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In-homogeneous Virus Spread in Networks
Piet Van Mieghem and Jasmina Omic

Abstract�Our N -intertwined mean-�eld approximation
(NIMFA) [12] for virus spread in any network with N nodes
is extended to a full heterogeneous setting. The metastable
steady-state nodal infection probabilities are speci�ed in terms
of a generalized Laplacian, that possesses analogous properties
as the classical Laplacian in graph theory. The critical threshold
that separates global network infection from global network
health is characterized via an N dimensional vector that makes
the largest eigenvalue of a modi�ed adjacency matrix equal
to unity. Finally, the steady-state infection probability of node
i is convex in the own curing rate �i, but can be concave in
the curing rates �j of the other nodes 1 � j 6= i � N in the
network.

Index Terms�Virus spread, epidemic threshold, generalized
Laplacian

I. INTRODUCTION

This paper generalizes our N -Intertwined Mean-Field Ap-
proximation (NIMFA) for virus spread in networks, presented
in [12] and [11, Chapter 17], to a heterogeneous setting.
Heterogeneity rather than homogeneity abounds in real net-
works. For example, in data communications networks, the
transmission capacity, age, performance, installed software,
security level and other properties of networked computers are
generally different. Social and biological networks are very
diverse: a population often consists of a mix of weak and
strong, or old and young species or of completely different
types of species. The network topology for transport by
airplane, car, train, ship is different. Many more examples
can be added illustrating that homogeneous networks are the
exception rather than the rule. This diversity in the �nodes� and
�links� of real networks will thus likely affect the spreading
pattern of viruses, that are here understood as malicious
challenges of a network.
NIMFA approximates the continuous-time Markov

susceptible-infected-susceptible (SIS) epidemic process on a
network with N nodes, that was earlier considered by Ganesh
et al. [3] and by Wang et al. [14] in discrete-time. Each node
in the network is either infected or healthy. In a heterogeneous
setting, an infected node i can infect its neighbors with an
infection rate �i, but it is cured with curing rate �i. Once
cured and healthy, the node is again prone to the virus. Both
infection and curing processes are independent.
Previously in [12], only a homogeneous virus spread was

investigated, where all infection rates �i = � and all curing
rates �i = � were the same for each node. We believe that
the extension to a full heterogeneous setting is, perhaps, the
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best SIS model that we can achieve. The exact Markovian
model, described and analyzed in [12], has 2N states, which
makes it infeasible to compute for realistic sizes of networks.
Moreover, the exact Markovian model possesses as steady-
state the overall healthy state, which is an absorbing state,
that is, unfortunately, only reached after an extreme and
unrealistically long time. The heterogeneous NIMFA makes
one approximation, a mean �eld approximation as shown in
Section II and in [12], that results in a set of N non-linear
equations. Hence, NIMFA trades computational feasibility, a
reduction of 2N linear equations to N non-linear ones, at
the expense of exactness. The last point, the accuracy of
NIMFA is shown in [12] (and further in [6]) to be overall
remarkably good, with a worst case performance near the
critical threshold, which is a realistic and observable artifact
of the metastable steady-state that does not exist in the exact
Markovian steady-state. Below the critical epidemic threshold,
infection vanishes exponentially fast in time and above the
critical threshold the network stays infected to a degree de-
termined by the effective infection vector � , with components
�i =

�i
�i
.

A major new insight is that the metastable steady-state
can be written in terms of a generalized Laplacian matrix
that bears similar deep properties as the Laplacian matrix
of a graph (see e.g. [1], [2] and [10]). In a heterogeneous
setting, the critical threshold is characterized by an effective
infection vector, instead of one scalar in the homogeneous
case equal to �hom;c = 1

�max(A)
, where �max (A) is the largest

eigenvalue of the adjacency matrix A of the graph. This critical
vector determines a critical surface in theN -dimensional space
spanned by the vector components �1; : : : ; �N . We also prove
that the steady-state infection probability vi1 of node i is
convex in the curing rate �i, given all other curing rates �j are
the same. This convexity result is applied in a virus protection
game played by the individual and sel�sh nodes in a network
[7].

II. N -INTERTWINED CONTINUOUS MARKOV CHAINS WITH
2 STATES

This section extends the homogeneous NIMFA in [12] to
a heterogeneous setting. Although analogous to the corre-
sponding section in [12], its inclusion makes this paper self-
contained.
By separately observing each node, we will model the virus

spread in a bi-directional network speci�ed by a symmetric
adjacency matrix A. Every node i at time t in the network
has two states: infected with probability Pr[Xi (t) = 1] and
healthy with probability Pr[Xi (t) = 0]. At each moment t,
a node can only be in one of two states, thus Pr[Xi(t) =
1] + Pr[Xi(t) = 0] = 1. If we apply Markov theory, the
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in�nitesimal generator Qi (t) of this two-state continuous
Markov chain is,

Qi (t) =

�
�q1;i q1;i
q2;i �q2;i

�
with q2;i = �i and

q1;i =
NX
j=1

�jaij1fXj(t)=1g

where the indicator function 1x = 1 if the event x is
true else it is zero. The coupling of node i to the rest of
the network is described by an infection rate q1;i that is a
random variable, which essentially makes the process doubly
stochastic. This observation is crucial. For, using the de�nition
of the in�nitesimal generator [8, p. 181],

Pr[Xi(t+�t) = 1jXi (t) = 0] = q1;i�t+ o(�t)

the continuity and differentiability shows that this process is
not Markovian anymore. The random nature of q1;i is removed
by an additional conditioning to all possible combinations
of rates, which is equivalent to conditioning to all possible
combinations of the states Xj(t) = 1 (and their complements
Xj(t) = 0) of the neighbors of node i. Hence, the number
of basic states dramatically increases. Eventually, after condi-
tioning each node in such a way, we end up with a 2N� state
Markov chain, studied in [12].
Instead of conditioning, we replace the actual, random

infection rate by an effective or average infection rate, which
is basically a mean �eld approximation,

E [q1;i] = E

24 NX
j=1

�jaij1fXj(t)=1g

35 (1)

In general, we may take the expectation over the rates �i, the
network topology via the matrix A and the states Xj(t). Since
we assume that both the infection rates �i and the network
are constant and given, we only average over the states. Using
E [1x] = Pr [x] (see e.g. [8]), we replace q1;i by

E [q1;i] =
NX
j=1

�jaij Pr[Xj(t) = 1]

which results in an effective in�nitesimal generator,

Qi(t) =

�
�E [q1;i] E [q1;i]
�i ��i

�
The effective Qi(t) allows us to proceed with Markov

theory. Denoting vi (t) = Pr[Xi(t) = 1] and recalling that
Pr[Xi(t) = 0] = 1 � vi (t), the Markov differential equation
[11, (10.11) on p. 208] for state Xi(t) = 1 turns out to be
non-linear

dvi (t)

dt
=

NX
j=1

�jaijvj (t)� vi (t)

0@ NX
j=1

�jaijvj (t) + �i

1A
(2)

Each node obeys a differential equation as (2),8>>>>>><>>>>>>:

dv1(t)
dt =

PN
j=1 �ja1jvj(t)� v1(t)

�PN
j=1 �ja1jvj(t) + �1

�
dv2(t)
dt =

PN
j=1 �ja2jvj(t)� v2(t)

�PN
j=1 �ja2jvj(t) + �2

�
...

dvN (t)
dt =

PN
j=1 �jaNjvj(t)� vN (t)

�PN
j=1 �jaNjvj(t) + �N

�
Written in matrix form, with

V (t) =
�
v1 (t) v2 (t) � � � vN (t)

�T
we arrive at
dV (t)

dt
= Adiag (�j)V (t)�diag (vi (t)) (Adiag (�j)V (t) + C)

(3)
where diag(vi (t)) is the diagonal matrix with elements
v1 (t) ; v2 (t) ; : : : ; vN (t) and the curing rate vector is C =
(�1; �2; : : : ; �N ).
We note that Adiag(�i) is, in general and opposed to

the homogeneous setting, not symmetric anymore, unless
A and diag(�i) commute, in which case the eigenvalue
�i (Adiag (�i)) = �i (A)�i and both �i and �i (A) have a
same eigenvector xi.

III. GENERAL IN-HOMOGENOUS STEADY-STATE

A. The steady-state equation
The metastable steady-state follows from (3) as

Adiag (�i)V1 � diag (vi1) (Adiag (�i)V1 + C) = 0

where V1 = limt!1 V (t). We de�ne the vector

w = Adiag (�i)V1 + C (4)

and write the stead-state equation as

w � C = diag (vi1)w

or
(I � diag (vi1))w = C

Ignoring extreme virus spread conditions (the absence of
curing (�i = 0) and an in�nitely strong infection rate �i !
1), then the infection probabilities vi1 cannot be one such
that the matrix (I � diag (vi1)) = diag(1� vi1) is invertible.
Hence,

w = diag
�

1

1� vi1

�
C

Invoking the de�nition (4) of w, we obtain

Adiag (�i)V1 = diag
�

vi1
1� vi1

�
C

= diag
�

�i
1� vi1

�
V1 (5)

The i-th row of (5) yields the nodal steady state equation,
NX
j=1

aij�jvj1 =
vi1�i
1� vi1

(6)
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Let eV1 = diag(�i)V1 and the effective spreading rate for
node i, �i = �i

�i
, then we arrive at

Q
�

1

�i (1� vi1)

� eV1 = 0 (7)

where the symmetric matrix

Q (qi)= diag (qi)�A (8)
= diag (qi � di) +Q

can be interpreted as a generalized Laplacian1, because
Q (di) = Q = �� A, where � = diag(di). The observation
that the non-linear set of steady-state equations can be written
in terms of the generalized Laplacian Q (qi) is fortunate,
because, as will be shown in Section III-B, the powerful theory
of the �normal� Laplacian Q applies.
The modi�ed steady-state vector eV1 is orthogonal to each

row (or, by symmetry, each column) vector of Q
�

1
�i(1�vi1)

�
.

A non-zero modi�ed steady-state vector eV1 is thus only
possible provided detQ

�
1

�i(1�vi1)

�
= 0. In other words,

the generalized Laplacian Q
�

1
�i(1�vi1)

�
should have a zero

eigenvalue with the modi�ed steady-state vector eV1 as corre-
sponding eigenvector. Since the vectors B = (�1; �2; : : : ; �N )
and C = (�1; �2; : : : ; �N ) are given, the non-linear eigenvector
problem (7) has, in general, a solution that cannot simply be
recast to the homogeneous case where B = �u and C = �u
(or �i = � and �i = � for all 1 � i � N ) in which the all-one
vector u = (1; 1; : : : ; 1).

B. The generalized Laplacian Q (qi)
Since Q (qi) is symmetric, all eigenvectors are orthogonal

such that, with eV1 = diag(�i)V1,
NX
j=1

�jvj1yj = 0 (9)

where y is the eigenvector belonging to eigenvalue
� (Q (qi)) 6= 0.
Theorem 1: If the network G is connected, all eigenvalues

of Q (qi) are positive, except for the smallest one �N (Q) = 0.
Proof: The theorem is a consequence of the Perron-

Frobenius Theorem (see e.g. [4]) for a non-negative, ir-
reducible matrix. Indeed, consider the non-negative matrix
qmaxI � Q (qi), where qmax = max1�i�N qi, whose eigen-
values are �k = qmax � �k (Q) for 1 � k � N . Since
G is connected, then qmaxI � Q (qi) is irreducible and the
Perron-Frobenius Theorem states that the largest eigenvalue
r = max1�k�N �k of qmaxI � Q (qi) is positive and simple
and the corresponding eigenvector xr has positive components.
Hence, Q (qi)xr = (qmax � r)xr. Since eigenvectors of a
symmetric matrix are orthogonal while eV T1xr > 0, xr must
be proportional to eV1, and thus qmax = r. Since there is
only one such eigenvector xr and since the eigenvalue r >

1All eigenvalues of the Laplacian Q = � � A in a connected graph are
positive, except for the smallest one that is zero. Hence, Q is positive semi-
de�nite. Much more properties of the Laplacian Q are found e.g. in [1] and
[2].

qmax � �k (Q) for all k (except that k for which �k (Q) = 0,
which is thus the smallest eigenvalue), all other eigenvalues
of Q (qi) must exceed zero. �

If the graph G is disconnected which means that A is re-
ducible [8], the Theorem 1 still applies (see e.g. [4]), however,
under the slightly weakened form that xr has non-negative
components (instead of positive, hence, zero components can
occur) and that the largest eigenvalue r is non-zero (not
necessarily strict positive). The consequence is that more than
one zero eigenvalue can occur. From the point of virus spread,
we may ignore disconnected graphs, because the theory can be
applied to each connected component (cluster) of the network
G. The symmetry of Q (qi) implies that all eigenvalues are
real and can be ordered. By Theorem 1, we have

0 = �N (Q) � �N�1 (Q) � : : : � �1 (Q)

Gerschgorin's theorem [15, p. 71-75] indicates that the eigen-
values of Q (qi) are centered around qi with radius equal to
the degree di, i.e. an eigenvalue � of Q (qi) lies in an interval
j�� qkj � dk for some 1 � k � N . Thus, there is an
eigenvalue � of Q (qi) that obeys

qk � dk � � � dk + qk

A solution of (7) requires that at least one eigenvalue of
Q (qi) is zero, while Theorem 1 states that there is only
one zero eigenvalue. Hence, precisely one, say the j-th, of
the Gerschgorin line segments that contain the eigenvalue
�N (Q) = 0, must obey qj � dj to have a non-zero solution of
(7). However, more Gerschgorin segments may obey qk�dk �
0. This couples 1

�j(1�vj1) � dj for at least one j component
and shows that, when vj1 ! 1, there must hold that �j !1.
Hence, for at least one component j, there holds that

0 < vj1 � 1� 1

�jdj

where the lower bound follows, by the Perron-Frobenius
Theorem, from the fact that the network G is connected. This
shows that there is a critical bound on �j > 1

dj
for at least

one component of � . The critical threshold on the � -vector is
further explored in Section III-C, while Section III-E applies
the theory to the complete graph.
We also know that trace(Q (qi)) =

PN
k=1 �k (Q). Thus,

with �N (Q) = 0,
N�1X
k=1

�k (Q) =
NX
i=1

1

�i (1� vi1)

In addition, since

trace
�
Q2 (qi)

�
= trace

�
diag

�
q2i
��
+ trace

�
A2
�

=
NX
i=1

1

�2i (1� vi1)
2 + 2L

we have that
N�1X
k=1

�2k (Q) =
NX
i=1

1

�2i (1� vi1)
2 + 2L
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Right multiplication of (5) by the all one-vector uT =
(1; 1; : : : ; 1) yields

uTAdiag (�i)V1 = uT diag
�

�i
1� vi1

�
V1

With uTA = DT = (d1; d2; : : : ; dN ), the degree vector, we
have �

uT diag
�

�i
1� vi1

�
�DT diag (�i)

�
V1 = 0

or2
NX
j=1

�
1

�j (1� vj1)
� dj

�
�jvj1 = 0 (10)

Similarly as deduced from Gershgorin's theorem, this sum
shows that, at least one j term should be negative (because
�jvj1 � 0), i.e. dj � 1

�j(1�vj1) . Also, in view of (9), the
vector y with components yj = 1

�j(1�vj1) � dj is a linear
combination of eigenvectors of Q

�
1

�i(1�vi1)

�
belonging to a

non-zero eigenvalue. In general, however, the vector y is not
an eigenvector of Q

�
1

�i(1�vi1)

�
.

Lemma 2: If q�i > qi for all 1 � i � N , then Q (q�i ) is
positive de�nite.
Proof: For any non-zero vector x, consider the quadratic

form

xTQ (q�i )x = xTQ (qi)x+ xT diag (q�i � qi)x

Theorem 1 implies that xTQ (qi)x � 0, i.e. that Q (qi)
is semi-de�nite. Since q�i > qi for all 1 � i � N ,
xT diag(q�i � qi)x > 0, which demonstrates the lemma. �

Lemma 2 indicates that the matrix Q
�

1
�i(1�vi1)2

�
, that

appears in the de�nition (28) of the matrix S in Section IV,
is positive de�nite, because Q

�
1

�i(1�vi1)

�
de�nes the vector

V1 = (v11; v21; : : : ; vN1) via (7).

C. The critical threshold

We known that the exact steady-state is V1 = 0, but the
metastable steady-state (see [12] for a deeper discussion) is
characterized by a second solution, the eigenvector of (7).
Theorem 3: The critical threshold is determined by vectors

�c = (�1c; �2c; : : : ; �Nc) that obey �max (R) = 1, where
�max (R) is the largest eigenvalue of the symmetric matrix

R = diag (
p
�i)Adiag (

p
�i) (11)

whose corresponding eigenvector has positive components if
the graph G is connected.
Proof: At the critical threshold, the second, non-zero so-

lution is V1 = "x, where x is a vector with non-negative

2The result (10) also follows by adding all rows in (7)

Q (qi) eV1 = diag (qi � di) eV1 +QeV1
and using the basic fact that the row sum of the Laplacian Q is zero.

components and where " is arbitrary small. This property
allows us to approximate the generalized Laplacian Q (q) as

Q
�

1

�i (1� vi1)

�
= diag

�
�i

�i (1� "xi)

�
�A

= diag
�
�i
�i

�
(I � "diag (xi))�A+O

�
"2
�

such that (7) becomes to �rst order in "

Q
�
1

�i

�
diag (�i)x = 0

which can be rewritten as an eigenvalue equation for the
adjacency matrix,

diag
�
1

�i

�
Adiag (�i)x = x

Hence, x is the eigenvector of eA = diag
�
1
�i

�
Adiag(�i)

belonging to the eigenvalue 1. Since eA is a non-negative,
irreducible matrix, the Perron-Frobenius Theorem [8, p. 451]
states that eA has a positive largest eigenvalue �max

� eA�
with a corresponding eigenvector whose elements are all
positive and that there is only one eigenvector of eA with non-
negative components. Since any scaled vector V1 = "x must
have non-negative components (because they represent scaled
probabilities), we �nd that �max

� eA� = 1. Hence, for the
given vectors B = (�1; �2; : : : ; �N ) and C = (�1; �2; : : : ; �N ),
there are three possibilities:8>>><>>>:

�max

� eA� < 1 not infected network

�max

� eA� = 1 critical threshold

�max

� eA� > 1 infected network

where the inequalities sign are deduced by relating the largest
eigenvalue to the norm of the matrix eA: higher eigenvalues
correspond to a larger norm (see e.g. [8, Section A.3.1]). Of
course, only in case �max

� eA� = 1, the eigenvector equation
has a non-zero solution. If �max

� eA� > 1, then the �rst order
expansion is inadequate and the full non-linear equation (7)
needs to be solved.
The �rst order expansion process has caused eA to be not

symmetric, while Q
�

1
�i(1�vi1)

�
is symmetric in general. For-

tunately, there exist a similarity transform H = diag
�p
�i�i

�
which symmetrizes eA,

R = H eAH�1 = diag

 r
�i
�i

!
Adiag

 r
�i
�i

!
and R = RT has the same real eigenvalues as eA (see [8, p.
438]). The matrix R also demonstrates that only an effective
rate per node, �i = �i

�i
, is needed. Thus, the equation that

characterizes the critical threshold is

Ry = y

where y = Hx. The eigenvalue �max
� eA� = �max (R) =

1 determines the critical vectors �c = (�1c; �2c; : : : ; �Nc). In
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general, there can be more than one critical vector because
�max (R) = 1 is a map of RN ! R. �
We remark that, since trace(R) = trace(A) = 0, that

�max (R) = �1 (R) = �
PN

j=2 �j (R), where the eigenvalues
are ordered as �N � �N�1 � � � � � �1.
1) Special cases: We illustrate that more than one critical

vector obeys �max (R) = 1. The particular example of the
complete graph is discussed in Section III-E.
1. The homogeneous threshold �hom;c is found when �i = � ,

in which case �max (R) = 1 reduces to 1
�hom;c

= �max (A), a
basic result in [12].
2. When �i

�i
= 1

�i
= di for all 1 � i � N , we

observe that Q (di) = Q if vi1 = " > 0, where "
is arbitrary small. In that case, the steady-state vector iseV1 ! "u, thus V1 = " (�1; �2; : : : ; �N ) and the crit-
ical vector �c =

�
1
d1
; 1d2 ; : : : ;

1
dN

�
. In that case, R =

diag
�q

1
di

�
Adiag

�q
1
di

�
and after a similarity transform

H1 = diag
�q

1
di

�
, we obtain the stochastic matrix [8, p. 484-

486]

H1RH
�1
1 = ��1A

whose largest eigenvalue is, indeed, equal to one.

D. Bounding �max (R)

Applying the general Rayleigh formulation for any matrix
M ,

�max = sup
x6=0

xTMx

xTx

and, knowing that all components of the eigenvector belonging
to the largest eigenvalue are non-negative, we obtain

�max (R) = sup
x6=0

xT diag
�p
�i
�
Adiag

�p
�i
�
x

xTx

Let z = diag
�p
�i
�
x, then

�max (R) = sup
z 6=0

zTAz

zT diag
�
1
�i

�
z

(12)

If x is the eigenvector of R belonging to the eigenvalue
�max (R) = 1, then (12) implies that the vector z satis�es

zT diag
�
1

�i

�
z = zTAz

which shows that z (with positive vector components) cannot
be an eigenvector of A, unless all �i = � . Indeed, suppose that
z is an eigenvector of A belonging to � (A), then zTAz =
� (A) zT z, which can only be equal to zT diag

�
1
�i

�
z if all

�i = � and � (A) = �max (A) =
1
� ; thus, only in the

homogeneous case. In the sequel, we deduce several bounds
from (12).

First, we rewrite (12) as

�max (R) = sup
z 6=0

zTAz

zT z

zT z

zT diag
�
1
�i

�
z

� sup
z 6=0

zTAz

zT z
sup
z 6=0

zT z

zT diag
�
1
�i

�
z

= �max (A) min
1�j�N

�i

Thus,

�max (A) min
1�j�N

�i � �max (R) � �max (A) max
1�j�N

�i (13)

where the upper bound follows similarly from
supz 6=0

zTAz

zT diag
�

1
�i

�
z
� maxz 6=0 z

TAz

minz 6=0 zT diag
�

1
�i

�
z
. At the critical

threshold where �max (R) = 1, the bounds reduce, with
�min = min1�j�N �i and �max = max1�j�N �i, to the
inequality for the minimum and maximum component of the
critical � -vector,

�min;c �
1

�max (A)
� �max;c

Hence, there is always at least one � -component below and one
� -component above the critical threshold of the homogeneous
case �hom;c = 1

�max(A)
.

Next, a common lower bound (see e.g. [9], [13], [10]) is
obtained by letting z = u, the all-one vector, in (12). Equality
in (12) is only achieved when z is the eigenvector such that,
in all other cases,

�max (R) �
uTAu

uT diag
�
1
�i

�
u
=

2LPN
j=1

1
�j

(14)

For all regular graphs3, the bound (14) is very sharp, because
u is the largest eigenvector of A belonging to �max (A) = d.
However, all eigenvectors of diag

�
1
�i

�
are the basic vectors

ej with all components equal to zero, except for the j-th one
that is equal to one. Written in terms of the average degree
E [D] = 2L

N and the harmonic mean E
�
��1

�
= 1

N

PN
j=1

1
�j

yields

�max (R) �
E [D]

E [��1]

such that at the critical threshold, where �max (R) = 1, there
holds that E

�
��1c

�
� E [D]. Unfortunately, the harmonic,

geometric and arithmetic mean inequality4, that leads to
1

E[��1] = N
�PN

j=1
1
�j

��1
� 1

N

Pn
j=1 �j = E [� ], prevents

us to clearly upper bound the average zero infection � -region,
[0; E [�c]]. Approximative, by assuming 1

E[��1] � E [� ], the
average zero infection � -region is upper bounded by the mean
degree E [D]. Notice that, in the homogeneous case (�j = � ),
the approximation is exact, leading to �hom;c � 1

E[D] .

3In a regular graph [10], each node has the same degree di = d.
4For real positive numbers a1; a2;; : : : ; an, the harmonic, geometric and

arithmetic mean inequality is

nPn
j=1

1
aj

� n

vuut nY
j=1

aj �
1

n

nX
j=1

aj (15)
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There are several other interesting choices. A �rst alternative
choice is z = D, where D = (d1; d2; : : : ; dN ) is the degree
vector. The Rayleigh expression (12) becomes

�max (R) �
DTAD

DT diag
�
1
�i

�
D
=

PN
k=1

PN
j=1 dkakjdjPN
j=1

d2j
�j

With dj =
PN

l=1 ajl, and using symmetry, aij = aji,

DTAD =
NX
k=1

NX
j=1

NX
l=1

NX
q=1

ajlakqakj

=
NX
j=1

NX
l=1

NX
q=1

ajl

NX
k=1

aqkakj

=
NX
j=1

NX
l=1

NX
q=1

ajl
�
A2
�
qj
=

NX
l=1

NX
q=1

�
A3
�
lq
= N3

where N3 equals the total number of walks of length 3 in the
graph. Thus, at the critical threshold where �max (R) = 1,

NX
j=1

d2j
�j
� N3 (16)

Invoking the Cauchy-Schwarz inequality (see e.g. [8, p. 90]),
we further obtain

NX
j=1

1

�2j
� N2

3PN
j=1 d

4
j

NX
j=1

1

�j
� N2

3PN
j=1

d4j
�j

A second alternative choice is to choose the components of
the vector z equal to a row vector of A, i.e. zj = aqj , such
that

�max (R) �
PN

k=1

PN
j=1 aqkakjaqjPN
j=1

a2qj
�j

Since

NX
k=1

NX
j=1

aqkakjaqj =
NX
j=1

�
A2
�
qj
aqj =

�
A3
�
qq

and
PN

j=1

a2qj
�j
=
PN

j=1
aqj
�j
, we obtain at the critical threshold

where �max (R) = 1,

NX
j=1

aqj
�j
�
�
A3
�
qq

Summing over all q leads to

NX
j=1

dj
�j
� trace

�
A3
�

(17)

E. Computation of �max (R) in KN

The adjacency matrix of the complete graph KN is AKN
=

J � I , where J = u:uT is the all-one matrix. Then, the R
matrix de�ned in (11), is

RKN
= diag (

p
�i) (J � I) diag (

p
�i)

= diag (
p
�i)u:u

T diag (
p
�i)� diag (�i)

=
�
uT diag (

p
�i)
�T
:uT diag (

p
�i)� diag (�i)

=
p
� :
p
�
T � diag (�i)

where the square root vector of � is
p
� =�p

�1;
p
�2; : : : ;

p
�N
�
. The eigenvalues are determined by the

zeros of the characteristic polynomial pN (�) = det (R� �I),

pN (�) = det
�p
� :
p
�
T � diag (�i + �)

�
= det (�diag (�i + �))

� det
�
I � diag

�
1

�i + �

�p
� :
p
�
T
�

After using the one-rank update formula (see e.g. [5]),
det
�
I + cdT

�
= 1 + dT c, we obtain

pN (�) = (�1)N
�
1�

p
�
T
:diag

�
1

�i + �

�p
�

� NY
i=1

(�i + �)

= (�1)N
0@1� NX

j=1

�j
�j + �

1A NY
i=1

(�i + �)

Let us order the non-negative vector components of � as 0 �
�(N) � �(N�1) � � � � � �(1). The rational function r (�) =
1�
PN

j=1
�j

�j+�
has simple poles at � = ��j and is increasing

between two consecutive poles. Moreover, lim�!�1 r (�) =
1. This implies that r (�) has simple zeros between each pair�
��(j�1);��(j)

�
and those zeros are the zeros of the char-

acteristic polynomial pN (�) = r (�)

NY
i=1

(�i + �) provided

pN (��j) = ��j
NY

i=1;i 6=j
(�i � �j) 6= 0, i.e. provided all �i are

different. The largest zero of pN (�) exceeds � = ��(N) � 0.
Even much sharper, since trace(A) =

PN
i=1 �i = 0, we know

that

�max = �1 = �
N�1X
i=1

�i �
NX
i=1

�i � �min

We rewrite r (�) as

r (�) = �
NX
j=1

1

�j + �
� (N � 1)

from which the largest zero of (�1)NpN (�) is the only
positive solution in � of

NX
j=1

1

�j + �
=
N � 1
�

(18)
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By iteration of the rewritten equation as � = 1
1

N�1
PN

j=1
1

�j+�

,
we obtain the continued fraction

�max =
1

1
N�1

PN
j=1

1
�j+

1
1

N�1
PN
k=1

1

�k+

. . .
. . .

�q+
1

1
N�1

PN
l=1

1

�l+

. . .
from which the following convergents are deduced,

N � 1PN
j=1

1
�j

<
N � 1PN

j=1
1

�j+
N�1PN
k=1

1
�k

< � � � � �max

Notice that these convergents for KN show that, indeed, (14)
is a sharp bound for regular graphs. Lagrange expansion of
(18) is also possible, but we omit this analysis.
The critical vector components thus satisfy, with

�max (R) = 1, the equation
NX
j=1

1

�j + 1
= N � 1 (19)

A critical � -vector must have bounded components. For, if
�k !1, then (19) implies that all other �j = 0, which leads
to a physically uninteresting situation. Let �j = �hom;c + hj ,
where �hom;c = 1

N�1 as shown below, then (19) can be
rewritten as

NX
j=1

1

1 + N�1
N hj

= N

For small hj where
�
1 + N�1

N hj
��1

= 1� N�1
N hj +O

�
h2j
�
,

we have that
PN

j=1 hj � 0. Hence, the small deviations hj
from the homogeneous case are balanced, in the sense that the
net or average deviation is about zero. Suppose that all hj = 0
for 3 � j � N , then h1 and h2 obey a hyperbolic relation

h1 =
�h2

1 + 2N�1N h2

Small negative values for h2 correspond, on the critical
threshold, to large positive values for h1 (and vice versa).
Finally, the homogeneous case, where �j = �hom, consider-

ably simpli�es to the characteristic polynomial

pN (�) = (�1)N (�� �hom (N � 1)) (�hom + �)N�1

whose zeros are � = �hom (N � 1) and � = ��hom with
multiplicity N � 1. This example illustrates that, although
heterogeneity is much more natural, it complicates analysis
seriously.

F. Additional properties
We list here additional properties that have been proved in

[12], and whose extension to the in-homogenous setting is
rather straightforward.
Lemma 4: In a connected graph, either vi1 = 0 for all i

nodes, or none of the components vi1 is zero.
Lemma 4 also follows from the Perron-Frobenius theorem

as shown in the proof of Theorem 1.

Theorem 5: The non-zero steady-state infection probability
of any node i in the N -intertwined model can be expressed
as a continued fraction

vi1 = 1� 1

1 + i
�i
� ��1i

PN
j=1

�jaij

1+
j
�j
���1j

PN
k=1

�kajk

1+
k
�k

���1
k

PN
q=1

aqk�q

. . .
(20)

where the total infection rate of node i, incurred by all
neighbors towards node i, is

i =
NX
j=1

aij�j =
X

j2 neighbor(i)

�j (21)

Consequently, the exact steady-state infection probability of
any node i is bounded by

0 � vi1 � 1� 1

1 + i
�i

(22)

As explained in [12], the continued fraction stopped at
iteration k includes the effect of virus spread up to the (k�1)-
hop neighbors of node i. In the homogeneous case where
�j = � for all 1 � j � N , we have that i = �di is
proportional to the degree of node i. The ratio e�i = i

�i
is

the total effective infection rate of node i.
Lemma 6: In a connected graph G above the critical thresh-

old, a lower bound of vi1 for any node i equals

vi1 � 1� 1

min1�k�N
k
�k

(23)

Proof: Lemma 4 and Theorem 3 show that, for vectors
� above the critical threshold vector �c, there exists a non-
zero minimum vmin = min1�i�N vi1 > 0 of the steady-state
infection probabilities, which obeys (6). Assuming that this
minimum vmin occurs at node i,

vmin = 1�
1

1 + ��1i
PN

j=1 aij�jvj1
� 1� 1

1 + i
�i
vmin

where we have used the de�nition (21). From the last inequal-
ity, it follows that

vmin � 1�
�i
i

(24)

such that (23) is proved. �
By combining (22) and (23), the total fraction of infected

nodes y1 = 1
N

PN
k=1 vk1 in steady-state is bounded by

1� 1

min1�k�N
k
�k

� y1 � 1� 1

N

NX
i=1

1

1 + i
�i

IV. THE CONVEXITY OF vi1 AS A FUNCTION OF �i

It is of interest (e.g. in game theory [7]) to know whether
the steady-state infection probability vi1 is convex in the
own curing rate �i, given that all other curing rates �j for
1 � j 6= i � N are constant. In many infection situations, the
node i cannot control the spreading process, but it can protect
itself better by increasing its own curing rate �i, for example,
by installing more effective antivirus software in computer
networks, or by vaccinating people against some diseases.
Theorem 7: If all curing rates are the same, i.e. �k = �i for

1 � k � N , then vk1 is convex in �i.
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However, if all curing rates �j for 1 � j 6= i � N are
constant and independent from each other and from the infec-
tion rates �j , the non-zero steady-state infection probability
vk1 (�1; : : : ; �i; : : : ; �N ) > 0 can be concave in �i.
Proof: We operate above the critical threshold speci�ed by

�max (R) = 1, where the vector V1 > 0 and start from
the steady-state equation (6) for node i. Differentiation with
respect to �i results in

NX
k=1

aik�k
@vk1
@�i

=
vi1

1� vi1
+

�i

(1� vi1)2
@vi1
@�i

(25)

and
NX
k=1

aik�k
@2vk1
@�2i

=
2

(1� vi1)2
@vi1
@�i

+
2�i

(1� vi1)3
�
@vi1
@�i

�2
+

�i

(1� vi1)2
@2vi1
@�2i

Differentiating any other row j 6= i in (5)
NX
k=1

ajk�kvk1 =
vj1

1� vj1
�j

with respect to �i results in
NX
k=1

ajk�k
@vk1
@�i

=
�j

(1� vj1)2
@vj1
@�i

and

NX
k=1

ajk�k
@2vk1
@�2i

=
2�j

�
@vj1
@�i

�2
(1� vj1)3

+
�j

(1� vj1)2
@2vj1
@�2i

Written in matrix form, we have

Adiag (�k)
@V1
@�i

= diag

 
�k

(1� vk1)2

!
@V1
@�i

+
vi1

1� vi1
ei

(26)
where the basisvector ei has all zero components, except for
the component i that equals 1. When curing rate �j is a
function of �k, the equations change. In particular, if �k = �i
for all 1 � k � N , then the vector ei must be replaced by the
all-one vector u.
The second order derivatives are, in matrix form,

Adiag (�k)
@2V1
@�2i

=Wi1 + diag

 
�k

(1� vk1)2

!
@2V1
@�2i

+
2

(1� vi1)2
@vi1
@�i

ei

where Wi1 =

�
2�1

�
@v11
@�i

�2
(1�v11)3

� � �
2�N

�
@vN1
@�i

�2
(1�vN1)

3

�T
.

We rewrite the matrix equations as

S
@V1
@�i

= � vi1
1� vi1

ei (27)

where the matrix

S = diag

 
�j

(1� vj1)2

!
�Adiag (�k) (28)

is written in terms of the generalized Laplacian Q (qi), de�ned
in (8), as5

S = Q
 

1

�j (1� vj1)2

!
diag (�j) (29)

Lemma 2 shows that S is positive de�nite, which implies
that also S�1 is positive de�nite because S = Udiag(�j)UT
shows that S�1 = Udiag

�
��1j

�
UT and, thus, that the inverse

S�1 exists. The vector @V1@�i is solved from (27) explicitly as

@V1
@�i

= � vi1
1� vi1

S�1ei = �
vi1

1� vi1
�
S�1

�
column i (30)

from which �
S�1

�
ki
=

�
1� 1

vi1

�
@vk1
@�i

(31)

Increasing the virus curing rate cannot increase the virus
infection probability, such that @vk1@�i

� 0 for all 1 � k �
N . This implies that all elements of S�1 are non-negative.
Moreover, since @vk1@�i

� 0, the left-hand side in (25) is always
negative, which leads, in a different way, to the inequality (40).
Only at the critical threshold, the derivatives @V1

@�i
do not

exist because the left- and right derivative at that point are not
equal. Below the critical threshold, where V1 = 0, (30) does
not yield information about the existence of S�1. However, the
de�nition (28) shows that S = diag(�j)�Adiag(�j). Hence,
if �j

�j
= dj for each node j, then diag

�
��1j

�
S equals the

Laplacian Q and S�1 does not exist. In general, it is dif�cult
to conclude for which vector C = (�1; �2; : : : ; �N ) that S�1
exists below the critical threshold. But, below the critical
threshold, V1 = 0 such that both convexity and concavity
hold. In the sequel, we ignore further considerations about
this sub-threshold regime.
We recast the second order derivatives6 in terms of the

matrix S,
S
@2V1
@�2i

= �fW
where fW =Wi1 +

2

(1� vi1)2
@vi1
@�i

ei

Above the critical threshold, S�1 exists such that
@2V1
@�2i

= �S�1fW (32)

5We remark that, with B =diag
�p
�k
�
, the matrix

BSB�1 = diag
�p

�k

�
Q
 

1

�j (1� vj1)2

!
diag

�p
�k

�
is symmetric.
6In fact, we can show, for any integer m > 0, that

S
@mV1
@�mi

= Rm

so that any higher order derivative vector equals

@mV1
@�mi

= S�1Rm

which illustrates the importance of the positive de�nite matrix S and its non-
negative inverse S�1.
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Introducing (30) in W1 yields

Wi1 =
2v2i1

(1� vi1)2
�

�1((S�1)
1i
)
2

(1�v11)3
� � � �N((S�1)

Ni
)
2

(1�vN1)
3

�T
and

2

(1� vi1)2
@vi1
@�i

ei = �
2vi1

(1� vi1)3
�
S�1

�
ii
ei

which shows that the right-hand side vector fW has all positive
elements, except for the i-th component which is

fWi =
2�i
�
vi1

�
S�1

�
ii

�2
(1� vi1)5

�
2vi1

�
S�1

�
ii

(1� vi1)3

= 2
vi1

�
S�1

�
ii

(1� vi1)3

(
�i
vi1

�
S�1

�
ii

(1� vi1)2
� 1
)

Since all elements of S�1 are positive and Lemma 4 states
that all vi1 > 0 above the critical threshold, we conclude
from (48), derived in Appendix B, that

�ivi1
�
S�1

�
ii

(1� vi1)2
< 1 (33)

Hence, fWi < 0, but fWk > 0 for k 6= i.
When all curing rates are the same (i.e. �k = �i for all 1 �

k � N ), then, as mentioned before, ei needs to be replaced by
u, so that all components of fW are negative. Consequently,
when all curing rates are the same and equal to �i, we conclude
from (32) that the steady-state infection probability vk1 (each
node k) is convex in �i. This proves Theorem 7. �
When all curing rates are independent from each other, the

k-th component in (32) equals

@2vk1
@�2i

= �
NX
j=1

�
S�1

�
kj
fWj

= � 2v2i1

(1� vi1)2
NX

j=1;j 6=i

�
S�1

�
kj

�j

��
S�1

�
ji

�2
(1� vj1)3

+ 2
vi1

�
S�1

�
ki

�
S�1

�
ii

(1� vi1)3

(
1� �i

vi1
�
S�1

�
ii

(1� vi1)2

)
(34)

Hence,
(1� vi1)2

2vi1

@2vk1
@�2i

=Mki

where

Mki =

�
S�1

�
ki

�
S�1

�
ii

(1� vi1)
� vi1

NX
j=1

�
S�1

�
kj

�j

��
S�1

�
ji

�2
(1� vj1)3

(35)
Unfortunately, it is dif�cult in general to determine the sign
of Mki as further illustrated in Appendix C.
Simulations show that vk1 (�1; : : : ; �i; : : : ; �N ) (for any

k) can be convex in �i (e.g. in the lattice and complete
graph) as well as concave (e.g. in a star). These simulations
indicate that either regime is possible, but no combination
(i.e. vk1 (�1; : : : ; �i; : : : ; �N ) is convex in some �i region, but
concave in another) was encountered.

V. THE DERIVATIVES @vi1
@�i

Our starting point is the matrix equation (27), which we
solve here by using Cramer's rule,

@vi1
@�i

= � vi1
1� vi1

det
�
SGnfig

�
detS

where Gn fig denotes the graph G from which the node i
is removed (together with all its incident links). Using the
de�nition (29) of S shows that

@vi1
@�i

= � vi1
�i (1� vi1)

det
�
QGnfig

�
1

�j(1�vj1)2

��
detQ

�
1

�j(1�vj1)2

�
A determinant is unchanged by interchanging two rows and
two columns. This means that we can write the matrix

Q
 

1

�j (1� vj1)2

!
=

"
QGnfig

�
1

�j(1�vj1)2

�
�ai

�aTi 1
�i(1�vi1)2

#
where the vector ai is the relabeled connection vector of node
i to all other nodes in G and aTi ai = di. Invoking

det

�
A B
C D

�
= detAdet

�
D � CA�1B

�
(36)

where D�CA�1B is called the Schur complement of A (see
e.g. [5]), we �nd that

detQ
detQGnfig

=
1

�i (1� vi1)2
� f

where the quadratic form is

f = aTi Q�1Gnfig

 
1

�j (1� vj1)2

!
ai

Whence,
@vi1
@�i

= � (1� vi1) vi1
�i � �i (1� vi1)2 f

(37)

The quadratic form f does not dependent on vi1. Moreover,
Lemma 2 implies that Q�1Gnfig

�
1

�j(1�vj1)2

�
is positive def-

inite (for V1 > 0). Hence, f > 0. The fact that @V1@�i � 0

implies 1 � �i (1� vi1)2 f and because the inequality holds
for all vi1, we also have that 1 � �if .
The optimization of an utility or cost function of the type,

that, for example, appears in game theory (see [7]),

Ji = ci�i + vi1

where ci is price to protect a node i against the spread of
infections, requires to compute the optimum @Ji

@�i
= ci +

@vi1
@�i

= 0 for all 1 � i � N . With (37), this equation is
solved explicitly as

(1� vi1) vi1
ci

+ �i (1� vi1)2 f = ��i

Thus, the optimal value of ��i > (1�vi1)vi1
ci

. An ex-
act computation of ��i is generally complex because f =
f (�1; : : : ; �i�1; �i+1; : : : ; �N ) is a non-linear function that
couples all the �j (and �i).
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VI. SUMMARY

The heterogeneous N -intertwined virus spread model has
been described and analyzed in the steady-state. Since it
applies to any network and any combination of node in-
fections and curing vectors, B and C, we believe that the
heterogeneous N -intertwined virus spread model is useful for
a wide range of practical infection scenarios in networks,
from computer viruses to epidemics in social networks and in
nature. The critical threshold regime is investigated, bounds
are presented and the metastable steady-state infection proba-
bilities are shown to be convex in the own curing rate provided
all curing rates are the same. When the latter is not the case,
the metastable steady-state infection probabilities can be either
concave or convex.
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APPENDIX

Due to the fundamental role of the positive de�nite matrix
S, de�ned in (28), and its inverse S�1, we present more
properties.

A. Deductions from the inverse of a matrix
The i-th row in the identity S�1S = I is7,

1fi=jg =
NX
k=1

�
S�1

�
ik
Skj

=
�
S�1

�
ij
Sjj +

NX
k=1;k 6=j

�
S�1

�
ik
Skj

Introducing the de�nition (28) of S yields

1fi=jg =
�
S�1

�
ij

�j

(1� vj1)2
�

NX
k=1;k 6=j

�
S�1

�
ik
akj�j

Thus, if j = i, then

1 =
�i
�
S�1

�
ii

(1� vi1)2
� �i

NX
k=1;k 6=i

�
S�1

�
ik
aki (39)

from which

1 �
�i
�
S�1

�
ii

(1� vi1)2
(40)

follows.
We can also write

�
S�1

�
ij
=
(1� vj1)2

�j

0@1fi=jg + �j NX
k=1;k 6=j

�
S�1

�
ik
akj

1A
(41)

from which we �nd that�
S�1

�
ij
� (1� vj1)2

�j

�
1fi=jg + �jdj max

1�k�N

�
S�1

�
ik

�
as well as the lower bound�
S�1

�
ij
� (1� vj1)2

�j

�
1fi=jg + �jdj min

1�k�N

�
S�1

�
ik

�

7Since both matrix and inverse commute, we can also consider SS�1 = I ,
which leads to a slightly less simple form. Indeed,

1fi=jg =
NX
k=1

Sik
�
S�1

�
kj
= Sii

�
S�1

�
ij
+

NX
k=1;k 6=i

Sik
�
S�1

�
kj

Introducing the de�nition (28) of S yields

1fi=jg =
�
S�1

�
ij

�i

(1� vi1)2
�

NX
k=1;k 6=i

aik�k
�
S�1

�
kj

where now the infection rates �k need to stay inside the summation. Rewritten
yields the second form for

�
S�1

�
ij
=
(1� vi1)2

�i

0@1fi=jg + NX
k=1;k 6=i

aik�k
�
S�1

�
kj

1A (38)
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The Hölder inequality [11, p. 107] with p > 1 and 1
p +

1
q = 1 shows, using akj = a

2
kj , that

NX
k=1;k 6=j

�
S�1

�
ik
akj =

NX
k=1;k 6=j

��
S�1

�
ik
akj
	
akj �

0@ NX
k=1;k 6=j

akj
�
S�1

�p
ik

1A 1
p
0@ NX
k=1;k 6=j

aqkj

1A 1
q

= d
1� 1

p

j

0@ NX
k=1;k 6=j

akj
�
S�1

�p
ik

1A 1
p

so that, for p � 1 (including p = 1 for which equality holds)

�
S�1

�
ij
� (1� vj1)2

�j

0B@1fi=jg + �jd1� 1
p

j

0@ NX
k=1;k 6=j

akj
�
S�1

�p
ik

1A 1
p

1CA
For i = j in (41), we have �

S�1
�
ii
= (1� vi1)2 �i

0@ 1

�i
+

NX
k=1;k 6=i

�
S�1

�
ik
aki

1A (42)

while, if j 6= i, then

�
S�1

�
ij
= (1� vj1)2 �j

NX
k=1;k 6=j

�
S�1

�
ik
akj

= (1� vj1)2 �j
�
S�1

�
ii
aij + (1� vj1)2 �j

NX
k=1;k 6=fi;jg

�
S�1

�
ik
akj

which illustrates that
�
S�1

�
ii
= O

n
(1�vi1)2

�i

o
and

�
S�1

�
ij
= O

�
(1� vj1)2 �j (1�vi1)

2

�i

�
as vi1 ! 1. Also, that for j 6= i,

�
S�1

�
ij
� (1� vj1)2 �j

�
S�1

�
ii
aij (43)

This inequality can be slightly generalized. Indeed, from (41), we have

�
S�1

�
ik
akj �

NX
k=1;k 6=j

�
S�1

�
ik
akj =

�
S�1

�
ij

�j (1� vj1)2
�
1fi=jg

�j

so that, for k = i, �
S�1

�
ij
� �j (1� vj1)2

�
S�1

�
ii
aij +

(1� vj1)2

�j
1fi=jg

If j = i, then
�
S�1

�
ii
� (1�vi1)2

�i
and we �nd (40) again. Similarly, from (38), we �nd that

�
S�1

�
ij
� �j (1� vi1)2

�i
aij
�
S�1

�
jj
+
(1� vi1)2

�i
1fi=jg

Thus, �
S�1

�
ij
� aij max

�
(1� vj1)2 �j

�
S�1

�
ii
;
�j
�i
(1� vi1)2

�
S�1

�
jj

�
(44)

Finally, combining the inequality (33) and (40) yields the bounds

(1� vi1)2

�i
�
�
S�1

�
ii
<

1

vi1

(1� vi1)2

�i

Since S and S�1 are positive de�nite, it holds [10, p. 241] that

�
S�1

�
ij
� min

 �
S�1

�
ii
+
�
S�1

�
jj

2
;
q
(S�1)ii (S

�1)jj

!
(45)
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B. Deductions from the the steady-state equation (5)
We rewrite the steady-state equation (5)

Adiag (�i)V1 = diag
�

�i
1� vi1

�
V1 = diag

 
�i

(1� vi1)2

!
diag (1� vi1)V1

= diag

 
�i

(1� vi1)2

!
V1 � diag

 
�ivi1

(1� vi1)2

!
V1

in terms of the matrix S in (28),

SV1 = diag

 
�ivi1

(1� vi1)2

!
V1

Since the inverse S�1 exists above the critical threshold, we arrive at

V1 = S�1diag

 
�ivi1

(1� vi1)2

!
V1 (46)

The i-th row is

vi1 =

NX
j=1

�jv
2
j1
�
S�1

�
ij

(1� vj1)2
(47)

=
�iv

2
i1
�
S�1

�
ii

(1� vi1)2
+

NX
k=1;k 6=i

�
S�1

�
ik

�kv
2
k1

(1� vk1)2

Thus,

1 =
�ivi1

�
S�1

�
ii

(1� vi1)2
+

NX
k=1;k 6=i

�
S�1

�
ik

�kv
2
k1

vi1 (1� vk1)2
(48)

C. Analysis of Mki de�ned in (35)
The results presented in this section illustrate the dif�culty to determine the sign of Mki, which prevents us to draw

conclusions about convexity or concavity of vk1 as a function of �i, given that all �k are independent.
A. We can write

NX
j=1

�
S�1

�
kj

�j

��
S�1

�
ji

�2
(1� vj1)3

=
NX
j=1

�
S�1

�
kj

�j
�
S�1

�
ji

(1� vj1)3
�
S�1

�
ji
=

 
S�1diag

 
�j
�
S�1

�
ji

(1� vj1)3

!
S�1

!
ki

Iterating (46) once yields

V1 = S�1diag

 
�ivi1

(1� vi1)2

!
S�1diag

 
�ivi1

(1� vi1)2

!
V1 (49)

and  
S�1diag

 
�ivi1

(1� vi1)2

!
S�1

!
ij

=
NX
l=1

�
S�1

�
il

�lvl1

(1� vl1)2
�
S�1

�
lj

The corresponding i-th row in (49) is

vi1 =
NX
j=1

NX
l=1

�
S�1

�
il

�lvl1

(1� vl1)2
�
S�1

�
lj

�jv
2
j1

(1� vj1)2
(50)

which illustrates that the double sum containing products of elements of S�1 can be smaller than 1. In addition, using (47)
into (50) agains leads to (47).
B. Since all elements of S�1 are positive, we have that

�
S�2

�
ki
=

NX
j=1

�
S�1

�
kj

�
S�1

�
ji
�
�
S�1

�
ki

�
S�1

�
ii
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which we use to lower bound Mki as

Mki =

�
S�1

�
ki

�
S�1

�
ii

(1� vi1)
� vi1

NX
j=1

�
S�1

�
kj

�j

��
S�1

�
ji

�2
(1� vj1)3

� 1

(1� vi1)

NX
j=1

�
S�1

�
kj

�
S�1

�
ji
� vi1

NX
j=1

�
S�1

�
kj

�j
�
S�1

�
ji

(1� vj1)3
�
S�1

�
ji

=
NX
j=1

�
S�1

�
kj

(
1

(1� vi1)
�
vi1�j

�
S�1

�
ji

(1� vj1)3

)�
S�1

�
ji

The equation (47), rewritten as vj1 =
PN

k=1

�kv
2
k1(S

�1)
jk

(1�vk1)2
, shows that

vj1 �
�iv

2
i1
�
S�1

�
ji

(1� vi1)2
or vj1

(1� vi1)2

�iv2i1
�
�
S�1

�
ji

so that

0 � 1

1� vi1
� fij

vi1�j
�
S�1

�
ji

(1� vj1)3

with

fij =
�ivi1 (1� vj1)3

�jvj1 (1� vi1)3

The terms in the sum in the above inequality for Mki is positive if fij � 1. Since we cannot show that for all j, it holds that
fij , we cannot conclude that the upper bound is always positive.
C. Starting from (47) and assuming that S is symmetric (which happens if all infection rates �k = � are the same) so that�
S�1

�
ji
=
�
S�1

�
ij
, the Cauchy-Schwarz inequality [11, p. 107] shows that

v2i1 =

0@ NX
j=1

�jv
2
j1
�
S�1

�
ij

(1� vj1)2

1A2

=

0@ NX
j=1

v2j1
p
�jq

(S�1)kj (1� vj1)

q
(S�1)kj �j

�
S�1

�
ij

(1� vj1)3=2

1A2

�
NX
j=1

v4j1�j

(1� vj1) (S�1)kj

NX
j=1

�
S�1

�
kj
�j

��
S�1

�
ij

�2
(1� vj1)3

Hence,

vi1

NX
j=1

�
S�1

�
kj

�j

��
S�1

�
ij

�2
(1� vj1)3

� v3i1PN
j=1

v4j1�j
(1�vj1)(S�1)kj

=
v3i1

v4i1�i
(1�vi1)(S�1)ki

+
PN

j=1;j 6=i
v4j1�j

(1�vj1)(S�1)kj

=
(1� vi1)

�
S�1

�
ki

vi1�i

�PN
j=1

v4j1�j(1�vi1)(S�1)ki
v4i1�i(1�vj1)(S�1)kj

�
so that

(�Mki) �
(1� vi1)

�
S�1

�
ki

vi1�i

�PN
j=1

v4j1�j(1�vi1)(S�1)ki
v4i1�i(1�vj1)(S�1)kj

� � �S�1�ii �S�1�ki
(1� vi1)

=
�
S�1

�
ki

8><>: (1� vi1)

vi1�i

�PN
j=1

v4j1�j(1�vi1)(S�1)ki
v4i1�i(1�vj1)(S�1)kj

� � �
S�1

�
ii

(1� vi1)

9>=>;
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Invoking (42) yields

(�Mki) �
�
S�1

�
ki

8><>: (1� vi1)

vi1�i

�PN
j=1

v4j1�j(1�vi1)(S�1)ki
v4i1�i(1�vj1)(S�1)kj

� � (1� vi1)
�i

� (1� vi1) �i
NX

l=1;l 6=i

�
S�1

�
il
ali

9>=>;
=
�
S�1

�
ki

(1� vi1)
�i

8><>: 1

vi1

�
1 +

PN
j=1;j 6=i

v4j1�j(1�vi1)(S�1)ki
v4i1�i(1�vj1)(S�1)kj

� �
0@1 + �i NX

l=1;l 6=i

�
S�1

�
il
ali

1A
9>=>;

Combining the key inequality (33), which is equivalent to

1

vi1
>
�i
�
S�1

�
ii

(1� vi1)2

with (42), leads to
1

vi1

�
1 + �i

PN
l=1;l 6=i (S

�1)il ali

� > 1
The condition for (�Mki) to be positive is

1

vi1

�
1 +

PN
j=1;j 6=i

v4j1�j(1�vi1)(S�1)ki
v4i1�i(1�vj1)(S�1)kj

� �
0@1 + �i NX

l=1;l 6=i

�
S�1

�
il
ali

1A
or

1

vi1

�
1 + �i

PN
l=1;l 6=i (S

�1)il ali

� � 1 + (1� vi1) �S�1�ki
v4i1�i

NX
j=1;j 6=i

v4j1�j

(1� vj1) (S�1)kj

Again, in general, this condition is dif�cult to assess and there might be a region for �i (or vk1) where the condition is
satis�ed (thus, where vk1 is concave in �i).
D. When introducing (38)

�
S�1

�
ji
=
(1� vj1)2

�j

0@1fi=jg + NX
k=1;k 6=j

ajk�k
�
S�1

�
ki

1A
into8 Mki, we obtain

Mki =

�
S�1

�
ki

�
S�1

�
ii

(1� vi1)
� vi1

NX
j=1

�
S�1

�
kj

�j

��
S�1

�
ji

�2
(1� vj1)3

=

�
S�1

�
ki

�
S�1

�
ii

(1� vi1)
� vi1

NX
j=1

�
S�1

�
kj

�
S�1

�
ji

(1� vj1)

0@1fi=jg + NX
l=1;l 6=j

ajl�l
�
S�1

�
li

1A
=

�
S�1

�
ki

�
S�1

�
ii

(1� vi1)
� vi1

�
S�1

�
ki

�
S�1

�
ii

(1� vi1)
� vi1

NX
j=1

�
S�1

�
kj

�
S�1

�
ji

(1� vj1)

NX
l=1;l 6=j

ajl�l
�
S�1

�
li

Thus,

Mki =
�
S�1

�
ki

�
S�1

�
ii
� vi1

NX
j=1

�
S�1

�
kj

�
S�1

�
ji

(1� vj1)

NX
l=1;l 6=j

ajl�l
�
S�1

�
li

=
�
S�1

�
ki

�
S�1

�
ii

8<:1� vi1
(1� vi1)

NX
l=1;l 6=i

ail�l
�
S�1

�
li

9=;� vi1
NX

j=1;j 6=i

�
S�1

�
kj

�
S�1

�
ji

(1� vj1)

NX
l=1;l 6=j

ajl�l
�
S�1

�
li

We concentrate on the term

G = 1� vi1
(1� vi1)

NX
l=1;l 6=i

ail�l
�
S�1

�
li
< 1

8Substitution of (41) leads to less transparent equations.
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and substitute (38)
�i
�
S�1

�
ii

(1� vi1)2
� 1 =

NX
l=1;l 6=i

ail�l
�
S�1

�
li

so that

G = 1�
vi1�i

�
S�1

�
ii

(1� vi1)3
+

�
1� 1

1� vi1

�
= 2� 1

1� vi1

 
vi1�i

�
S�1

�
ii

(1� vi1)2
+ 1

!
> 2

�
1� 1

1� vi1

�
= �2 vi1

1� vi1
Hence,

�2 vi1
1� vi1

< G < 1

which indicates that, for small vi1, G can be negative and, in absolute value larger than the remaining sum in Mki.


