (10)
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Thus, we certainly know that 3
�

 will never be a subpath of a shortest path and therefore 3
�

should not be stored in the queue. Using the terminology of Henig (1985), 3
�

 is said to be

dominated by 3
�

.

In scenario (E) both paths have crossing abscissa and ordinate points: 3
�

 has a smaller value

for metric 2 while 3
�

 has a smaller value for metric 1. Only in this situation, the shortest

path between the source and some intermediate node is not necessarily part of the shortest

path between source and destination. This is shown in Figure 5-E by adding the path length

vector (x3,y3) which completes the path until the destination.

In short, if the abscissa-ordinate values of two partial paths cross, both values should be

stored in the queue, while if these values do not cross, only the shortest should be stored in

the queue. The same applies if there are P constraints. If path 3
�

 is already in the queue and

a new path 3
�

 to the same intermediate node is found for which

( ) ( )O 3

/

O 3

/
L

L

L

L

1 2< ,     for each L=1,...,P (11)

then path 3
�

 should not be stored in the queue. Of course, this implies that when a new

pathlength is stored in the queue, all the individual pathlengths for this path also have to be

stored somewhere, to verify whether future path lengths to the same node are not

dominated by the paths whose path length is already stored in the queue.

Another consequence of the path dominance is that the worst-case amount of

simultaneously stored paths is determined by the granularity of the constraints. In reality

most protocols will only allocate a fixed number of bits for carrying the metric. In that case

the constraints /
L

� can be expressed as an integer number of a basic metric unit and the

worst-case number of partial paths which have to be maintained in parallel for each node

are shown in Figure 6.



TAMCRA: a Tunable Accuracy Multiple Constraints Routing Algorithm 11

l1(P)/L1

l2(P)/L2

1

1
1 1/

1 2/

)LJXUH����$�ZRUVW�FDVH�VLWXDWLRQ�LQ�ZKLFK�/��SDUWLDO�SDWKV�DUH�PDLQWDLQHG�LQ�SDUDOOHO

If P � and /
�

� �� /
�

 as in Figure 6, there can never be more than /
�

 partial paths with

crossing abscissa-ordinate values as in Figure 5-a. Any additional partial path will relate to

any of these /
�

 partial paths as in Figure 7a-b.

l1(P)/L1

l2(P)/L2

1

1
1 1/

1 2/

l1(P)/L1

l2(P)/L2

1

1
1 1/

1 2/

(a) (b)

)LJXUH���� �D��RQO\�WKUHH�SDUWLDO�SDWKV�VKRXOG�EH�PDLQWDLQHG� LQ�SDUDOOHO�� �E��DQ\� ORQJHU�SDWK� VKRXOG�QRW�EH

PDLQWDLQHG�

In both cases the number of paths which are stored in the queue is not increased.

Thus, for P=2, the upper limit for�N in the TAMCRA algorithm is

N / /max min( , )= 1 2 (12)
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If there are more than two constraints the maximum number of paths to be calculated is

given by

N /
L

L P

max
,...,

=
=
∏
1

( ), max/ /
L

M
M

≠ (13)

With N� �N
PD[

, the multiple constraints routing problem can be solved H[DFWO\��Nevertheless,

in most circumstances kmax will be too large to be of any practical use. In this paper we

want to demonstrate that small values of N are sufficient to solve the NP-complete problem

in an approximate way.

����7+(�&203/(;,7<�2)�7+(�7$0&5$�$/*25,7+0

The meta-code of the TAMCRA algorithm is listed below:

TAMCRA(*,s,d,L,k)

G: graph, s: source node, d: destination node, L: constraints, k: tunable k-parameter

1   counter=0, for all nodes

2   length(s[1]) = 0 V\QWD[LV� V>�@�LV�WKH�ILUVW�SDWK�WR�QRGH�V

3   ADD s[1] to queue

4   while (queue ≠ empty)

5 u[i] = EXTRACT_MIN from queue

6 if( u = destination node) → STOP

7 else

8 for each v ∈ adjacent_list(u)

9 if(v ≠ previous node of u[i])

10 PATH = u[i] + (u,v)

11 LENGTH = length of PATH

12 check if PATH is non-dominated

13 if(LENGTH ≤ 1 and non-dominated)

14 if (counter(v) < k)

15 counter(v)=counter(v)+1
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16 j=counter(v)

17 v[j] = PATH

18 length(v[j])=LENGTH

19 ADD v[j] to queue

20 else

21 old v[j] = path in queue with maximum length to v

22 if (LENGTH < length(old v[j]))

23 new v[j] = PATH

24 REPLACE in queue old v[j] with new v[j]

The EXTRACT_MIN function (see Cormen HW� DO�� 1991) in line 5 selects the minimum

path length in the queue and returns the associated node. Line 8 and 9 describe the scanning

procedure, in line 11 the non-linear path length is calculated according to the definition in

(7). Line 12 checks whether the new path for the node is not dominated by the existing

paths for that node. The existing paths for that node are those whose path length has been

stored in the queue before. Line 13 removes any path lengths beyond 1. Line 15 to 19

describes how path lengths for a node can be added to the queue as long as the maximum

number specified by N is not attained while the procedure from line 21 to line 24 is invoked

when there are already N crossing paths to a certain node in the queue. In that case, only the

N-shortest paths are maintained.

&RPSOH[LW\

If 9 is the number of nodes, the queue can never contain more than N9 path lengths. When

using a Fibonacci heap to structure the queue, selecting the minimum path length among N9

different path lengths takes at most a calculation time of the order of log(N9) (Cormen HW

DO., 1991). As each node can only be selected N times from the queue, the EXTRACT_MIN
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function in line 5 takes O(N9.log(N9)) at most. The for-loop starting on line 8 is invoked at

most N times from each side of each link in the graph. Calculating the length takes O(P)

when there are P metrics in the graph while verifying the crossing condition takes O(NP) at

most. Adding a path length in the queue takes O(1) while replacing a path length takes O(k)

at most because the largest of the N entries for that node must be found. Adding all those

contributions yields a worst-case time-complexity of

( )2 N9 N9 N P(log( ) + 3 (14)

With a single constraint (P=1) and N=1, this reduces to the time-complexity of the Dijkstra

algorithm given by

( )2 9 9 (log + (15)

This means that, for a fixed number of constraints P and a fixed value of N, the TAMCRA

algorithm scales like the Dijkstra algorithm for a varying number of nodes 9 and links (.

The complexity (14) is non-polynomial (NP-complete) despite the fact that expression (14)

is a polynomial function and the worst-case value of N (13) which is needed to solve the

problem exactly is also a polynomial function. The reason why expression (14) is

nevertheless called non-polynomial is because the complexity of an algorithm is only

polynomial if it is of polynomial order in "the size of the graph", i.e., the number of nodes

9, the number of links ( and the number of constraints P.(Garey, 1979) The YDOXH of the

FRQVWUDLQWV is not regarded as part of "the size of the graph" and therefore the complexity

(14) with N given by (13) is non-polynomial or NP-complete. In such a case, the term

pseudo-polynomiality applies.

����(9$/8$7,1*�7+(�7$0&5$�$/*25,7+0
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The performance of the TAMCRA algorithm is tested on a number of random graphs

(Bollobas, 1985). An important class of random graphs are the Waxman graphs for which

the probability that two nodes are connected by a link is expressed by [Calvert 1997]

( )3 H G 0= −α β (16)

G is the Euclidean distance between the two nodes and 0 is the length along one side of the

square region which bounds the graph. The probability 3 in (16) that two nodes are

connected decreases exponentially with the distance G between the nodes and can be tuned

with the parameters α and β. The first parameter determines the local interconnection

density while β determines the scale at which links occur. The larger β, the larger the

distances which are bridged by some links.

Waxman graphs reflect the property of most networks that neighbouring nodes are more

likely interconnected than remote nodes. An example of such a graph is shown in Figure 8

for 100 nodes�� The parameters are chosen such that there are approximately 200 links

which typically only span a fraction of the largest possible distance in the graph. 

)LJXUH����D�:D[PDQ�JUDSK�ZLWK�����QRGHV�DQG�DSSUR[LPDWHO\�����OLQNV��7KH�OLQN�GHQVLW\�LV�GHWHUPLQHG�E\

�����ZLWK�α ���β �����DQG�/ ���
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TAMCRA is evaluated on this type of random graphs. Throughout the document they are

simply referred to as Waxman graphs. Each link is bi-directional with the same

characteristics in both directions. For each metric, the link weights are uniformly

distributed random numbers between 0 and 1. Simulation results have indicated that this is

a worst-case situation in the sense that any other scheme to attribute weights to the links

yielded better results in terms of the probability to find the shortest path.

The performance of the TAMCRA algorithm is measured by the number of times it

erroneously decides that the path with the requested constraints does not exist while, in fact

there is such a path. The erroneous decision rate (EDR) is the percentage of wrong

decisions on the total number of routing requests and can also be interpreted as the

probability of finding a path outside the constraints while there are paths within the

constraints.  The EDR strongly depends on the number of paths which lie within the

constraints. If there is more than one path within the constraints, TAMCRA can afford to

miss the shortest path provided it returns another path which still lies within the constraints.

Thus, if the constraints are large, many paths will satisfy the constraints and the EDR will

be very small.

In this paper we will focus on the worst case EDR: every time that TAMCRA misses the

shortest path this is considered to be an error, even if the non-shortest path which is found

would satisfy all constraints.  This is the EDR which occurs when the constraints are so

tight that only one path satisfies all constraints: in that case only the shortest path satisfies

all constraints while all non-shortest paths do not satisfy the constraints. All results should

be interpreted as such. Throughout the rest of the document the term “EDR” should thus

always be interpreted as the worst-case EDR unless it is specified otherwise.
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��� 7:2�(48$/�&21675$,176

As explained before the TAMCRA algorithm is tuned with a single parameter N. If N is too

small, the path which is returned by the TAMCRA algorithm might not be the shortest

path.

For each source-destination pair in a graph, the minimum value of N which is needed to find

the shortest path can be calculated. This is shown in Figure 9 for 200 different locally

connected random graphs of 100 nodes each yielding 200 x 100 x 99 different source-

destination pairs. This large number of source-destination pairs provides a comfortably low

statistical error as shown in appendix B.
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From these data the worst-case EDR can be derived. The latter represents the probability

that the shortest path is not found with a certain value of N. This can be found by summing
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the number of source-destination pairs beyond a certain value of N in Figure 9 and dividing

this sum by the total number of source-destination pairs (200 x 100 x 99) This is shown in

Figure 10.
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If TAMCRA is applied with N=1, the worst-case EDR for this graph is about 17% which

means that for 83% of all source-destination pairs the two-constraint problem is solved

with a Dijkstra-like complexity.  The EDR rapidly decreases as N is increased: with N=4 the

EDR has dropped below 1%, which means that the TAMCRA algorithm with N=4 perfectly

solves the two-constraints problem in more than 99% of all cases for a graph with 100

nodes.

We have also monitored the time needed for one node to calculate the shortest path to all

other nodes in the graph as a function of N��The calculation is done on a Sun SPARC Ultra

Workstation and Figure 11 displays the result in absolute time units. As a reference we

have added the running time of the Dijkstra algorithm (P=1, N=1).
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To solve a two-constraint problem with an accuracy of 99% in a graph with 100 nodes, 200

links and with two constraints, TAMCRA needs N=4. According to Figure 11 the running

time of TAMCRA with N=4 is only 3.7 times the running time of the Dijkstra algorithm.

For the Waxman graphs with 100 nodes and two constraints, on the average only three to

four paths per node have crossing abscissa-ordinate values.  Hence, TAMCRA does not

store more than these three to four paths even if it is allowed to store more. This explains

the saturation of the observed calculation time as the value of N increases.

If the time to perform the routing calculation lies above the saturation level, N can be as

large as needed to solve the multiple constraints problem exactly. In Figure 11 it can be

seen that the calculation time for a graph with 100 nodes and two metrics saturates at a

level which is about 5 times the time-complexity of the Dijkstra algorithm. Thus, using

TAMCRA, multiple constraints problems in a graph with 100 nodes and 2 metrics can be

solved exactly with a time-complexity which is only 5 times the time-complexity of the

Dijkstra algorithm.



TAMCRA: a Tunable Accuracy Multiple Constraints Routing Algorithm 20

��� 025(�7+$1�7:2�(48$/�&21675$,176

When the number of constraints increases, also the number of crossing or non-dominated

paths is likely to increase. Thus, each node has to store much more paths in parallel and this

is reflected in the calculation time shown in Figure 12.
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The calculation time for P=4 and P=6 saturates at larger values of N than the calculation

time for P=2 because each node has much more crossing or non-dominated paths. This

implies that solving exactly an m=4 problem on a graph with 100 nodes would take 20

times the calculation time of the Dijkstra algorithm instead of only 5 times with P=2.

Solving exactly an P=6 problem already requires 40 times the calculation time of the

Dijkstra algorithm.

This confirms the concern of Henig (1985) who argued that calculating all the non-

dominated paths is not possible when the number of constraints grows large. Fortunately,

unless the multiple constraints problem needs to be solved exactly, TAMCRA does not

require that all non-dominated paths are calculated. Moreover, beyond a certain number of
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constraints m the probability of missing the shortest path seems even independent of the

number of constraints as illustrated in Figure 13.
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As the number of constraints increases, the worst-case EDR also increases but it saturates

at a certain level, despite the fact that the number of non-dominated paths increases. Figure

13 shows that solving a multiple constraints problem with an accuracy of 1% in a graph

with 100 nodes requires k=5 only, no matter how many constraints there are. Of course, as

expressed by (14) the calculation time of the algorithm does depend on the number of

constraints as shown for a graph of 100 nodes and k=5 in

Figure 14.
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WKH�SDUDPHWHU�N�

The calculation time is seen to increase OLQHDUO\ with the number of constraints. Hence,

solving the P-constraints problem with a non-zero but fixed probability of missing the

shortest path only requires a linear increase in the calculation time, despite the much larger

increase of the number of non-dominated paths.

The number of constraints P will depend on the specific protocol in use. Currently PNNI is

the only routing and signalling ATM specification which explicitly lists a number of QoS

measures, three of which are additive QoS measures. If we include the additional constraint

that the same physical path needs to be used in both directions, the total number of additive

constraints doubles to six, for the time being.

��� 81(48$/�&21675$,176

So far we have only concentrated on a situation where all constraints are equal. This is

equivalent to a situation where all constraints are equally stringent. To make sure that this

special set of constraints is representative for all sets of constraints, Figure 15 shows the

EDR for the random set of 8 unequal constraints (20, 40, 100, 20, 300, 50, 30, 100)

compared to the EDR of 8 equal constraints.
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In both cases the worst-case EDR is nearly identical in contrast to a two-constraints

problem.. Figure 16 shows the worst-case EDR when one of the two constraints is 10 time

larger than the other one. The EDR rapidly decreases which can be readily understood: if

one of the constraints is relaxed (increases), its influence on the path which is returned by

TAMCRA, decreases. In the limit, when one of the two constraints becomes very large, the

problem is reduced to a single constraint problem for which the EDR = 0 for every N.
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The value of N which is necessary to achieve a specified value for the worst-case EDR also

depends on the size of the graph.  Table 1 shows the parameters of the Waxman graphs

used for this scaling study. The parameters refer to the probability (16) that two nodes are

connected. The graphs are scaled such that the local density of nodes and links does not

change. Therefore the size of the graph scales as

0 9= 2. (17)

In this way, the average distance between the nodes does not change. As the size of the

graph increases the value of β is diminished such that the product β./ remains constant.

This guarantees that the average distance which is spanned by the links also remains

constant. The third parameter α is then adjusted to keep the average number of links per

node ((�9) constant.

9 0 α β (�9

50 71 1 0.11 2.4

100 100 1 0.08 2.8

200 141 0.9 0.056 2.8

400 200 0.78 0.04 2.8

800 283 0.78 0.028 2.8

1600 400 0.75 0.02 2.8

7DEOH����SDUDPHWHUV�RI�WKH�:D[PDQ�JUDSKV�LQ�H[SUHVVLRQ������XVHG�IRU�WKH�VFDOLQJ�VWXG\

The scaling of graphs is illustrated in Figure 17: the graph with 200 nodes is like four

graphs with 50 nodes each, a local observer should not see the difference.



TAMCRA: a Tunable Accuracy Multiple Constraints Routing Algorithm 25

50 nodes

200 nodes

)LJXUH� ���� D� :D[PDQ� JUDSK� ZLWK� ��� QRGHV� DQG� D� :D[PDQ� JUDSK� ZLWK� ���� QRGHV� DFFRUGLQJ� WR� WKH
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The worst-case EDR for the six different graphs of Table 1 are shown in Figure 18. The

value of N which is needed to obtain a certain worst-case EDR steadily increases as the

number of nodes 9 in the graphs increases.
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For each EDR, every doubling of the size induces an equidistant shift of the curve. This is

confirmed when we plot the value of N which is needed to obtain worst-case EDR of 1% as

a function of the number of nodes.
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For sizes varying between 200 and 1600 nodes, the value of N which is needed to maintain

the worst-case EDR at a fixed level is proportional to log(9).

( ) ( )N 9 9~ log ,200 < 9 < 1600 (18)

As for the Dijkstra algorithm, the calculation time of the TAMCRA algorithm depends on

the number of nodes 9 and the number of links (. The calculation time of the Dijkstra

algorithm for a graph with 400 nodes is 4.36 time the calculation time for a graph with 100

nodes. If we divide the calculation time of the TAMCRA algorithm for the graph with 400

nodes by this number, both curves coincide as seen in Figure 20. This demonstrates that the

TAMCRA algorithm scales exactly like the Dijkstra algorithm for any change of the

number of nodes 9 and the number of links ( as we already concluded from the expression

(14) for the worst-case time-complexity.
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The problem of routing with more than two additive constraints has been widely studied in

literature. We reviewed a number of existing algorithms which are designed to solve these

routing problems.

The main set of algorithms represent the length of a path by a linear combination of the P

individual path lengths and calculate the shortest path by means of the Dijkstra algorithm.

However,  in that case the shortest path is not necessarily the path within the constraints

and we argued that these algorithms might run in trouble trying to solve particular instances

of the routing problem.

Based on this analysis we have proposed a different definition of the path length such that

the shortest path can never lie outside the constraints when there is at least one path within

the constraints. To find this shortest path we designed a new algorithm: the Tunable

Accuracy Multiple Constraints Routing Algorithm or TAMCRA.
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TAMCRA was evaluated on a number of random Waxman graphs. The probability of

missing the shortest path, defined as the "worst-case Erroneous Decision Rate (EDR)" has

been investigated.

The results  learn that the main advantages of the TAMCRA algorithm are the following:

• Tunable trade-off between probability of finding the shortest path and the

polynomial time-complexity with a single integer parameter N

• Exact solution of the multiple constraints problem with a good pseudo-polynomial

time-complexity

• Exponential decrease of the probability of missing the shortest path as the value of

N increases while the calculation time only increases linearly with N.

• Saturation of the calculation time above a certain value of N which allows an exact

solution of the multiple constraints problem

• Calculation time of TAMCRA increases linearly with the number of constraints.

• Probability of missing the shortest path is independent of the number of

constraints, above a certain number of constraints.

• Calculation time of TAMCRA scales as the Dijkstra algorithm for an increasing

number of nodes 9 and links (.

• The value of N which is needed to keep the probability of missing the shortest path

fixed increases as log(9).

These results demonstrate that  TAMCRA  is scaleable and that multiple constraints

routing problems can be solved to a very high accuracy within a short time-frame as long as

we accept a non-zero probability of missing the shortest path.
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An important corollary of non-linear path length definitions as (5) and (7) is that VXESDWKV

RI� VKRUWHVW� SDWKV� DUH� QRW� QHFHVVDULO\� VKRUWHVW� SDWKV� The demonstration relies on the

triangle inequality, one of the three properties of vector norms (or path lengths) (Golub and

Van Loan, 1983), stating that

( ) ( ) ( )O S T O S O T+ ≤ + (A.1)

where S and T are two link vectors. Consider two paths 3� and 3�  for which O�3����O�3��

and assume that, by adding a same link D to both paths, we can construct the paths 3� and

3�. Let us first focus on the case where the equality sign in (A.1) holds, typically if T� �� in

(5). By construction, we have O�3��� �O�3���D��and by (A.1) with the equality sign,�O�3���D�

 �O�3�����O�D��  and analogously, O�3��� � O�3���D�� � O�3����� O�D�� Since O�3���� O�3��, there

holds that O�3�����O�3���or, the subpaths of shortest path with linear definition of path length

are again shortest paths, leading to the well-known and intuitive result. When the inequality

sign holds in (A.1), typically if q > 1 as readily verified from (5), we arrive in a similar

fashion at the set of inequalities O�3��� �O�3���D����O�3�����O�D� ;�O�3��� �O�3���D����O�3����
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O�D�  and O�3�����O�3����However, from this set, it cannot be concluded whether O�3���≤�O�3��

or�O�3���!�O�3��� It suffices to show that the latter situation may exist in order to prove the

corollary. This can be illustrated on the example graph shown below with three additive

measures for each link. The constraints were chosen to be 14, 11 and 12 respectively.
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For these constraints, the shortest path between node D and node L�runs over node F, H and I

as shown below. According to the definition (7), the pathlength of this path equals 0.95

which means it satisfies all constraints.
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However, the shortest path between node D and node H does not run over node F but over

node E as easily verified below. QED.
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Figure B.1 compares the number of source-destination pairs as a function of the N which is

needed to find the shortest path in between them, when averaged over a different number of

random graphs. The calculation is done on Waxman graphs with 100 nodes and

approximately 200 links.
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Figure B.1  demonstrates that apart from the statistical noise, the result for 5 graphs is the

same as the result for 400 graphs. Thus, the amount of correlation which is present in a

single graph is very weak. This could be expected from the fact that TAMCRA is not even

symmetrical: if the shortest path between source A and destination B is found which some

value of N, the reverse path between source B and destination A might require a different

value of N and there seems to be little or no correlation between the two.

In the case of graphs with 100 nodes, 200 graphs are required to generate a sufficient

amount of source-destination pairs for all values of N and thus reduce the statistical noise.


