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Abstract—In this paper we study all-terminal reliability 

polynomials of networks having the same number of nodes and 
the same number of links. First we show that the smallest 
possible size for a pair of networks that allows for two crossings 
of their reliability polynomials have seven nodes and fifteen 
edges. Then we propose a construction of pairs of graphs whose 
reliability polynomials exhibit an arbitrary number of crossings. 
The construction does not depend on multigraphs.  We also give 
concrete examples of pairs of graphs whose reliability 
polynomials have three, four and five crossings, respectively, and 
provide the first example of a graph with more than one point of 
inflection in (0,1). 

Keywords-component; probabilistic graph, reliability 
polynomial, edge connectivity 

I.  INTRODUCTION  
In all networks that provide a service to a consumer, one of 

the main performance indicators is reliability [1]. The 
consumer, the user of the service, wants to be able to use the 
service for at least X% of the time. For instance, for the 
traditional telephony service often a five nines (99.999%) 
reliability is guaranteed. In order to be able to make such 
guarantees and commit to them in Service Level Agreements, 
network operators need to know their network’s reliability. The 
reliability of a network generically depends on two factors: the 
availability of the individual network components and the 
topology of the network. During the lifetime of a network 
element, it may endure periods in which it is out of service 
either because of a malfunctioning, maintenance or repair 
work. If we denote the mean time to failure by MTBF and the 
mean repair time by MTTR, the availability of a network 
element (or more formally, the probability that the element is 
working properly) is defined as A = MTBF/(MTBF + MTTR).  

A second factor affecting the global reliability of the 
network is the topology of the network. Obviously, higher 
redundancy in the network (e.g. more links connecting network 
switches) will lead to a higher reliability, but in general also to 
higher investment costs. Several ways to measure the 
robustness of network arising from a variety of transportation 
systems are presented in [2,3], including an indicator involving 
the cyclomatic number of a graph [2], and the algebraic 
connectivity of a graph [3]. All of these are measures of a static 

network. Ref. [4] discusses the network reliability for a number 
of simple network topologies and then applies this to determine 
the reliability of a real-life telecommunication network. 

In this paper we will model a network subject to component 
failures as a finite, undirected probabilistic graph G (V, E) 
which consists of a set V of N nodes and collection E of L 
edges. Nodes represent communication centers in the network 
while edges correspond to bidirectional communication links. 
In this paper we assume that nodes are always operational 
while the edges are subjected to failures. More precisely we 
assume that each edge operates with link probability pi 
independently (the probability pi can be interpreted as the 
availability of the link). The assumption that the nodes never 
fail is based upon the fact that node failures occur much less 
frequent than link failures, which occur, for example, when 
fibers are unintentionally broken by means of shovels.   

We further restrict our model here to simple graphs (no 
loops and no multiple edges) whose links all operate 
independently of each other with the same link probability p. 
The reliability of a network is concerned with the ability of a 
network to carry out a desired operation. One of the most 
common operations in a network is broadcasting which 
requires so-called all-terminal reliability in the network (see 
[5]). All-terminal reliability of a network is defined as the 
probability that any pair of nodes in the network can 
communicate with each other. The reliability polynomial RG(p) 
is a polynomial in p indicating the probability that graph G 
contains at least one spanning tree – in  other words, that the 
network is connected. The reliability polynomial determines a 
variety of robustness features of a graph, including the number 
of spanning trees, the edge connectivity, and the number of 
connected subgraphs (see, for example, [5]). The reliability 
polynomial is a function of both p and the topology G. 
Reliability polynomials can be defined for two- terminal or k-
terminal applications, depending on the type of operation 
crucial for a network’s robustness, and indeed recent work has 
focused as well on extensions to directed graphs [6,7]. In this 
paper though, we focus on all-terminal reliability polynomials, 
which we refer to simply as reliability polynomials. 

Moore and Shannon [8] were the first who expressed 
reliability of a network in the terms of link probability and they 
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stated that for a network G (V, E) with N nodes and L edges, 
the reliability polynomial R( p) can be expressed as:  

∑
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−−=
L

i

iLi
iG ppFpR

0

)1()( ,                               (1) 

where Fi corresponds to the number of sets of i links whose 
removal leaves G operational. Moore and Shannon proved that 
for every C > 0, every reliability polynomial crosses the curve  

         
)1(1 Cp

Cp
−−

   

at most once as p ranges from 0 to 1. Reliability polynomials 
are non-decreasing functions on [0,1] that are S-shaped (see 
Fig. 1, which shows the plot of the reliability polynomial of a 
complete graph on 5 nodes.)  

 

Figure 1: Reliability polynomial of the complete graph on 5 nodes 

 

While reliability functions might seem simple as they are 
polynomials, their analytic properties are quite subtle. One 
might think that given a fixed number of nodes and links, there 
might exist an optimal network, independent of the value of p. 
While such has been shown to be false in the case of simple 
graphs, for multigraphs, it is not known whether such optimal 
networks exist [9]. A further question is whether reliability 
polynomials of two network topologies, having the same 
number of nodes and links, can cross more than once. This 
would indicate how subtle the notion of reliability is, and that 
how sensitive network reliability can be to link probability p. In 
[10] it was observed that reliability polynomials of simple 
graphs with the same size can cross, by constructing pairs of 
graphs where one graph is more reliable close to p = 0 and the 
other graph more reliable close to p = 1. Subsequently, 
Colbourn et al. [9] answered the naturally arising question if 
reliability polynomials of a pair of simple graphs with the same 
size could cross more than once, and provided an example of a 
pair of graphs, with ten nodes and twenty edges, whose 
reliability polynomials cross twice.  

In [11] it was proved that for every integer k ≥ 1 and every 
k-tuple (m1, m2, …, mk) of positive integers, infinitely many 
pairs of graphs of the same size exist, such that the difference 
of their reliability polynomials has exactly k roots x1 < … < xk 

in (0,1) such that xi is of multiplicity mi, i = 1..k.    The 
argument utilizes multigraphs, though the multigraphs can also 
be converted to simple graphs with the same crossings 
properties. Also, [11] does not present concrete examples of 
graphs with more than two crossings. 

 

The aim of this paper is twofold. First we want to find the 
smallest possible size for a pair of networks that allows for two 
crossings of their reliability polynomials. If we denote this size 
by Nmin(2) then according to [9] it holds that Nmin(2) ≤ 10. 
Secondly, we want to construct examples of pairs of graphs 
whose reliability polynomials exhibit an arbitrary number of 
crossings, such that the construction does not depend on 
multigraphs.  

 

The remainder of this paper is organized as follows. Section 
2 contains the results of a brute force search for all pairs of 
graphs of size up till N = 8. The search method is implemented 
in the computer algebra program Maple. It is shown that 
Nmin(2) = 7, because there is a pair of graphs with N = 7 and M 
= 15 whose reliability polynomials cross twice, while no such 
example exists for N < 7. In Section 3 a construction method is 
presented, depending only on simple graphs, that, for every 
integer k ≥ 1, leads to pairs of graphs with k crossings. 
Concrete examples are given with 3, 4 and 5 crossings.  We 
conclude in Section 4 with some additional observations.  

 

 

II. THE SMALLEST EXAMPLE OF SIMPLE GRAPHS WITH 
TRIPLE CROSSINGS 

Using the computer algebra system Maple and Brendan 
McKay’s lists of all non-isomorphic graphs of small order 
(http://cs.anu.edu.au/~bdm/data/graphs.html), we calculated the 
all-terminal reliability polynomials of all simple graphs on at 
most 8 vertices (the polynomials were calculated, for a graph G 
on N nodes and L edges, as the evaluation  
pN-1(1-p)L-N+1T(G;1,(1-p)-1) , where T(G;x,y) is the well-known  
two variable Tutte polynomial of G (see [5]). 

We determined that there are no double crossings on graphs 
of order at most 6, and a single pair of graphs with N = 7 nodes 
(and L = 15 edges) that have a double crossing, at 
approximately 0.0911 and 0.3229 (see Fig. 2).  
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G1 G2  

Figure 2: Smallest simple graphs G1 and G2 with a double crossing 

There are many more pairs of double crossings on 8 nodes, 
with anywhere from 12 to 22 edges (see Table 1), though none 
have more than two crossings. There are precisely 5 pairs of 
reliability polynomials on 8 nodes whose curves touch. In turns 
out that the touching point always turned out to be at p = ½. 
Fig. 3 shows two graphs F1 and F2, both with 8 nodes and 12 
edges, whose reliability polynomials touch, with reliability 
polynomials  

789101112 208772117892136860 pppppp +−+−+−  

and 
789101112 207765115989635256 pppppp +−+−+−  

respectively. Fig. 4 depicts the difference of their reliabilities.    

 
TABLE 1. NUMBER OF PAIRS OF RELIABILITY POLYNOMIALS OF GRAPHS OF 
ORDER 8 THAT HAVE A DOUBLE CROSSING, LISTED BY NUMBER OF EDGES 

Number 
of Edges 

12 13 14 15 16 17 18 19 20 21 22 

Number 
of Pairs 

1 6 12 42 83 39 13 3 5 2 4 

 

 

 

                                        F1                                           F2 

Figure 3: Graphs whose reliability polynomials touch. 

 

 

Figure 4: Difference between the reliabilities of the graphs of Fig. 3. 

III. CONSTRUCTION METHOD FOR PAIRS OF GRAPHS WITH 
MORE THAN TWO CROSSINGS 

In this section we will present a new construction method 
that, using only simple graphs, for every integer k ≥ 3, leads to 
pairs of graphs with k crossings. We will exemplify the method 
by first constructing an example of a pair of graphs with three 
crossings points. Then we generalize the method to k crossings. 
We end the section by giving concrete examples of graphs with 
four and five crossing points. 

A. A pair of graphs whose reliablity polynomials cross three 
times 
The general idea of our construction method is as follows: 

start with a pair of graphs with two crossings points and then 
adjust the graphs in such a way that the adjusted graphs also 
have the same size, have crossing points close to the original 
crossing points and in addition, an extra crossing point is 
generated. In order to prove that the construction method is 
valid, we will need the following well known results, see for 
instance [5]. 

Lemma 1: The reliability polynomial of the N-cycle graph CN 
satisfies  

)1()( 1 pNpppR NN
CN

−+= − . 

Lemma 2: Let G and H be two graphs with reliability 
polynomials RG(p) and RH(p), respectively. Denote by G◦H the 
concatenation of G and H, i.e. the graph obtained by 
identifying any node of G with any node of H. Then RG◦H(p) = 
RG(p) RH(p). 

As an example consider the graphs C5 (the 5-cycle graph) 
and P2 (path of length 1) depicted in Fig. 5.  

 

C5
P2 C5 ◦P2  

Figure 5: Concatenation of C5 and P2 

Because the concatenation between cycle graphs and paths 
will be used later on, we adopt a notation for it: 
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 SN,M = CM◦PN-M+1. 
 

Thus, SN,M represents a graph on N nodes (and N edges), 
consisting of a M-cycle with a pendant path. For example, the 
graph depicted in Fig. 5 is denoted as S6,5.   

 
The following lemma relates the reliability polynomial to the 
edge connectivity, i.e. the minimum number of edges that need 
to be removed in order to disconnect the graph. 
   
Lemma 3 [8]: Let G be a graph with edge connectivity λ = 
λ(G) and denote by rλ(G) the number of subsets of λ edges 
whose removal disconnects G. Then, upon writing p = 1 – q, it 
holds RG(q) = 1 – rλ(G)qλ + o(qλ). 

 

Lemma 3 shows that the reliability polynomial close to p = 
1 is determined by the edge connectivity and the number of 
minimum cut sets. 

Lemma 4: Suppose that F1 and F2 are connected graphs, k > 1 
and p in (0,1). For s > 3, set  

H1,s = F1◦ Cs and H2,s = F2◦ Ss,s-k. 

Then provided s is large enough, the sign of RH1,s(p)- RH2,s(p) is 
the same as the sign of RF1(p)- RF2(p).  

Proof. From Lemmas 1 and 2 it follows that RSs,s-k(p)/ RCs(p) 
= (p + (s-k)(1-p))/ (p + s(1-p)), which tends to 1 for any fixed 
p in (0,1). Now from Lemma 2 again,  
RH1,s(p)- RH2,s(p) = RF1(p) RCs(p)- RF2(p) RSs,s-k(p) 
 = RCs(p) (RF1(p) - (RSs,s-k(p)/ RCs(p))RF2(p)) 
As RCs(p) > 0 and RSs,s-k(p)/ RCs(p) tends to 1, we see that 
RH1,s(p)- RH2,s(p) tends to RF1(p)- RF2(p), and the first result 
now follows.   
   
Now consider the graphs G1 and G2, with N = 7 and M = 15, 
given in Section 2, whose reliability polynomials have two 
crossing points, namely at p1=0.0911 and at p2=0.3229, with 
G2 more reliable than G1 near 1 (and near 0). 
 
We now define G1,s

* as the concatenation of G1 and Cs, i.e. G1
* 

= G1◦ Cs and G2,s
* as the concatenation of G2 and Cs,s-1, i.e.G2

* 
= G2◦ Ss,s-1.  
 
Pick any points t1, t2, t3, t4 in (0,1) such that  
t1 < p1 < t2, < t3 < p2 < t4. 
As p1 and p2 are crossing points for G1 and G2, we see that 
RG1(ti)- RG2(ti) (i = 1,2,3,4) alternate in sign. From Lemma 4, it 
follows that there is some S such that for all s > S, the same is 
true for RG1,s*(ti)- RG2,s*(ti), and hence, by the Intermediate 
Value Theorem, RG1,s*(p)- RG2,s*(p) has a crossing point in each 
of the intervals (t1, t2) and (t3, t4). Fix any s > S. 
 Lastly, we need to show that there is at least one 
more crossing point. The sign of RG1,s*( t4)- RG2,s*( t4) is the 
same as the sign of RG1(t4)- RG2(t4), which is negative, as G2 is 
more reliable than G1 to the right of  p2 < t4. That is, G2 is 
more reliable than G1 at t4. But both G1 and G2 are 2-

connected, and as Cs has edge connectivity 2 while Ss,s-1 has 
edge connectivity 1, we find that λ( G1,s

*) = 2 > 1 = λ( G2,s
*). 

From Lemma 3, it follows that close to 1, G1,s
* is more reliable 

than G2,s
*, and hence there must be another crossing point for 

G1,s
* and G2,s

* (in (t4,1)). It follows that G1,s
* and G2,s

* have at 
least 3 crossing points.  (It turns out that for s ≥ 442 G1

* is less 
reliable than G2

* around p = 0 and hence this is the onset for 
the regime with three crossing points.) 

 
Table 2 shows the crossing points for G1

* and G2
* for some 

values of s. 
 

TABLE 2.  CROSSING POINTS FOR G1,s
*
 AND G2,s

*
 FOR SOME VALUES OF S 

s Crossing 1 Crossing 2 Crossing 3 
442 0.0001766 0.3897 0.9480 
1000 0.04679 0.3567 0.9666 
100000 0.09061 0.3233 0.9968 

 
Note that for s = 100000 the two smaller crossing 

points are indeed very close to p1 and p2. 
 

 

B. Construction method for k crossings 
The argument of the previous section can be extended to 

provide, for every k > 3, pairs of simple graphs with at least k 
crossing points. The general idea is to use the concatenation of 
graphs several times.  

Specifically, the graphs G1,s
* and G2,s

* have 3 crossing 
points, with G1,s

* more reliable near 1 as it has edge 
connectivity 2 while G2,s

* has edge connectivity 1, with  
rλ( G2,s

*) = 1 (as G2,s
* is the concatenation of a 2-connected 

graph with a cycle and an path of length 1). Setting G1
3  = G1,s

* 
and G2

3  = G2,s
*, we now consider G1

4 = G2
3 ◦ Cm and G2

4 =  
G1

3 ◦ Cm,m-2 (note the changing places of G1
3 and G2

3). Then as 
before (using Lemma 4), for large enough m, G1

4 and G2
4 have 

3 crossings near the crossings of G1
3 and G2

3, with G2
4 more 

reliable than G1
4 to the right of the third crossing.  

To see that G1
4 and G2

4 have an extra crossing near 1, we 
observe that both will have edge connectivity 1 (as both have 
leaves), but G1

4 = G2
3 ◦ Cm has only 1 edge-cut of size 1 (that of  

G2
3) while G2

4 = G1
3 ◦ Cm,m-2 has 2 edge-cuts of size 1 (those in 

the path of length 2 in Cm,m-2). Thus λ(G1
4) = λ(G2

4) = 1 and 
rλ(G1

4) = 1 < 2 = rλ(G2
4), so by Lemma 3, G1

4 is more reliable 
than G2

4 close to 1, and we get a fourth crossing.  

More generally, for k > 3, we set G1
k+1 = G2

k ◦ Cu and G2
4 = 

G1
k ◦ Cu,u-2, and choose u large enough so that these pair of 

graphs have crossings near each of the crossings of G1
k and 

G2
k. Inductively we can prove that λ(G1

k+1) = λ(G2
k+1) = 1 and 

rλ(G1
k+1) = k-2 < k-1 = rλ(G2

k+1), so by Lemma 3, G1
k+1 is more 

reliable than G2
k+1 close to 1, and we get a (k+1)th crossing.  

 

C. Examples with four and five crossings 
In this subsection we will give examples of pairs of 

graphs with four and five crossings, where the size of the 
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graphs is as small as possible, at least according to our 
construction method.  Recall from subsection 3.A that for 
three crossings, we have an example with s1 = 442, i.e. the size 
of the graphs in that case is N = 7 + 442 – 1 = 448 and L = 15 
+ 442 = 457. 

 
Starting with the pair ),( 441,44224421 SGCG oo , it is 

easy to show that the onset for four crossings points occurs at 
s2 = 1043.  To be more precise, the reliability polynomials of 
the pair of graphs   

),( 1043441,44221041,10434421 CSGSCG oooo  
have exactly four crossing points, namely at 0.0746, 0.3357, 
0.9892 and at 0.9907. The graphs in this example have 1490 
nodes and 1500 edges. 

 
Continuing the construction, we find that five 

crossings occur from s3 = 5833 onwards. The reliability 
polynomials of the pair of graphs  

),( 5831,58331043441,442258331041,10434421 SCSGCSCG oooooo

 
have exactly five crossing points, namely at 0.05963, 0.3471, 
0.9748, 0.999256 and at 0.999263. The graphs in this example 
have 7322 nodes and 7333 edges. 

IV. ADDITIONAL OBSERVATIONS 
We also plotted all crossing points for simple graphs of 

order at most 8 (there are none of order smaller than 6), and 
found that they begin to fill out the interval from 0 to 1. In fact, 
we can prove that for any k > 1, the closure of the crossings of 
all pairs of reliability polynomials that cross at least k times is 
the entire interval [0,1]. A sketch of the argument is as follows. 

It is not hard to prove that, given graph G on n nodes and m 
edges, if we form graphs F and H by replacing each edge by a 
bundle of i edges in parallel, or by a path of length j, 
respectively, then  

))1(1()( i
GF pRpR −−=  

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+−= −

)1(
))1(()( )1(

pjp
pRppjppR G

mjm
H

. 

For a value r in [0,1], rp i =−− )1(1 iff irp /1)1(1 −−= , and 

r
pjp

p
=

−+ )1(
iff 

rj
jr

p
)1(1 −+

= . The functions 

i
i rrf /1)1(1)( −−=  and 

rj
jr

rg j )1(1
)(

−+
=  are increasing 

functions from [0,1] onto [0,1]. It follows that both the parallel 
edge replacement and path replacement preserve crossings. 
Moreover, for any fixed r, as j tends to infinity, )(rfi  tends to 
1 while )(rg j  tends to 0. Using this, the result follows once it 
is shown that for any 0x  in (0,1), the closure of the set 

}2,:))(({ 0 ≥slxgf ls  is all of [0,1]. To do so, we need to 

show that for any n, ]/1,[))(( 0 nrrxgf ls +∈  for some 

2, ≥ls . We observe that 
s

rfrf ss
1)()(1 <−+

. We then choose 

l large enough so that 
rrnn

rxg j +−
<)( 0

 and apply sf for 

large enough s until we land up in ]/1,[ nrr +  The details are 
omitted. 

 Finally, our investigation of reliability polynomials of 
small order showed something very interesting. In [12], it was 
conjectured that no reliability polynomial has more than one 
point of inflection. We have found that the conjecture is false, 
with examples starting on 7 nodes. One such example is the 
complete tripartite graph 2,2,1K  with two leaves attached (see 
Fig. 6). The corresponding reliability polynomial is  

109876 147214212845 ppppp +−+−  

with points of inflection at, approximately, 0.8190 and 0.8787 
(the second derivative of the reliability polynomial is plotted in 
Fig. 7). 

 

 

Figure 6: Smallest simple graph with 2 points of inflection 

 

Figure 7: Plot of the second derivative of the reliability polynomial of the 
graph in Fig. 6 
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