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In  this  paper,  we propose  a  novel  measure,  viral  conductance  (VC),  to assess  the  robustness  of  complex
networks  with  respect  to  the  spread  of  SIS  epidemics.  In  contrast  to  classical  measures  that  assess  the
robustness  of  networks  based  on  the  epidemic  threshold  above  which  an  epidemic  takes  place,  the  new
measure  incorporates  the  fraction  of  infected  nodes  at steady  state  for all possible  effective  infection
strengths.  Through  examples,  we  show  that  VC  provides  more  insight  about  the  robustness  of  networks
than  does  the  epidemic  threshold.  We  also address  the  paradoxical  robustness  of  Barabási–Albert  prefer-
ential  attachment  networks.  Even  though  this  class  of networks  is characterized  by  a  vanishing  epidemic
threshold,  the  epidemic  requires  high  effective  infection  strength  to cause  a major  outbreak.  On  the  con-
trary,  in  homogeneous  networks  the  effective  infection  strength  does  not  need  to  be  very  much  beyond
the epidemic  threshold  to  cause  a  major  outbreak.  To overcome  computational  complexities,  we  propose
a heuristic  to compute  the  VC  for large  networks  with  high  accuracy.  Simulations  show  that  the  heuris-
tic  gives  an  accurate  approximation  of  the  exact  value  of  the  VC.  Moreover,  we  derive  upper  and  lower
bounds of  the  new  measure.  We  also  apply  the  new  measure  to assess  the  robustness  of  different  types

of network  structures,  i.e.  Watts–Strogatz  small  world,  Barabási–Albert,  correlated  preferential  attach-
ment, Internet  AS-level,  and  social  networks.  The  extensive  simulations  show  that  in  Watts–Strogatz
small  world  networks,  the  increase  in  probability  of rewiring  decreases  the  robustness  of  networks.
Additionally,  VC  confirms  that  the  irregularity  in  node  degrees  decreases  the  robustness  of  the  network.
Furthermore,  the new  measure  reveals  insights  about  design  and  mitigation  strategies  of  infrastructure

and  social  networks.

. Introduction

Our daily activities increasingly rely on complex networks, for
xample the power grid, the Internet, and transportation networks.
n contrast to simple networks, such as regular or Erdös–Rényi
ER) random networks [2],  complex networks are characterized
y a large number of vertices (from hundreds of thousands to
illions of nodes), a low density of links, clustering effects, and
ower-law node-degree distribution [3,4]. Being so large, com-
lex networks are often controlled in a decentralized way and
how properties of self-organization. However, even if decentral-
zation and self-organization theoretically reduce the risk of failure,
omplex networks can experience disruptive and massive failure.
hile many technological networks are still vulnerable to attacks,
heir robustness can be analyzed through their topological metrics.
or example, the robustness of overlay networks in peer-to-peer
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networks and service overlay networks is assessed through their
topological metrics [5].  Since our daily routines would cease if
the technological information infrastructure were to disintegrate,
maintaining the highest levels of robustness in complex networks
is crucial. Therefore, as a first step, we  need to be able to assess the
robustness of networks, which obviously depends on the type of
attack.

Among the various scenarios of attack that damage infrastruc-
ture, the spread of epidemics caused by large scale attacks has
become a crucial issue affecting modern life. For example, in 2001
and 2004, respectively, the Code Red and Sasser computer viruses
infected numerous computers, resulting in costly global damages.
Furthermore, many attacks range from theft, modification, and
destruction of data, to dismantling of entire networks. In addi-
tion to technological networks, epidemics also spread in social
networks, much like human diseases, like influenza [9,10],  widely

spread among individuals in contact with each other. In this paper,
we study the robustness of networks with respect to the spread
of epidemics that follow the susceptible/infected/susceptible (SIS)
model. The SIS model can describe how an infection spreads in
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etworks, and its dynamic is described by any change of a node’s
tate with time. Thus, an infected node infects any susceptible
eighbor with infection rate ˇ, which is the number of infection tri-
ls per unit time. Then, the infected node cures itself with cure rate
, and it becomes susceptible to a new infection. The ratio between

 and ı is called the effective spreading rate �. The epidemic thresh-
ld �c is a function of network characteristics and a specific value
f the effective spreading rate above which an epidemic outbreak
akes place. When an epidemic outbreak takes place in the network,

 persistent fraction of infected population exists at the steady state,
nd this fraction does not depend on the initial condition of the
nfection in the network, but it only depends on the effective infec-
ion rate and the epidemic threshold. Consequently, assessing the
obustness of complex networks not only allows us to compare
he robustness among different network structures, but also gives
nsights about mitigation strategies plans and the design of future
etwork infrastructures. However, even given the network topol-
gy, assessing the robustness of networks is difficult. On one hand,
ne way to measure the impact of the epidemic is by the number
f infected nodes at steady state, which is not explicitly related to
he topological characteristics of the networks. On the other hand,
he epidemic threshold �c, used as a measure of the robustness of
he network in the literature [6,7], does not take into account the
umber of infected nodes. Ultimately, the epidemic threshold is not
dequate for assessing the network robustness.

In this paper, we propose a novel metric viral conductance (VC)
o assess the robustness of networks with respect to the spread
f SIS epidemics. The new metric considers the value of epidemic
hreshold and the number of infected nodes at steady state above
he threshold. Thus the higher the value of VC,  the lower the robust-
ess of the network. One very interesting result obtained using
C, concerns the robustness of Barabási–Albert (BA) preferential
ttachment (PA) networks. While previous work stressed the fact
hat the epidemic threshold is close to zero in those networks, VC
an quantify the fraction of infected nodes for increasing value
f the effective spreading rates above the threshold. As a mat-
er of fact, infinite Barabási–Albert (BA) preferential attachment
PA) networks with vanishing epidemic thresholds can still require
trong epidemics to have major outbreaks, while in homogeneous
andom networks, an epidemic does not need to be very much
eyond the threshold to cause major outbreaks. Due to the com-
utational complexity, we propose a heuristic to actually compute
he VC for large networks. Moreover, we derive upper and lower
ounds for VC.  We  performed extensive simulations to validate
he new metric, the bounds and the heuristic, and to show how
he new heuristic outperforms our previous heuristic presented
s work-in-progress in [1].  The numerical evaluation focuses on
ssessing the robustness of different types of networks, e.g. corre-
ated preferential attachment (PA) networks, Watts–Strogatz (WS)
mall world networks [4] and Barabási–Albert (BA) preferential
ttachment (PA) networks [8].  Our results show that assortative
A networks have lower VC than disassortative PA networks when
nly the average node degree is preserved. Qualitatively, we com-
are between the robustness of Watts–Strogatz (WS) networks
nd Barabási–Albert (BA) preferential attachment (PA) networks,
nd we show cases where Watts–Strogatz (WS) networks are less
obust than Barabási–Albert (BA) preferential attachment (PA) net-
orks and vice versa. In addition, for a given irregular network, we

ewired the network to make it almost regular by decreasing the
ariance of the node degrees, and we computed the VC before and
fter the regularization.

We  summarize the contributions of the paper as follows:
Introducing a new robustness measure VC with respect to the
spread of SIS epidemics.
ional Science 2 (2011) 286– 298 287

• Comparing between VC and the epidemic threshold and showing
cases where the epidemic threshold fails to assess the robustness
of networks.

• Showing that Barabási–Albert (BA) preferential attachment (PA)
networks require strong epidemics to have major outbreaks.

• Introducing a computational heuristic for VC and upper and lower
bounds.

• Presenting a framework to compare the robustness of
Watts–Strogatz (WS) networks and Barabási–Albert (BA)
preferential attachment (PA) networks.

• Applying VC to a weighted social network to evaluate the effi-
ciency of mitigation strategies.

The rest of this paper is organized as follows. In Section 2, we
review the literature and related work. In Section 3, we  review
the mathematical models of epidemic spread and their applica-
tions to different types of networks, and we  compare the epidemic
threshold with average fraction of infection. We  propose the new
robustness metric with respect to epidemic spread, the viral con-
ductance VC,  we compare between the classical measure and VC,
and we discuss the robustness of Barabási–Albert (BA) preferential
attachment networks in Section 4. In Section 5, a summary of some
useful properties of infected nodes at steady state are presented.
In Section 6, we propose a heuristic to compare viral conductance,
and we  derive upper and lower bounds for viral conductance. We
present the numerical results in Section 7, and the main conclusions
and future work are summarized in Section 8.

2. Related work

In biology, the history of epidemic modeling dates back to the
eighteenth century when Bernoulli proposed the first determin-
istic epidemic model for smallpox, which was followed by other
deterministic and stochastic epidemic models during the last two
centuries [33–36].  Those models introduced the basic reproductive
number R0, which is the average number of secondary infections
due to a single infected case in the population. If R0 > 1, the epi-
demic spreads in the population, while if R0 < 1, the epidemic dies
out without causing an outbreak. In complex network theory, the
work in [7,16] found the epidemic threshold, which is a function of
R0, for SIS epidemics using the heterogeneous mean field approach.
The authors of [7,16] conclude that the threshold is a function of the
heterogeneity of the network represented by the second moment
of the node degree distribution. Later, an exact expression of the
epidemic threshold emerged in the framework of spectral graph
theory in [14,32]. The work in [7] also concludes that epidemics can
spread on any scale-free network regardless of its effective infec-
tion rate when the number of nodes in the network approaches
infinity. In other words, all scale-free networks are vulnerable to
epidemic spread. However, finite scale-free networks have a non-
zero epidemic threshold. Therefore, they are not always vulnerable
to epidemic attacks.

Recently, biological epidemic models have been adapted to
study the spread of viruses in technological networks as shown
in [11–14].  For example, in [11], the authors propose deterministic
and probabilistic models to predict the size of the infected pop-
ulation in homogeneous networks. Unfortunately, the models do
not consider the heterogeneous structure of networks, and hence,
they cannot be used to measure the robustness of generic networks
with respect to the spread of epidemics. In [13], the authors pro-
pose a discrete-time epidemic model to predict the infection size,

finding that the epidemic threshold is the reciprocal of the largest
eigenvalue of the network adjacency matrix. Meanwhile, the N-
Intertwined model in [14] reproduced the epidemic threshold in
[13] based on a continuous time Markov chain process. Also the



2 putat

N
s
a

r
t
a
o
r
t
p
t
n
(
a

3

s
S
o
e
d
p
m
t
o
n
i
b
t
o
�
e
r
o
t
w
o
m
m
b
f
p
S
d

d
d
t

3
n

d
t
h
o
l

3

K
N

88 M. Youssef et al. / Journal of Com

-Intertwined model explicitly reveals the role of the network in
preading epidemics. However, it does not introduce a metric to
ssess the robustness of networks.

In summary, using only the epidemic threshold as a measure for
obustness is common practice: the larger the epidemic threshold,
he more robust a network is against the spread of an epidemic,
s in [6]. However, in Section 4, we will show some examples
f networks where the epidemic threshold fails to assess their
obustness, properly. Moreover, none of the works in the litera-
ure combine both the effective spreading rate and the infected
opulation to describe the robustness of the network with respect
o epidemic spreading. Specifically, then, we show that the robust-
ess of networks depends on the value of the epidemic threshold �c

or its reciprocal) as well as the fraction of the infected population
bove the threshold.

. Review of epidemic models

In this section, we review basic results about the spread of
usceptible–infected–susceptible (SIS) epidemics on networks. The
IS infection model, which arose in mathematical biology, is
ften used to model the spread of epidemics [11,15,16,23,33,38],
pidemic algorithms for information dissemination in unreliable
istributed systems like P2P and ad-hoc networks [17,18], and
ropagation of faults and failures in BGP networks [19]. The SIS
odel analytically reveals how a node’s state changes between the

wo S and I states in complex networks. To clarify, during the spread
f an epidemic, a node is in one of the two states. First, an infected
ode can infect susceptible neighbors with infection rate ˇ. Also, an

nfected node can cure itself with a cure rate ı and become suscepti-
le to re-infection. Additionally, the ratio between  ̌ and ı is called
he effective infection rate, � = ˇ/ı. Moreover, the epidemic thresh-
ld �c can be defined as follows: for effective spreading rates below
c, the epidemic contamination in the network dies out; the mean
pidemic lifetime is of order log n, while for effective spreading
ates above �c, the epidemic is prevalent, i.e. a persistent fraction
f nodes remains infected with the mean epidemic lifetime [15] of
he order en˛

, for � sufficiently large. Thus, the epidemic threshold
as found to be �c = 1/�,  i.e. the reciprocal of the spectral radius �

f the network adjacency matrix [13,14]. Another basic epidemic
odel in the literature is the SIR [37], which differs from the SIS
odel in many aspects. In the SIR model, the susceptible node

ecomes infected and later recovers without being susceptible to
urther infection. Therefore, this model has no steady state infected
opulation fraction since all infected nodes recover, while in the
IS model, a steady state infected population fraction exists, and it
epends on the effective infection rate and the network structure.

Below, we review the important results of the spread of SIS epi-
emics on regular, bi-partite, and random networks, and we  also
iscuss how the epidemic threshold is related to the average frac-
ion of infection at steady state.

.1. Epidemic spread on regular, complete bi-partite, and random
etworks

We compare the fraction of infected nodes in the SIS model for
ifferent example networks and show that the value of the effec-
ive spreading rate � determines for which network this fraction is
igher. The first and second example networks belong to the class
f regular and complete bi-partite networks, respectively, while the
ast example addresses two different types of random network.
.1.1. Epidemic spread on regular networks
This model is based on a classical result for SIS models by

ephart and White [11,20]. We  consider a connected network on
 nodes where every node has degree k. We  denote the number of
ional Science 2 (2011) 286– 298

infected nodes in the population at time t by Y(t). If the population
N is sufficiently large, we  can convert Y(t) to y(t) = Y(t)/N, yielding
a continuous quantity representing the fraction of infected nodes.
Now the rate at which the fraction of infected nodes changes is due
to two  processes: susceptible nodes become infected and infected
nodes become susceptible. Obviously, the rate at which the frac-
tion y(t) grows is proportional to the fraction of susceptible nodes,
i.e. 1 − y(t). Therefore, for every susceptible node, the rate of infec-
tion is the product of the infection rate per node (ˇ), the degree
of node (k), and the probability that on a given link the suscepti-
ble node connects to an infected node (y(t)). Therefore, we  obtain
the following differential equation describing the time evolution of
y(t):

dy(t)
dt

= ˇky(t)(1 − y(t)) − ıy(t) (1)

The steady state solution y∞(�) of Eq. (1) satisfies

y∞(�) = ˇk − ı

ˇk
= 1 − 1

�k
(2)

Because an epidemic state only exists if y∞(�) > 0, we conclude
that the epidemic threshold satisfies

�c = ˇ

ı
= 1

k
(3)

Because for k-regular networks, the spectral radius of the adja-
cency matrix is equal to k, see [21], Eq. (3) is in line with the result
in [13].

3.1.2. Epidemic spread on complete bi-partite networks
A complete bi-partite network KM,N consists of two disjointed

sets containing respectively M and N nodes, such that all nodes in
one set are connected to all nodes in the other set, while within
each set no connections occur. Notice that (core) telecommuni-
cation networks often can be modeled as a complete bi-partite
topology. For instance, the so-called double-star topology (i.e.
KM,N with M = 2) is quite commonly used because it offers a high
level of robustness against link failures. For example, the Amster-
dam Internet Exchange (see www.ams-ix.net), one of the largest
public Internet exchanges in the world, uses this topology to con-
nect its four locations in Amsterdam to two high-density Ethernet
switches. Sensor networks are also often designed as complete bi-
partite networks.

In [22,14],  a model for epidemic spreading on the complete bi-
partite network KM,N is presented. Using differential equations and
two-state Markov processes, the authors show that above the epi-
demic threshold �c = 1/

√
MN, the fraction of infected nodes at the

steady state for KM,N satisfies

y∞(�) = (MN�2 − 1)((M + N)� + 2)
�(M + N)(M� + 1)(N� + 1)

(4)

It is easy to verify that for the case M = N, Eq. (4) reduces to Eq.
(2), with k = N.

3.1.3. Epidemic spread on random networks
Many classes of random networks are described by their sta-

tistical properties, for example Erdös–Rényi (ER), Watts–Strogatz
(WS) and Barabási–Albert (BA) preferential attachment (PA) net-
works. Erdös–Rényi networks (ER) are homogeneous networks
with binomial node degree distribution and average node degree
k. In Erdös–Rényi networks (ER), every node selects its neighbors
with probability p independently. For large number of nodes N and

for pN = k, the node degree distribution becomes Poisson distribu-
tion with a tail that decays exponentially for large node degrees.
Meanwhile, Barabási–Albert networks BA are built using the pref-
erential attachment (PA) mechanism in which each node prefers

http://www.ams-ix.net/
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ig. 1. Fraction of infected nodes for an ER network and a Barabási–Albert (BA)
referential attachment (PA) network with N = 104.

o connect with high node degree neighbors, and therefore the
ode degree distribution follows the power law distribution. We
ill use PA and BA equivalently to refer to Barabási–Albert pref-

rential attachment networks. The literature shows that large BA
etworks are scale-free (SF) networks, and consequently are the
ost vulnerable networks to spread of epidemics. However, we

tudy a counter example in which an Erdös–Rényi (ER) network can
e more vulnerable to spread of epidemics than Barabási–Albert
BA) preferential attachment (PA) network given the same num-
er of nodes. Fig. 1 shows the fraction of infected nodes at steady
tate y∞(�) due to the spread of SIS epidemics for different effective
nfection rates � = ˇ/ı on an ER network and a PA network with 104

odes. We  observed that the epidemic threshold of PA is smaller
han the epidemic threshold of an ER network showing that PA
etwork is more vulnerable than ER network. However, there is an

nversion in y∞(�) curves and after the inversion, the ER network
as higher steady state infection fraction than the PA network. In
his region, the ER network is more vulnerable than the PA net-
ork. Thus, the two networks have two opposing features and it is
ot trivial to measure their robustness.

For a given network, because the range of � values for which
he epidemic prevails is infinitely large, from now on, instead of
onsidering the effective spreading rate �, we look at the reciprocal
f �, that is the effective curing rate s = ı/ˇ. We  are interested in
∞(s), the fraction of infected nodes in steady state, as a function of
he effective curing rate. Note that the behavior of y∞(s) around s = 0
eflects the behavior of the original system for �→ ∞.  Moreover, the
alue of y∞(s) for s = � (the reciprocal of the epidemic threshold) is
. Such a conversion leads to a closed area under the y∞(s) curve.
e denote y∞ to be the average fraction of infection at steady state

efined over 0 ≤ s ≤ � and it is given by y∞ = (1/�)
∫ �

0
y∞(s)ds.

.2. Average infection fraction versus the epidemic threshold

Next, we hypothesize a case study that shows that the epi-
emic threshold is not capable to assess the robustness of networks
aving the same average node degree k within the same network
lass. Assume that the epidemic can have any effective cure rate

 ≤ s = (ı/ˇ) ≤ �, and every effective cure rate has a probability of
nfection at steady state y∞(s). The average value of y∞(s) over the
efined range of s is y∞ infection fraction. Fig. 2 shows how the
verage infection fraction y∞ is inversely proportional to the maxi-
um  eigenvalue � (reciprocal of epidemic threshold) for networks
hat not only belong to the same class, but also have the same aver-
ge node degree. Moreover, in Fig. 2(b), many networks with low
verage node degree and low maximum eigenvalue have a higher
verage infection fraction than other networks with high maximum
ional Science 2 (2011) 286– 298 289

eigenvalues and high average node degree. However, the average
infection fraction shows a general tendency to increase with the
maximum eigenvalue over different average node degree values.
This tendency reflects that as the number of links increases, the
average node degree increases too, so the chance for an outbreak
to take place becomes more relevant and causes a higher number
of incidences at steady state.

We conclude that neither the fraction of infection at steady
nor the epidemic threshold can solely describe the robustness of
networks with respect to spread of SIS epidemics in networks.
Therefore, we need a new metric to quantify the robustness of net-
works considering both the fraction of infection at steady state and
the epidemic threshold.

4. Viral conductance

Based on the above conclusions and the mathematical back-
ground, in this section, we propose a new metric to quantify the
robustness of networks with respect to spread of SIS epidemics.

4.1. Definition of viral conductance VC

Because we  are considering the effective curing rate s as an inde-
pendent variable, the area under the curve y∞(s) is bounded. A
logical way  to consider the range of s values as well as the frac-
tion of infected nodes is to evaluate the area under the y∞(s) curve.
We can now introduce a new robustness measure with respect to
epidemic spread, viral conductance VC,  that takes into account all
values of s, and hence �.

Definition 4.1. Viral conductance VC is a robustness measure of a
given network G with respect to the spread of epidemics. It repre-
sents the average fraction of infected nodes for all types of epidemic
attacks that are capable of producing outbreaks in the network.
For non-negative continuous variable, y∞(s) = 1/N

∑
i ∈ Nvi∞(s)

where vi∞(s) = (
∑

j ∈ neighbors(i)v
j
∞(s))/(s +

∑
j ∈ neighbors(i)v

j
∞(s)) is the

probability that node i is infected at the steady state [14]; mathe-
matically, VC is defined as follows:

VC(G) =
∫ �

0

y∞(s)ds = �y∞ (5)

where � is the spectral radius (i.e. maximum eigenvalue) of the
adjacency matrix of network G and y∞ is the average value of the
fraction of infected nodes for all 0 ≤ s ≤ �.

We will now state two  theorems for the viral conductance VC,
of a network G.

Theorem 4.2. For regular networks Gk, where every node has k
neighbors, VC(Gk) = k/2.

Proof. This follows directly from Eq. (2).  �

Theorem 4.3. For complete bi-partite networks KM,N, VC(KM,N) is as
follows:

VC(KM,N) = (M + N)
√

MN − MN

M + N
+ (M − N)(N ln(M + √

MN))
M + N

− (M − N)(M ln(N + √
MN))

M + N

+ (M − N)(M ln M − N ln N)
M + N

(6)
Proof. This follows from applying Eq. (5) to Eq. (4).  �

The viral conductance VC can also be applied to random net-
works. For example in Fig. 1, the values of VC for Erdös–Rényi (ER)
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Fig. 2. The relationship between � and y∞ for Erdös–Rényi (ER) and Barabási–Albert (B
network class and every average node degree k, there are 100 samples of networks. The s
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5. Properties of steady state infected population fraction

Here, we summarize basic properties of the steady state infected
population y∞(s) presented in the literature, which are very useful
ig. 3. Two examples of ER and PA networks with N = 104 and with the same � (i.e.
he same epidemic threshold).

nd Barabási–Albert (BA) preferential attachment (PA) networks
re 5.103 and 2.887, respectively. In this case, PA is more robust
han ER.

.2. Viral conductance versus the epidemic threshold

Traditionally, the epidemic threshold has been used to evaluate
he robustness of networks with respect to spread of epidemics
6,7]. However, we present a case-study in which the epidemic
hreshold fails to assess the robustness of networks. Fig. 3 shows
xamples of networks with N = 104 that almost have the same max-
mum eigenvalues (i.e. same epidemic thresholds), in which the
pidemic threshold thus fails to accurately assess their robustness.
ote that the difference between the maximum eigenvalue values

n every pair of networks, {ER1, PA1} and {ER2, PA2}, is very small
nd in the order of 10−4. Fig. 3 represents two ER networks and
wo PA networks. ER1 and ER2 networks have the same epidemic
hreshold as PA1 and PA2 networks, respectively.

Table 1 shows the numerical values of � and VC of the four net-
orks discussed in Fig. 3. We  notice that the value of � for both ER1

nd PA1 networks is the same, while the VC value of ER1 network is

igher than the VC value of PA1 network. The same observation is
pplied on ER2 and PA2 networks. The difference between VC and

 is that VC represents the area under the y∞(s) curve.

able 1
he values of VC of the networks in Fig. 3 with the same � values.

Metric ER1 PA1 ER2 PA2

� 7.16 7.16 10.98 10.98
VC 3.093  1.652 5.097 2.672
A) preferential attachment (PA) networks with N = 104 and k = 4, 6, 8 and 10. For
olid line represents the average values of � and the average values of y∞ .

4.3. Paradoxical robustness of Barabási–Albert preferential
attachment networks

We  addressed the robustness of Erdös–Rényi (ER) networks
and Barabási–Albert (BA) preferential attachment (PA) networks in
Fig. 1 and we showed that there are two opposing features relate to
the epidemic threshold and the fraction of infection at steady state.
We summarize the opposing features as follows: On one hand, the
PA network has a lower epidemic threshold than the ER network
showing that the PA network is more vulnerable than ER network.
On the other hand, the ER network has a higher fraction of infec-
tion at steady state than does the BA network. Therefore, looking
independently look at the epidemic threshold or the steady state
infection fraction to measure the robustness of networks is not suf-
ficient. Additionally, to address the paradoxical robustness of PA
networks, let us study the steady state infection curves for finite ER
and PA networks as shown in Fig. 4. Because of the shrinking tail
behavior of the fraction of infection at steady state, PA networks
with very high � (very low epidemic threshold) would still have
tiny fractions of infected population within the region beyond and
away from the maximum eigenvalue (reciprocal of the threshold).
Infinite PA networks with large maximum eigenvalues (vanish-
ing epidemic threshold) can still require strong epidemics to have
major outbreaks, while in ER networks, an epidemic does not need
to be very much beyond the reciprocal of the epidemic threshold
to cause a major outbreak.
Fig. 4. Examples of the fraction of infection at steady state y∞(s) given different
values of s = ı/  ̌ for both ER and PA networks with N = 104 and k = 6, 8 and 12.
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ig. 5. The steady infected populations of a ring network and its rewired versions.

or the computational heuristic for VC in Section 6. We  also
how new results and ideas based on the basic properties of an
nfected population at steady state. First, the role of the epidemic
hreshold was studied in the literature and found that for any
onnected network G, denote � is the maximum eigenvalue of
he adjacency matrix, such that y∞(�) = 0. Secondly, the fraction
f infected population at the steady state y∞(s) can be written
s y∞(s) = 1 − �s + O(s2), where � = (1/N)

∑N
i=11/di and di is the

egree of node i. Lastly, given a regular network with node degree
 = k, the fraction of infected nodes y∞(s) for s = k/2 equals 1/2. This
esult directly follows from Eq. (2).  For further reading and proofs,
e refer the reader to [14]. Below, we show new results about y∞(s)

or s = k/2 (i.e. � = 2/k) for any network with average node degree k.

emma  5.1. For any complete bi-partite network and for s = k/2, the
raction of infected nodes y∞(k/2) is bounded by 0.5147.

roof. Let the total number of nodes in any complete bi-partite
etwork be T = M + N. Then, substituting M = T − N in Eq. (4) for

 = k/2 = (MN/M + N), we  obtain the following equation:

∞
(

k

2

)
= T4 + T3N − 3T2N2 + 4TN3 − 2N4

2T4 + NT3 − T2N2
(7)

Note that Eq. (7) is symmetric at N = T/2. By differentiating
∞(k/2) with respect to N, we find that the N values at which the
unction obtains a maximum are 0.5T, 2.5908T, −1.5908T, 0.8587T
nd 0.1413T. Note that we only consider solutions that satisfy the
ondition 0 ≤ N ≤ T. Due to the symmetry of Eq. (7),  the maximum
alue of y∞(k/2) is 0.5147 for N = 0.8587T and N = 0.1413T. �

To address the effect of the network structure on the steady state
robability of infection when s = k/2, we show a simple example on
 ring network structure (� = k = 2), where we rewired every link
owards a common node. Fig. 5 represents the y∞(s) curve of every
ewiring step. The figure shows that all the steady state infected
opulation curves pass close to the point ((k/2), 0.5). In addition, we

able 2
he average and variance values of y∞(s) are evaluated at s = k/2 for a randomly rewired
etworks.

Network N k

Randomly rewired regular 102 1
Preferential attachment 102

Preferential attachment 104

Preferential attachment 104 1
Preferential attachment 104 1
Preferential attachment 104 2
ional Science 2 (2011) 286– 298 291

performed extensive simulations to validate our assumption on dif-
ferent network classes with network sizes ranging from 100 nodes
up to 3 × 105 nodes with different connectivities. All the simula-
tions are averaged over 103 runs. We  randomly rewired a 100-node
regular network with k = 10 and a 100-node Barabási–Albert (BA)
preferential attachment (PA) network with k = 7.2 each with 103

rewiring steps, and we  show that y∞(k/2) is very close to 0.5 as
Table 2 shows. Moreover, we created 104-node Barabási–Albert
(BA) preferential attachment (PA) networks with k = 8, 12, 16 and
20. For every type of network, we computed the average and the
variance values of y∞(k/2) as in Table 2. The results show that
the average of samples of y∞(k/2) is very close to 0.5. Further-
more, we evaluated y∞(s = k/2) for Watts–Strogatz (WS) networks
with network size N = 104, average node degree k = 4 and 6, and
rewiring probability 0 ≤ p ≤ 1 as shown in Fig. 6(a). We  noticed that
Watts–Strogatz (WS) networks with k = 4 have a larger deviation
from the value 0.5 than the networks with k = 6. Additionally, the
deviation converges with the rewiring probability p reaches 1. Thus,
the results show that y∞(k/2) can be approximated to 0.5 with small
deviation. To study the effect of the finite network size on the value
of y∞(k/2), we created Barabási–Albert (BA) preferential attach-
ment (PA) networks with different sizes and different average node
degrees, and we evaluated y∞(s = k/2) as shown in Fig. 6(b). Again,
the results validate our assumption. We  believe that for any con-
nected network G(N,L) with average node degree k, for s = k/2, the
fraction of infected nodes at steady state is 0.5 + O(ε) where |ε| � 1.
Therefore, in Section 6, where we propose a heuristic for the new
robustness metric with respect to spread of epidemics, we  neglect
the parameter ε and assume that y∞(k/2) = 0.5.

6. Computation of VC and bounds

For general networks with heterogeneous structure, we  can-
not analytically compute the fraction of infected nodes y∞(s), and
hence the viral conductance, explicitly. Moreover, computing the
solution of y∞(s) for 0 ≤ s ≤ � numerically is not feasible for large
scale networks. Therefore, in this section, we  propose a heuristic
for computing the viral conductance for general networks. We  will
use the lemmas and theorems of the previous section to construct a
heuristic to compute the new robustness metric, VC.  Our objective
is to make the heuristic as simple as possible to avoid computation
complexity.

6.1. A heuristic for VC

The heuristic mainly depends on fitting linear and non-linear
functions passing through three main points on the steady state
infected population curve y∞(s). The three points (s, y∞(s)) are as
follows:

• Point (0,1) where s equals 0 (i.e. ı = 0) and hence the whole net-

work is infected at steady state (i.e. y∞(0) = 1).

• Point ((k/2), 0.5) as discussed in Section 5.
• Point (�, 0), which is the reciprocal of the epidemic threshold

where the network is cured.

 regular network and different Barabási–Albert (BA) preferential attachment (PA)

 Average Variance

0 0.499 2.7843 × 10−7

7.2 0.4849 2.59 × 10−5

8 0.4885 2.34 × 10−5

2 0.4883 2.01 × 10−5

6 0.4881 1.806 × 10−5

0 0.4881 1.8013 × 10−5
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ig. 6. Evaluation of the steady state infected population y∞(s) for s = k/2 on Watt
ifferent network sizes N and different average node degrees k.

The basic heuristic equation is as follows:

heuristic∞(s) =

⎧⎪⎨
⎪⎩

y1∞(s) + y2∞(s)
2

0 ≤ s ≤ k

2
y1∞(s) + y3∞(s)

2
k

2
≤ s ≤ �

(8)

The function yheuristic∞(s) is defined over two  intervals of the
ange of s. In each interval, yheuristic∞(s) is the average of two fit-
ing curves. For example, in the first interval where 0 ≤ s ≤ (k/2),
1∞(s) is a decreasing exponential function, it continues to the sec-
nd interval to the point (�, 0) and therefore is constrained to pass
y the three main points. The function y1∞(s) is defined as follows:

1∞(s) =
(

� − s

�

)
e−as (9)

To obtain the value of the exponent coefficient a, we solve y1∞(s)
t the point ((k/2), 0.5). Therefore, the value of a becomes as follows:

 = −2
k

ln
(

�

2� − k

)
(10)

Next, the second function in the first interval y2∞(s) is a linear
ecreasing function, proposed to equalize any underestimation due
o the exponential function y1∞(s). It is defined as follows:

2∞(s) = 1 − s

k
(11)

In the second interval, the function y3∞(s) is a decreasing expo-
ential function that passes through the points ((k/2), 0.5) and (�,
), proposed to follow the tail of the y∞(s) curve that depends on
he irregularity of the network. Thus, the function y3∞(s) is defined
s follows:

3∞(s) = b(� − s)e−cs (12)

The exponent coefficient c depends on the irregularity of the
etwork since � ≥ k for all irregular networks [21]. Also, the total
xponent of the exponential function of y3∞(s) should be unitless;
herefore, the exponent coefficient c has to hold a unit of (node
egree)−1. To compute the value of c, we propose the following
quation:

 = 1

√
−1 +

∑N−1
i=1 1i ∈ ND (13)
2 �k

i ∈ ND =
{

1 if i ∈ ND
0 otherwise

(14)
gatz (WS) and Barabási–Albert (BA) preferential attachment (PA) networks given

where 1i∈ND is a set function of the node degree, and ND is the set of
node degrees that exists in the network, and therefore

∑N−1
i=1 1i ∈ ND

represents the irregularity of the network. Then, the constant b is
computed as follows:

b = ec(k/2)

2� − k
(15)

Note that for regular networks with degree k(k = �), the func-
tions y1∞(s) and y3∞(s) become linear and they are similar to y2∞(s),
which is the exact y∞(s) curve for regular networks.

By integrating yheuristic∞(s) in Eq. (8),  we obtain the final mathe-
matical formula for the VCheuristic as follows:

VCheuristic = 1
2

[
3k

8
+ 1

a
− 1

�a2
− e−a�

a
− b�

c
e−c� + b�

c
e−c(k/2)

+ e−a�

�

(
�

a
+ 1

a2

)
+ be−c�

(
�

c
+ 1

c2

)
− be−c(k/2)

(
k

2c
+ 1

c2

)]
(16)

6.2. Upper and lower bounds for VC

We  formulated upper and lower bounds for VC,  depending on
the topological characteristics of the network, to avoid underesti-
mating and overestimating the actual value of VC.

6.2.1. Upper bound
We  know that the steady state infection population y∞(s) is

always a convex function [24] since connecting two points on the
curve with a linear decreasing function renders the area under the
linear function greater than the area under the actual curve (see
Fig. 7). Therefore, we computed that area under the following lin-
ear functions: (1) a linear function that connects the points (0,1) and
((k/2), 0.5), and (2) a linear function that relates the points ((k/2),
0.5) and (�, 0). Thus, we formulated the upper bound as follows:

VCUB =
∫ k/2

0

(
1 − s

k

)
ds +

∫ �

k/2

1
k − 2�

(s − �)ds (17)

The VC upper bound VCUB is as follows:

VCUB = 1
4

(k + �). (18)
6.2.2. Lower bound
Section 5 shows that the slope of the steady state y∞(s) at s = 0

satisfies −�, where � = (1/N)
∑N

i=11/di. Then using the line con-
necting the points ((k/2), 0.5) and (k, 0) and the intersection point
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heuristic
nodes given different average node degrees k as in Fig. 8. We  noticed
that VCheuristic increases with k, and it is close to the exact VC for
both types of networks. In addition, both exact VC and VCheuristic of
ig. 7. An example of the upper and lower bounds of the viral conductance for th
pper  bound VCUB , while the lower figure shows the lower bound VCLB .

etween the tangent line y∞(s) = 1 − �s and the line y∞(s) = 0.5, we
onstructed a lower bound VCLB as shown in Fig. 7. By applying Eq.
5),  we found the following value for the lower bound:

CLB = 1
8

(
1
�

+ 3k
)

(19)

For any regular network with node degree k, both the upper
ound VCUB and lower bound VCLB lead to the same value of VC = k/2.

. Numerical results

In this section, we numerically evaluate the robustness metric
C, the accuracy of the heuristic, and the bounds on different types
f networks like synthetic networks with 104 nodes, real-world
etworks, and survey-based networks. The results are averaged
ver 103 runs.

.1. Assortative and disassortative preferential attachment
etworks

In this subsection, we show how the new robustness measure
C can differentiate between assortative and disassortive networks

n which node degree correlation is observed. Such correlation is
mportant since correlated networks exist in the real world. For
xample, social networks are classified as assortative networks,
hile technological and biological networks are classified as disas-

ortative networks [25]. In assortative networks, nodes with similar
ode degrees are connected together, while in disassortative net-
orks, nodes with different nodes degrees are connected together.
ccordingly, we generated assortative and disassortative prefer-
ntial attachment (PA) networks using the algorithm in [26]. The
lgorithm starts with a connected network having m0 � N nodes.

very new node is connected to already existing nodes through
wo stages: In the first stage, a new node is connected to an exist-
ng node u with probability �u = (du/

∑
jdj) where du is the degree

f node u; in the second stage, a new link between the new node
ene network with N = 886, k = 2.022 and � = 9.489. The upper figure represents the

and one of the neighbors s of the chosen node u in the first stage
is added with probability ps = d˛

s /
∑

v ∈ �u
d˛

v , where  ̨ is an assorta-
tive tuning coefficient, and � u is the set of neighbors of individual
u chosen in the first stage. The generated assortative and disassor-
tative preferential attachment (PA) networks have different node
degree distributions. We  will address the analytical and numeri-
cal studies of the robustness of correlated PA networks having the
same node degree distribution in our future work.

To show how VC can distinguish among correlated networks
and also that the heuristic is accurate and close to the exact VC,
we evaluated VC and VC on correlated PA networks with 104
Fig. 8. The exact value of VC is compared with the heuristic approach VCheuristic in
Eq. (16), and with the previous heuristic approach VCprevious heuristic presented in [1]
on assortative and disassortative preferential attachment (PA) networks with 104

nodes given different average node degrees k = 4, 8, 12, 16 and 20.
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ig. 9. Absolute values of exact VC,  heuristic VC, and upper and lower bounds VC in 

espect  to exact value of VC in Fig. 9(c) and (d) for Watts–Strogatz (WS) networks g

ssortative networks are lower than their corresponding values for
isassortative networks, showing that the new heuristic is capable
f evaluating the robustness of networks. Moreover, we compared
he new heuristic presented in this paper with our previous heuris-
ic presented as work-in-progress in [1].  In Fig. 8, we  observed that
he new heuristic VCheuristic is closer to VCexact than the previous
euristic VCprevious heuristic . Additionally, the values of VCheuristic of
isassortative networks do not overlap with VCexact and VCheuristic
or assortative networks. Consequently, the new heuristic outper-
orms the previous heuristic, and it is capable of evaluating the
obustness of large networks for which the computation of VCexact

ay  not be feasible.
The robustness of assortative networks with respect to the

pread of epidemics is also discussed in [25] showing that the giant
omponent in assortative networks is smaller than in dissasortative
etworks. On one hand, nodes with high degrees are connected
ogether causing any epidemic to persist in the network. On the
ther hand, the epidemic survives in only a small portion of the
etwork. Here, our results show that disassortative preferential
ttachment (PA) networks are more vulnerable than assortative
referential attachment (PA) networks. Notably, the algorithm used
o create the correlated PA networks does not constrain the degree

f the nodes in the networks. Therefore, few nodes with very large
ode degrees appear in the disassortative networks, and they are
onnected with low node degree nodes. Consequently they increase
he network heterogeneity properties; once an epidemic reaches
a) and (b); normalized values of heuristic VC,  and upper and lower bounds VC with
 = 104 and probability of rewiring 0 ≤ p ≤ 1.

any node with large node degree, a major outbreak takes place in
the network.

7.2. Watts–Strogatz small world model

We  generated Watts–Strogatz (WS) small world networks [4]
with a given number of nodes N and average node degree k. To cre-
ate a WS  small world network, we started with a k-regular network;
each node has k/2 links that connect it to its nearest counterclock-
wise neighbors, while the other k/2 links connect the same node
to its nearest clockwise neighbors. Given a rewiring probability p,
we started rewiring the clockwise links for every node. We  created
WS networks given N = 104 nodes with average node degrees k = 4,
6, 8, and 10 and different probability of rewiring p ranging from 0
to 1. Then, we  used those networks to evaluate the heuristic value
VCheuristic compared with the exact VC values, and to study the effect
of rewiring the network links on the values of the VC.

Fig. 9(a) and (b) shows how the exact value of VC changes with
a probability of rewiring p given k = 4 and 6, respectively. For net-
works with given regular node degrees (p = 0), VC equals k/2. In
addition, the exact VC value and VCheuristic non-linearly increase
with the probability of rewiring p because the irregularity of the

network increases with p. We  also verified the validity of the upper
and lower bounds VCUB and VCLB, noticing that for all networks
with different average node degrees and different probability of
rewiring, exact values of VC as well as heuristic values VCheuristic are
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measure their robustness and to study the effect of rewiring the
networks with the value of VC.  The rewiring process aims to
decrease the variance of node degree by regularizing the network
using the algorithm in [30]. Next, we  compared the robustness
ig. 10. Absolute values of exact VC,  heuristic VC,  and upper and lower bounds VC
espect to exact value of VC in Fig. 10(b) for Barabási–Albert BA networks given N =

ounded. To evaluate the deviation of VCheuristic, the upper bound
nd the lower bound, we normalized the results with respect to
he exact value of VC as shown in Fig. 9(c) and (d) for k = 4 and 6,
espectively. We  observed that the deviation of the heuristic value
f VC is bounded with the increase of rewiring probability p. All the
bove analysis of VC was also applied to the WS  small world net-
orks with k = 8 and 10 with the same observations as discussed in

his subsection.

.3. Barabási–Albert preferential attachment network model

We generated Barabási–Albert (BA) preferential attachment
PA) networks as follows: we started with a small number m0 of
isconnected nodes; next we connected a new node to an existing
ode u with probability �u = du/

∑
jdj, where du is the node degree

f the existing node u. The generated BA network is characterized
s an uncorrelated Barabási–Albert (BA) preferential attachment
PA) network. We  evaluated VC on the generated BA networks with

 = 104 and k = 4, 6, 8 and 10 as shown in Fig. 10(a). The value of VC
ncreases as k increases, and also the heuristic value of VC is close to
ts corresponding VC value. Moreover, both exact and heuristic VC
alues are bounded. Also, we evaluated the deviation of the heuris-
ic VC values, and the upper and lower bounds by computing their
ormalized values with respect to the exact values of VC as shown

n Fig. 10(b). We  found that the heuristic slightly deviates from its
xact value, and therefore it perfectly estimates the exact value of
C.

.4. VC versus �

Here, we numerically present the differences between VC and �
s shown in Fig. 11,  which comprises models with 100 samples of
esults for a given network class with a certain average node degree
. In general, the values of VC tends to increase with �, and simul-
aneously both measures increase with the average node degrees.
ote that within a module of samples, VC does not always need to

ncrease with �. We  also observed that the slope for Watts–Strogatz
WS) networks results is higher than the slope in Barabási–Albert
BA) preferential attachment (PA) networks results. To relate the
lope with VC and �, recall that VC = y∞�, and therefore, the slope
f the trend line is y∞. To address the differences between VC and

, let us compare the robustness of a WS  network with k = 8 and

 PA network with the same value of k as shown in the black box
n Fig. 11.  The value of � of the PA network is at least twice the
alue of � of WS  network, and therefore the value of y∞ of PA net-
g. 10(a); normalized values of heuristic VC,  and upper and lower bounds VC with
d different average node degrees.

work is at most half its corresponding value of WS  network. Such
a trade-off was  discussed earlier in the paper, so on one hand, we
cannot measure the robustness of networks by considering only �
or the average infection y∞, yet on the other hand, VC combines
both � and y∞ to account for them to measure the robustness of
networks. Moreover, for any average node degree in PA networks,
the samples widely scatter in the direction of � than VC in a given
module, while samples from WS  networks do not scatter largely.
As a result, for a given value of �, it is not difficult to obtain distinct
values of VC for different networks. For example, for a given value
of �, WS  networks are less robust than PA networks. Therefore, it
is not necessary that PA networks are always more vulnerable than
WS networks, and also � is not a unique robustness measure with
respect to the spread of epidemics.

7.5. Internet AS-level networks

Next, we  apply VC to measure networks like the Internet AS-
level networks. Specifically, we  employed three different networks,
SKITTER [27] with 9204 nodes and k = 6.29, BGP [28] with 17446
nodes and k = 4.68, and WHOIS [29] with 7485 and k = 15.22, to
Fig. 11. Numerical relationship between VC and � = 1/�  (the reciprocal of the epi-
demic threshold) collected from Watts–Strogatz (WS) networks ‘+’ with rewiring
probability p = 1 and Barabási–Albert (BA) preferential attachment (PA) networks
‘o’  with N = 104 given different average node degrees.
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Table 3
VCheuristic , VCUB , VCLB , � and � of Internet AS-level networks and their regularized networks.

VCLB VCheuristic VCUB � Heterogeneity �

SKITTER 2.6041 4.3661 21.4559 79.53 42.0340
Regularized SKITTER 3.1415 3.1428 3.1559 6.33 6.3282
WHOIS 6.0708 9.7964 41.5197 150.86 135.6138
Regularized WHOIS 7.6082 7.61 7.6130 15.23 15.224
BGP 1.9750 3.2877 19.4348 73.06 57.2345
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Regularized BGP 2.3334 2.3385 

f each network in two cases: the original network and its reg-
larized network. Table 3 shows that regularized networks have

 lower VCheuristic than original networks. In addition, we  used
he metric � to assess the heterogeneity of the irregular and
egularized networks. The metric � was introduced in the liter-
ture as the ration between the second moment and the first
oment of the node degree distribution. After regularizing a

etwork, the heterogeneity of the network decreases leading to
ecrease the degrees of nodes with large degrees and to increase
he degrees of nodes with low degrees. Therefore, all the node
egrees are centered around the average degree value k with

ow variance in node degrees, while the maximum degree and
he minimum degree are 
k� and �k, respectively. Consequently,
∞(s) curve of the regularized networks shrinks dramatically and
pproaches a linear decreasing function. Assessing the VCheuristic
nd �, both metrics confirm that regular networks are more
obust than irregular networks against the spread of epidemics.
oreover, the values of � for irregular and regularized networks
n Table 3 show that both values of VC and � decrease when
he networks are regularized. For every network, this behavior
ccurs due to the decrease in the maximum node degree, which
pper-bounds the spectral radius of the network, resulting in a

ig. 12. The survey-based network of individuals and popular locations in Clay Center, K
ia  green edges to the locations in Clay Center according to the survey responses. The ma
2.3549 4.73 4.7221

largely decreased area under the curve, and therefore VC decreases
too.

7.6. Survey-based network

In this subsection, we  applied VC to a social network created
through a survey to study the spread of epidemics in rural regions.
The survey was  conducted in Clay Center, the county seat of Clay
County in the State of Kansas, and the network was created based on
the responses of Clay Center residents. The survey included ques-
tions about three main places, {R, W,  G}, that the residents visit,
and questions about three levels of contact each respondent makes
with other individuals. The three levels of contact were defined as
follows: (1) proximity contact, which happens when another person
is passing within five feet, (2) direct-low contact,  which happens
when a person is directly touching another person for short time
period, and (3) direct-high contact,  which happens when a person
is directly touching another person for a long time period. Every

respondent i provided the number of contacts nx,i for every contact
level x. We  used the survey responses to create a weighted contact
network with 138 nodes (respondents) and 9222 links (contacts) as
shown in Fig. 12.  The weight between respondent i and respondent

ansas, where the nodes (survey respondents) in the cloud network are connected
p is courtesy of Google.
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Table 4
The value of VC for the survey-based social network in case of the absence of mitigation strategies and the most two effective mitigation strategies.

Mitigation strategy VC � Immunized nodes
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None (weighted network) 71.498
High strength node immunization 49.179
High  strength node immunization in location R 49.443

 is the average of the three contact levels. For contact level x, we
roposed the following equation:

x,i,j = (1 − (1 − 	i,j�x)nx,i )(1 − (1 − 	i,j�x)nx,j ) (20)

here �x is a constant that depends on the level of contact x and
i,j quantifies the location responses for both respondents i and j

s follows:

i,j = 1 + li,j
1 + d

(21)

here d is the total number of locations, and li,j represents number
f common locations that respondents i and j used to visit. For more
etails about the survey questions and the link weights, we  refer
he reader to [31].

We  applied the measure VC to quantify the robustness of the
ocial network with respect to the spread of SIS epidemics. We  also
pplied some mitigation strategies to the network and used VC to
ank them. Also, we studied mitigation strategies where 10% of the
odes were immunized. From a network point of view, the immu-
ized nodes were removed from the network. Immunized nodes
ere selected based on (1) node strength (the sum of link weights of

 node), (2) random selection, (3) random selection from a specific
ocation, and (4) highest strength nodes from a specific location.
able 4 shows the values of VC and � in case of the absence of mit-
gation strategies and the most two effective mitigation strategies.
learly, we notice that VC values, when mitigation strategies are
pplied, are lower than the VC value in absence of mitigation. Also,
he highest strength mitigation strategy outperforms other miti-
ation strategies since it has the lowest VC value because highest
trength nodes play a major role in spreading any epidemic. Also,
he highest strength mitigation strategy outperforms the highest
trength mitigation strategies that are applied at different locations
ecause the former considers all nodes with the highest strength

n the network regardless of their locations. This result agrees with
he effect of mitigation strategies presented in the literature (for
xample see [39]). Therefore, the highest strength mitigation strat-
gy has the best effectiveness for reducing the spread of epidemics.
bserving the values of robustness metrics in our example, we  see

hat both VC and � rank the mitigation strategies similarly.

.7. Results summary

We summarize the above results and analysis of robustness with
espect to spread of epidemics in the following conclusions.

. Viral conductance is a better measure than the epidemic thresh-
old for robustness of networks: VC incorporates the fraction of
infected nodes at steady state for all possible infection strengths.

. Increasing the probability of rewiring decreases the robustness of
Watts–Strogatz (WS) networks: The initial regular network in
the Watts–Strogatz (WS) model has the lowest value of VC,  and
therefore it is the most robust of any other obtained network

given the probability of rewiring 0 < p ≤ 1.

. VCheuristic is close to the exact value of VC:  The proposed heuristic
satisfies the basic requirements of simplicity and high accuracy
in addressing solutions for any expensive computation quantity.
31.91 0
23.89 14
24.08 14

4. VCUB and VCLB effectively bound VC and VCheuristic from above
and from below, respectively: Bounds give the feasible region in
which the value of VC is predictable.

5. Our numerical results show that the regular structure of a network
has a minimum VC value compared to any other structure: Given N

nodes and L links, we  can obtain

⎛
⎝

(
N
2

)
L

⎞
⎠ different network

structures. We  believe that the regular structure of a network is
the most robust to any spread of epidemic.

8. Conclusions and future work

This paper aims to introduce a new measure, viral conductance
VC, to assess the robustness of complex networks with respect
to spread of epidemics. Viral conductance integrates the fraction
of infected population at the steady state for all possible effec-
tive infection strengths an epidemic may  possess. We  compared
the epidemic threshold with both the average fraction of infec-
tion at steady state and the viral conductance, and we show that
the epidemic threshold is not an adequate measure to assess the
robustness of networks. We  also numerically found that when the
effective cure rate equals half the average node degree, the fraction
of infection at steady state is almost half the population. We  verified
our finding through extensive simulations on different networks
with different sizes. Based on the previous property, we intro-
duce a computational heuristic for the viral conductance, which
is a function of the infected population and network characteris-
tics. The heuristic aims to reduce the computational complexity
of calculating the infected population at the steady state. In addi-
tion, we  derive upper and lower bounds for the new measure,
and we derive the analytical expression for viral conductance
of both regular networks and bi-partite networks. We  applied
the new robustness measure to different types of network struc-
tures, and found that in Watts–Strogatz networks, the increase in
probability of rewiring decreases the robustness of networks. Addi-
tionally, we  found that the irregularity in node degrees decreases
the robustness of the network. Moreover, within the considered
set of correlated preferential attachment networks, the assortative
structure of preferential attachment networks is more robust than
the disassortative structure of preferential attachment networks.
For all tested networks, the heuristic value perfectly approximates
the exact value of the viral conductance and both are bounded
using the proposed upper and lower bounds. Furthermore, the new
robustness measure shows the effectiveness of different mitigation
strategies on social networks.

Future work will explicitly focus on studying the robustness
of correlated preferential attachment (PA) networks having the
same node degree distribution. Additionally, given the number of
nodes and links, VC can be used to design networks that maxi-
mize the robustness of the network with respect to the spread
of epidemics. Moreover, the concept of viral conductance can be
extended to measure the robustness with respect to the spread
of epidemics that follow the susceptible/infected/recovered (SIR)

epidemic model. We  will also address the finite size effect on viral
conductance, and we will analytically prove that the fraction of
infection at steady state in the SIS model is almost half, when the
effective curing rate equals one half of the average node degree.



2 putat

A

t
O
b
a
O
f

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[
[

[

[

[

[

[

[

[
ory of epidemics, Proceedings of the Royal Society of London A115 (1927)
98 M. Youssef et al. / Journal of Com

cknowledgments

This research was partially supported by the National Agricul-
ural Biosecurity Center at Kansas State University, the Netherlands
rganization for Scientific Research (NWO) under project num-
er 643.000.503, and the National Science Foundation (NSF) under
ward number 0841112. The authors would like to thank Jasmina
mic and Phillip Schumm for the helpful discussion and Ali Sydney

or creating the survey-based Clay Center network map.

eferences

[1] R.E. Kooij, P. Schumm, C. Scoglio, M.  Youssef, A new metric for robustness with
respect to virus spread, in: L. Fratta, et al. (Eds,), Proceedings of the 8th Interna-
tional IFIP-TC 6 Networking Conference, NETWORKING 2009, LNCS 5550, 2009,
pp.  562–572.

[2] P. Erdös, A. Rényi, On random graphs, Publicationes Mathematicae 6 (1959)
290–297.

[3] R. Albert, H. Jeong, A. Barabási, Error and attack tolerance of complex networks,
Nature 406 (2000) 278–282.

[4] D. Watts, S. Strogatz, Collective dynamics of small-world networks, Nature 393
(1998) 440–442.

[5] M.  Youssef, C. Scoglio, On graph-based characteristics of optimal overlay
topologies, The International Journal of Computer and Telecommunications
Networking, COMNET 53 (2009) 913–925.

[6] A. Jamakovic, R.E. Kooij, P. Van Mieghem, E. van Dam, Robustness of networks
against the spread of viruses: the role of the spectral radius, in: The 13th Annual
Symposium of the IEEE/CVT Benelux, Liége, Belgium, 2006.

[7] R. Pastor-Satorras, A. Vespignani, Epidemic dynamics and endemic states in
complex networks, Physical Review E 63 (2001) 066117.

[8] A.-L. Barabási, A. Réka, Emergence of scaling in random networks, Science 286
(1999) 509–512.

[9] S. Towers, Z. Feng, Pandemic H1N1 influenza: predicting the course of a pan-
demic and assessing the efficacy of the planned vaccination programme in the
United States, Euro Surveillance 14 (41) (2009).

10] V. Colizza, et al., Estimate of novel influenza A/H1N1 cases in Mexico at the
early stage of the pandemic with a spatially structured epidemic model, PLoS
Currents: Influenza (November) (2009).

11] J.O. Kephart, S.R. White, Direct-graph epidemiological models of computer
viruses, in: IEEE Computer Society Symposium on Research in Security and
Privacy, 1991, pp. 343–359.

12] Z. Chen, C. Ji, Spatial-temporal modeling of malware propagation in networks,
IEEE Transactions on Neural Networks 16 (2005) 1291–1303.

13] Y. Wang, D. Chakrabarti, C. Wang, C. Faloutsos, Epidemic spreading in real net-
works: an eigenvalue viewpoint, in: 22nd Symposium in Reliable Distributed

Computing, Florence, Italy, 2003.

14] P. Van Mieghem, J. Omic, R.E. Kooij, Virus spread in networks, IEEE/ACM Trans-
actions on Networking 17 (2009) 1–14.

15] A. Ganesh, L. Massoulié, D. Towsley, The effect of network topology on the
spread of epidemic, in: Proceedings of the IEEE INFOCOM.05, Miami, FL, 2005.

[
[

ional Science 2 (2011) 286– 298

16] R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks,
Review Letters 86 (2001) 3200–3203.

17] D. Chakrabarti, J. Leskovec, C. Faloutsos, S. Madden, C. Guestrin, M.  Faloutsos,
Information survival threshold in sensor and P2P networks, in: Proceedings of
the IEEE INFOCOM.07, 2007.

18] P. Eugster, R. Guerraoui, A. Kermarrec, L. Massouli é, From epidemics to dis-
tributed computing, IEEE Computer 37 (2004) 60–67.

19] F. Coffman, Z. Ge, V. Misra, D. Towsley, Network resilience: exploring cascading
failures within BGP, in: Proceedings of the 40th Annual Allerton Conference on
Communications, Computing and Control, 2002.

20] J.O. Kephart, G.B. Sorkin, M.  Swimmer, An immune system for cyberspace,
in:  Proceedings of the Conference on Systems, Man, and Cybernet-
ics IEEE International: Computational Cybernetics and Simulation, vol. 1,
1997.

21] D. Cvetkovic, M.  Doob, H. Sachs, Spectra of Graphs, Theory and Applications,
3rd ed., Johan Ambrosius Barth Verlag, Heidelberg, 1995.

22] M.  Newman, A. Barabási, D. Watts, The Structure and Dynamics of Networks,
Princeton University Press, Princeton, NJ, 2006.

23] P. Schumm, C. Scoglio, T. Easton, D. Gruenbacher, Epidemic spreading on
weighted contact networks, in: Proceedings of the BIONETICS’07, Budapest,
Hungary, 2007.

24] P. Van Mieghem, J. Omic, In-homogeneous Virus Spread in Networks, Delft
University of Technology, Report 2008081, 2008.

25] M.E.J. Newman, Assortative mixing in networks, Physical Review Letter 89
(2002) 208701.

26] Q. Guo, T. Zhou, J.-G. Liu, W.-J. Bai, B.-H. Wang, M.  Zhao, Growing scale-
free small-world networks with tunable assortative coefficient, Physica A 371
(2006) 814–822.

27] KC. Claffy, T.E. Monk, D. McRobb, Internet tomography, Nature, 1999,
http://www.caida.org/tools/measurement/skitter/.

28] University of oregon routeviews project, http://www.routeviews.org/.
29] Internet routing registries, http://www.irr.net/.
30] V. Nikiforov, Eigenvalues and degree deviation in graphs, in: Elsevier Linear

Algebra and its Applications, 2006, p. 414.
31] C. Scoglio, et al., Efficient mitigation strategies for epidemics in rural regions,

PLoS One 5 (7) (2010) e11569.
32] R. Durrett, Some features of the spread of epidemics and information on a

random graph, PNAS 107 (2010) 10.
33] R. Anderson, R. May, Infectious Diseases of Humans: Dynamics and Control,

Oxford Press, 1991.
34] G. Macdonald, The analysis of equilibrium in malaria, Tropical Diseases Bulletin

(1952) 49.
35] R. May, R. Anderson, Population biology of infectious diseases. Part II, Nature

(1979) 280.
36] R. Anderson, Population ecology of infectious disease agents, in: Theoretical

Ecology, 1981.
37] W.O. Kermack, A.G. McKendrick, A contribution to the mathematical the-
700–721.
38] J.D. Murray, Mathematical Biology: An Introduction, Springer, 2002.
39] R. Pastor-Satorras, A. Vespignani, Immunization of complex networks, Physical

Review E (2002) 65.

http://www.caida.org/tools/measurement/skitter/
http://www.routeviews.org/
http://www.irr.net/

	Viral conductance: Quantifying the robustness of networks with respect to spread of epidemics
	1 Introduction
	2 Related work
	3 Review of epidemic models
	3.1 Epidemic spread on regular, complete bi-partite, and random networks
	3.1.1 Epidemic spread on regular networks
	3.1.2 Epidemic spread on complete bi-partite networks
	3.1.3 Epidemic spread on random networks

	3.2 Average infection fraction versus the epidemic threshold

	4 Viral conductance
	4.1 Definition of viral conductance VC
	4.2 Viral conductance versus the epidemic threshold
	4.3 Paradoxical robustness of Barabási–Albert preferential attachment networks

	5 Properties of steady state infected population fraction
	6 Computation of VC and bounds
	6.1 A heuristic for VC
	6.2 Upper and lower bounds for VC
	6.2.1 Upper bound
	6.2.2 Lower bound


	7 Numerical results
	7.1 Assortative and disassortative preferential attachment networks
	7.2 Watts–Strogatz small world model
	7.3 Barabási–Albert preferential attachment network model
	7.4 VC versus ρ
	7.5 Internet AS-level networks
	7.6 Survey-based network
	7.7 Results summary

	8 Conclusions and future work
	Acknowledgments
	References


