From Quantum Technologies to hardcore Graph Theory

Robert Kooij

15 June 2023

Lecture for QCE Department

1

Introduction

- Progress in quantum technologies
 - Hardware
 - Software
- When do we have quantum advantage?
- Accelerate computation of a hard, real-world problem
 - Diversity of quantum HW and SW
- Need for application level quantum benchmark

Introduction

- Component-level benchmarks
 - · Fidelity of quantum gates
 - Number of qubits
- (Sub)system-level benchmarks
 - · Quantum Volume
 - Circuit Layer Operations Per Seconds (CLOPS)
- Application-oriented benchmarks
 - QED-C (Quantum Economic Development Consortium) Benchmark
 - Q-Pack **Tu**Delft

Introduction

Q-Score: metric proposed by AtoS

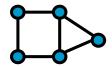
- · Application-centric
- · Hardware-agnostic
- Scalable
- Largest problem size N for which a quantum device significantly outperforms a random algorithm at solving an NP-hard problem: Max Cut problem

Overview

- Max Cut problem
- Q-Score
- · Quantum Annealing
- Q-Score for a Quantum Annealer
- · Gaussian Boson Sampling
- Max Clique problem
- Other NP-hard problems
- · Other connections with Graph Theory
- Wrap-up

5

Max Cut problem



Partition nodes into two sets



· Cut: number of links between the two sets

Max Cut problem

• Max Cut: partition with maximum number of links

· Max Cut problem is NP-hard

7

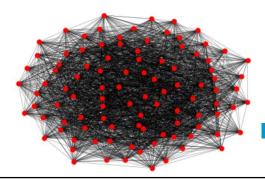
Q-Score

- Largest problem size N for which a quantum device significantly outperforms a random algorithm at solving the Max Cut problem
- Needed: a class of graphs for which we have:
 - An (asymptotic) expression for C_{max}
 - A fast random algorithm to determine C_{rand}

Q-Score

- Erdős-Rényi graph ER(N, 1/2)
 - Random graph on N nodes
 - Link probability p = 1/2

N = 100



TUDelft

C

Q-Score

• ER(N, 1/2) An (asymptotic) expression for C_{max}

The Annals of Probability
2017, Vol. 45, No. 2, 1190–1217
DOI: 10.1214/15-AOP1084
© Institute of Mathematical Statistics, 2017

EXTREMAL CUTS OF SPARSE RANDOM GRAPHS

By Amir Dembo $^{1},$ Andrea Montanari 2 and Subhabrata Sen^{3}

$$C_{max} \approx \frac{N^2}{8} + 0.178N\sqrt{N}$$

10

Q-Score

• ER(N, 1/2) A fast random algorithm to determine C_{rand}

Random partition: two random sets of N/2 nodes

$$C_{rand} \approx \frac{N^2}{8}$$

11

11

Q-Score

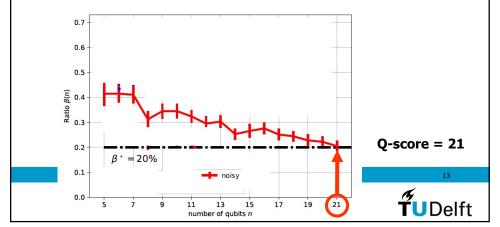
- Algorithm: for increasing N do:
 - Make M realisations of G(N, 1/2)
 - Run Max Cut algorithm for every graph
 - Determine average Max Cut C(N)
- Check whether this average has "sufficiently" high score

$$\beta(N) = \frac{C(N) - C_{rand}}{C_{max} - C_{rand}} > \beta^* = 0.2$$

• Q-score: highest N for which $\,eta(N)>\,eta^*\,$

Q-Score

- ATOS: Quantum Approximate Optimization Algorithm (QAOA)
- Simulation of their own quantum device (gate based)



13

Quantum Annealing

- · Quantum version of Simulated Annealing
 - Find global minimum of a given objective function
 - · Minimize a Ising spin Hamiltonian

$$\mathcal{H}(\mathbf{h}, \mathbf{J}, oldsymbol{\sigma}) = \sum_i h_i \sigma_i + \sum_{i < j} J_{ij} \sigma_i \sigma_j$$

- · h: external field
- **J**: spin coupling interactions
- σ_i : spin values $\in \{-1,1\}$

TUDelft

Quantum Annealing

- 5000+ qubits
- Cloud interface (1 minute free QPU time)

15

15

Quantum Annealing

- Ising Hamiltonion ←→ QUBO
- Quadratic Unconstrained Binary Optimization

Minimize
$$y = \mathbf{x}^T Q \mathbf{x}$$

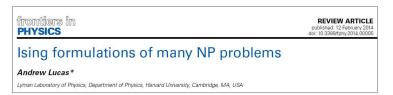
 \mathbf{x} = N-dimensional binary decision vector

Q = NxN symmetric constant matrix

16

Quantum Annealing

Many Combinatorial Optimization problems can be formulated as a QUBO



These problems can be programmed on D-Wave!

17

Q-Score for a Quantum Annealer

• Q-Score for D-Wave

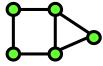
2022 IEEE International Conference on Quantum Software (QSW)

Evaluating the Q-score of Quantum Annealers

Ward van der Schoot, Daan Leermakers, Robert Wezeman, Niels Neumann, Frank Phillipson

Q-Score for a Quantum Annealer

QUBO for Max Cut



- Binary variables x_i
 - $x_i = 1$: node i belongs to set 1
 - $x_i = 0$: node i belongs to set 2
 - $x_i + x_j 2x_ix_j = 1 \Leftrightarrow link (i,j)$ is in the cut
 - $x_i + x_j 2x_ix_j = 0 \Leftrightarrow link (i,j)$ is not in the cut

19

19

Q-Score for a Quantum Annealer

• Maximize $y = \sum_{(i,j) \in E} (x_i + x_j - 2x_i x_j)$

$$y = x_1 + x_2 - 2x_1x_2 + x_1 + x_3 - 2x_1x_3$$

$$x_2 + x_4 - 2x_2x_4 + x_3 + x_4 - 2x_3x_4$$

$$x_3 + x_5 - 2x_3x_5 + x_4 + x_5 - 2x_4x_5 =$$

 $2x_1 + 2x_2 + 3x_3 + 3x_4 + 2x_5 - 2x_1x_2 - 2x_1x_3 - 2x_2x_4 - 2x_3x_4 - 2x_3x_5 - 2x_4x_5 =$ $2x_1^2 + 2x_2^2 + 3x_3^2 + 3x_4^2 + 2x_5^2 - 2x_1x_2 - 2x_1x_3 - 2x_2x_4 - 2x_3x_4 - 2x_3x_5 - 2x_4x_5 =$

TUDelft

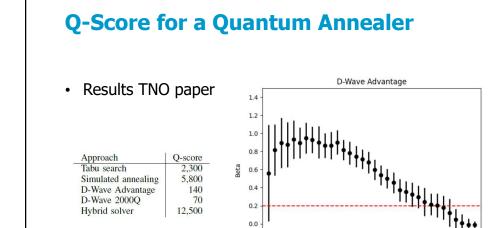
Q-Score for a Quantum Annealer

$$(x_1 x_2 x_3 x_4 x_5) \begin{pmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & 0 & -1 & 0 \\ -1 & 0 & 3 & -1 & -1 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad \mathbf{y} = \mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x} = 5$$

TUDelft

21



-0.2

D-WAVE QUBO solvers (60 seconds time limit)

TUDelft

80

120 140

Q-Score for a Quantum Annealer

- · Q-Score determined for
 - Gate based device (ATOS)
 - Quantum Annealer (D-Wave)
- · Other physical quantum devices exist

TUDelft

23

Gaussian Boson Sampling

- Available quantum computers
 - Diversity of physical platforms
 - · Superconducting qubits
 - Trapped ions
 - Photonics
 - · Quantum annealers
 - · Rydberg atoms
 - ...

TUDelft

Gaussian Boson Sampling

- Special-purpose photonic platform
 - Gaussian Boson Sampling
 - Sampling tasks intractable to classical computers

25

Gaussian Boson Sampling

- Symmetric square matrix A (representing graph G) → can be encoded into GBS device
- · State of GBS correlates with Hafnian of A
- Hafnian of A: = # perfect matchings of G

Gaussian Boson Sampling

 Perfect matching: set of links such that each node is adjacent to exactly one link

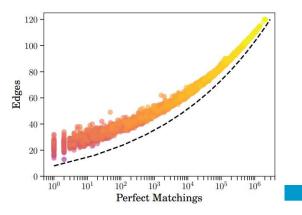


TUDelft

27

Gaussian Boson Sampling

• # perfect matchings correlates with link density



TUDelft

Gaussian Boson Sampling

- Subgraph sampling → high probability to sample a dense subgraph
- Can be explored for efficient algorithms for
 - Max Clique
 - K-densest subgraph identification
 - · Graph similarity algorithms

TUDelft

29

Gaussian Boson Sampling

Applications of near-term photonic quantum computers: software and algorithms

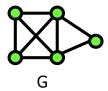
Thomas R Bromley¹ (D), Juan Miguel Arrazola¹ (D), Soran Jahangiri¹, Josh Izaac¹ (D), Nicolás Quesada¹, Alain Delgado Gran¹, Maria Schuld¹, Jeremy Swinarton¹, Zeid Zabaneh¹ and Nathan Killoran¹

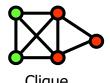
Published 12 May 2020 • © 2020 IOP Publishing Ltd

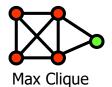
Quantum Science and Technology, Volume 5, Number 3

Citation Thomas R Bromley et al 2020 Quantum Sci. Technol. 5 034010

- Clique = complete subgraph in G
- Max Clique = largest clique in G







• Max Clique problem is NP-hard

1

31

Max Clique problem

- proposed Q-Score+
- Largest problem size N for which a quantum device significantly outperforms a random algorithm at solving the Max Clique problem
- Implementable on
 - · Gate based devices
 - Quantum annealer
 - · Gaussian Boson Sampling device

TUDelft

- · Algorithm: for increasing N do:
 - Make M realisations of G(N,1/2)
 - Run Max Clique algorithm for every graph
 - Determine average Max Clique M(N)
- · Check whether this average has "sufficiently" high score

$$\gamma(N) = \frac{M(N) - M_{rand}}{M_{max} - M_{rand}} > \gamma^* = 0.2$$

• Q-score+: highest N for which $\ \gamma(N) > \ \gamma^*$

33

33

Max Clique problem

- For ER(N,1/2) we need:
 - An (asymptotic) expression for M_{max}
 - A fast random algorithm to determine M_{rand}

 $M_{max} \Longrightarrow \bigcap^{\text{The}}$

The Largest Clique Size in a Random Graph*

David W. Matula

Technical Report CS 7608

Department of Computer Science Southern Methodist University Dallas, Texas 75275

April 1976

• ER(N,p) Random variable X(N,p): Max Clique of ER(N,p)

$$Z(N,p) = 2log_{\frac{1}{p}}(N) - 2log_{\frac{1}{p}}\left(log_{\frac{1}{p}}(N)\right) + 2log_{\frac{1}{p}}\left(\frac{e}{2}\right) + 1$$

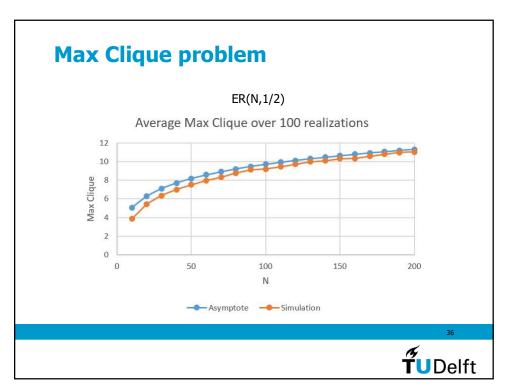
$$N \to \infty$$
 $X(N,p) = |Z(N,p)| \text{ or } [Z(N,p)]$

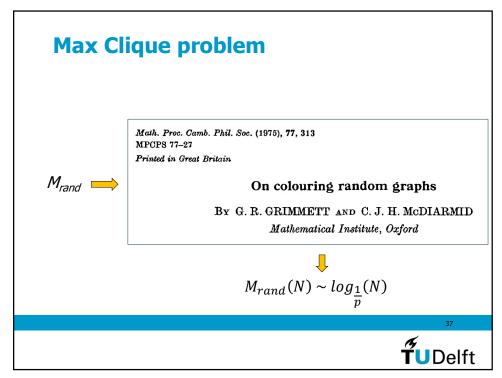
• Good approximation for ER(N,1/2):

$$M_{max}(N) = 2log_2(N) - 2log_2\Big(log_2(N)\Big) + 2log_2\left(\frac{e}{2}\right) + 1$$

TUDelft

35





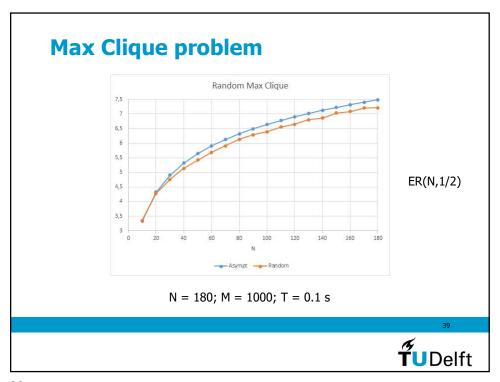
37

Max Clique problem

Random algorithm:

Label the nodes
Clique = node 1

Loop
Take next node
Is node connected to all nodes in current clique?
Yes? Add node to clique



```
Max Clique problem

N = 100000
M = 10
avg clique size = 16.6
asympt = 16.61
--- 0.37 seconds ---

N = 1000000
M = 2
avg clique size = 20.0
asympt = 19.93
--- 1.34 seconds ---
```

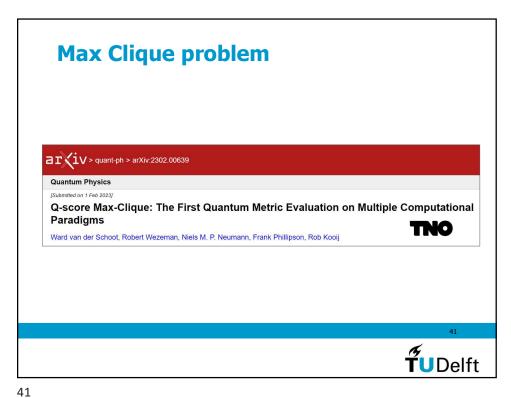


Table 1: Q-scores Max-Clique with a 60 seconds time limit.

Approach	Q-score
Classical Tabu search	4,900
Simulated annealing	9,100
Quantum Annealer D-Wave Advantage	110
D-Wave 2000Q	70
Hybrid ← Hybrid solver	12,500
Starmon-5 (QAOA)	5*
Gate-based Carter (QAOA)	$\geq 5*$

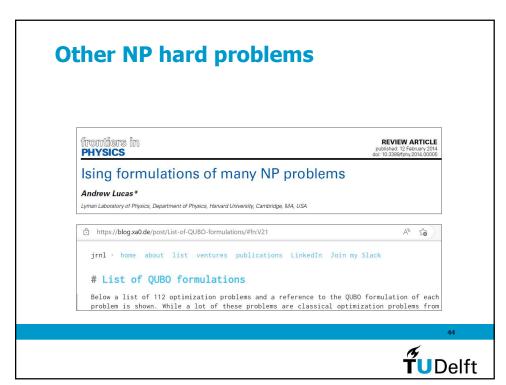
TUDelft

Table 1: Q-scores Max-Clique with a 60 seconds time limit.

		Approach	Simulated Q-score
Gate-based	←	QAOA	≥ 16*
Photonics	←	Photonics	≥ 20*

∡ T∪Delft

43



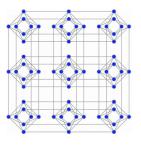
Other NP hard problems

- K densest subgraph
- · Minimum vertex covering
- Maximal matching
- · Clique covering
- Number of perfect matchings
- Hamiltonian cycles
- Longest path
- Graph isomorphism
- ...

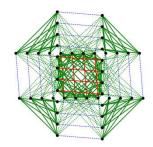
45

Other connections with Graph Theory

• D-WAVE QPU architectures



Chimera graph

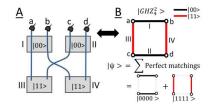


Zephyr graph

Other connections with Graph Theory

Quantum Experiments and Graphs III: High-Dimensional and Multi-Particle Entanglement Xuemei Gu,^{1,2} Lijun Chen,^{1,} Anton Zeilinger,^{2,3} and Mario Krenn^{2,3}

Graph Theory	Quantum Experiments		
undirected Graph	optical setup with nonlinear crystals		
Vertex	optical output path		
Edge	nonlinear crystal		
colors of the edge	mode numbers		
perfect matching	n-fold coincidence		
#(perfect matchings)	#(terms in quantum state)		



• Greenberger-Horne-Zeilinger state $|\psi\rangle_{abcd}=\frac{1}{\sqrt{2}}(|0000\rangle+|1111\rangle)$

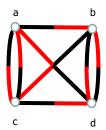
47

Other connections with Graph Theory

Extension to Dicke states

$$|D_n^k\rangle = \frac{1}{\sqrt{\binom{n}{k}}} \hat{S}(|0\rangle^{\bigotimes(n-k)}|1\rangle^{\bigotimes k})$$

- Involves multi-graphs with multi-colored edges
- Found a new case of $|D_4^2\rangle$



 $|\Psi_{abcd}>\frac{1}{\sqrt{6}}(|0011\rangle+|0101\rangle+|0110\rangle+|1001\rangle+|1010\rangle+|1100\rangle)$

Wrap-up

- Graph Theory Inspired by Quantum Technology
- Asymptotic expressions for NP-hard problems
- Implementations on D-Wave
- Embeddings on D-Wave graphs
- Properties of multi-graphs with bi-colored edges

49

