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Abstract 

 
The purpose of this article is to extend related research on the spread of malware in networks 
and to assess the security impact of certain measures against the spread of malware. We 
examine the influence of heterogeneous infection and curing rates for a Susceptible-Infected-
Susceptible (SIS) model, that is used to describe the spread of malware on the Internet. The 
topology structure considered is the regular graph, which represents homogeneous network 
structures. We present a new method to calculate the steady state of heterogeneous populations, 
for the general case with m subpopulations. Using this method, we give the explicit conditions 
under which the malware persists in the network. Under the condition that all infection rates in the 
heterogeneous model are equal, we provide a logistic solution for the model. 
 
Next we give calculation examples which are based on the assumption of two subpopulations 
and explore this method in more detail, proving that the method produces valid outcomes and 
that the basic reproduction numbers R for each subpopulation are the only factors determining 
the steady state situation. The value of R depends on the effectiveness of attacking malware and 
the defending countermeasures. 
 
We then consider some special cases for subpopulations using this method. In the first case the 
protection against malware is assumed to be absent within one subpopulation. The calculations 
show that it pays off for the subpopulations with the best protection to help other, less protected 
subpopulations. 
The second case describes the effect of diversification against malware, when one subpopulation 
does not share the vulnerabilities with the rest of the population to become infected with malware 
and propagate that malware. The results show that diversification is an effective countermeasure 
against the propagation of malware. Based on the market share of the software, we demonstrate 
how to calculate the 'resistance' of different compartments against malware. 
 
Using statistical data, we finally show that dividing a population in two subpopulations increases 
the accuracy of the model. Based on this data, we also show that the use of security software 
does not correlate very well with the number of reported infections. 
 
Keywords: Virus spread, epidemic threshold, heterogeneous networks, diversification. 
 

 
 
1. INTRODUCTION 
In our current society the Internet represents an enormous societal and economic value. 
Unfortunately where there is value, crime is soon to follow and on the Internet now many 
cybercriminals are active and malware is ubiquitous. The term “malware” is defined as a piece of 
software with a harmful payload, which needs (vulnerabilities in) a specific software package to 
propagate from an infected system to other systems. In 2010, the average rate of malware in 
email traffic was 1 in every 284 emails and the average number of malicious web sites blocked 
each day rose to 3,188. Almost 90% of these blocked sites are legitimate sites, which were 
compromised [1]. When infected computers spread the infection to other computers, the number 
of malware sources explodes in a short time. When confronted with such malware avalanches, 
relying on prevention alone is not realistic any more. It is necessary to identify the factors that 
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control the spread of malware on the Internet, predict how many computers will be infected and 
how effective countermeasures are. 
 
The purpose of this article is to extend related research on the spread of malware in networks 
and to assess the security impact of certain measures against the spread of malware. Our 
malware spreading model is based upon the Susceptible-Infected-Susceptible (SIS) infection 
model, which arose in mathematical biology, which is often used to model the spread of computer 
viruses [2], [3], [4]. The SIS model assumes that a node in the network is in one of two states: 
infected and therefore infectious, or healthy and therefore susceptible to infection. The SIS model 
usually assumes instantaneous state transitions. Thus, as soon as a node becomes infected, it 
becomes infectious and likewise, as soon as a node is cured it is susceptible to re-infection. 
 
In epidemiological theory, a crucial notion is the epidemic threshold τc, see for instance [2], [3], 
[5], [6], [7], [8]. If it is assumed that the infection rate along each link is β while the curing rate for 
each node is δ then the effective spreading rate of the virus can be defined as τ=β/δ. The 
epidemic threshold can be defined as follows: for effective spreading rates below τc the virus 
contamination in the network dies out, while for effective spreading rates above τc the virus is 
prevalent. In the case of persistence we will refer to the prevailing state as a steady state. The 
epidemic threshold is related to the so-called basic reproduction number R, see [6]. In fact, the 
epidemic threshold τc corresponds to the case R=1, with virus extinction for R≤1 and virus 
prevalence for R>1. 
 
Between 1999 and 2009 many articles considered more modeling aspects for homogeneous 
populations like incubation periods, variable infection rate, a curing process that takes a certain 
amount of time, adaptive networks  and so on, see [6], [7], [9], [10]. 
In 2009, ref. [11] derived analytical results for the epidemic threshold in the case of 
heterogeneous curing rates for a specific class of graphs. It is assumed in [11] that the infection 
rate at every link is the same, namely β. The aim of this paper is to generalize the results from 
[11] by also considering heterogeneous infection rates. 
 
The rest of the paper is organized as follows. In Section 2 we derive and analyze the spread of 
viruses in regular graphs in case of m subpopulations, with curing rate δi and infection rate βi, for 
i=1..m. In Section 3, we discuss the specific case of regular graphs with 2 subpopulations. In the 
subsequent sections we consider some special cases; in Section 4 we look at the effect of a 
population without defense and in Section 5 we look at the impact of diversification. In Section 6 
we discuss some statistics obtained through Eurostat in order to determine the relation between 
security software deployed and the percentage of infected computers. We summarize our results 
in Section 7. 
 
2. VIRUS SPREAD ON REGULAR GRAPHS WITH M SUBPOPULATIONS 
In this section, we derive the threshold for the spread of viruses and the steady state of m 
subpopulations on regular graphs, each with their own curing rate and infection rate. We assume 
that each node in the connected regular graphs has exactly k neighbors. Denote ni as the fraction 
of nodes in subpopulation i, with i = 1..m. Obviously, it holds that ∑ ������ = 1. For every node in 
subpopulation i we denote the curing rate as δi, and the infection rate of all incoming links as βi, 
with i = 1..m. Our assumptions imply that we are considering bi-directional links where the 
infection rate in the two directions in general is not equal. The latter condition also reflects the 
assumption that the rate of infection is determined by the node itself, for instance by the type of 
software it is running. We will come back to this assumption later on in the paper. 
 
It is important to note that our assumptions imply complete symmetry, each node sees the same 
fraction of nodes from every subpopulation. So every node has a fraction n1 of neighbors from 
subpopulation #1, a fraction n2 of neighbors from subpopulation #2 and so on. Therefore, the 
number of subpopulations should not exceed the number of direct neighbors, or m ≤ k. 
 
For subpopulation i at time t, we denote the number of infected nodes as Xi(t) and the fraction of 
infected nodes as vi(t). Then, the probability that a randomly chosen node within subpopulation i 
is infected in the total population with N nodes is 	�(�) ≡ ��(�)

��� . 
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The rate at which the probability of infection for nodes in subpopulation i changes is due to two 
processes: susceptible nodes becoming infected and infected nodes being cured. The curing rate 
for an infection probability vi is δivi. The rate at which the probability vi grows is proportional to the 
probability of a node in subpopulation i being susceptible, i.e. 1−vi. For every susceptible node 
the rate of infection is the product of the infection rate per node in that subpopulation (βi) and the 
probability that on a given link the susceptible node connects to an infected node is�� ��	��

��� . 

Therefore, the following system of differential equations describes the time evolution of vi(t) with  

i, j =1..m: 
���
�� = ��� �� ��	��

��� � (1 − 	�) − ��	�      (1) 

 
Note that for δ1 =..= δm, and for β1 =..= βm, the system of equations (1) reduces to a single 
differential equation, describing the general solution for a homogeneous population with 
	 = � ��	��

��� .          (2) 

 
For the general case with different curing and infection rates, it is impossible to obtain an explicit 
solution for the system of equations (1).  
 

Theorem 1. If the effective spreading rate � =� ����
 �

�
���

 for a system of m differential equations in 

Eq. (1), then the epidemic threshold satisfies �! = �
". 

 

Proof. We will use a Lyapunov function [12] to show that, under the condition� ����
 �

�
���

⩽ �
", the 

origin is a global attractor for {v1≥0, v2≥0, .., vm≥0}, hence, that the virus dies out. 
 

Let $ =� ����
 �

�
���

, then we have 
�%
�� = &�� ����

 �
�
���

(1 − 	�) − 1'∑ ��	�����  .  (3) 

Because vi≥0, it follows that 1-vi ≤ 1. Therefore Eq. (3) implies that 
�%
�� ≤ � ∑

���
� ����

 � − 1 ∑
���
� ��	� . 

Hence under the condition� ����
 �

�
���

≤ �
" it holds that 

�%
�� ≤ 0. The claim follows directly by applying 

Lyapunov’s stability theorem. 
 

Next, we consider the case � ����
 �

�
���

> �
". We first note that any trajectory of the system (1) can 

never leave the box B={(v1, .., vm) | 0≤v1≤1, .., 0≤vm≤1}. This follows from 
��+
�� ∣ �+�- = ��� ∑ ��	����� ≥ 0 and similar inequalities at the borders of the box B. From the 

construction of the above Lyapunov function V, we can see that for � ����
 �

�
���

> �
"	and for (v1, .., 

vm) in B and sufficiently close to the origin, 
�%
�� > 0. This implies that the origin has an unstable 

manifold in B. Therefore, since any trajectory of system (1) can never leave the box B, system (1) 
has an attractor as the ω-limit set and the virus survives. This finishes the proof of the theorem. 
 
If the graphs considered are limited to connected regular graphs where each node has exactly k 
neighbors, then calculations can be simplified by introducing the basic reproduction numbers 

0� = ��"
 � . Under the condition ∀2 = 1. .m → �� > 0, Eqs. (1) and (2) lead to: 

���
�� = ��0�	(1 − 	�) − 	�         (4) 
  
Theorem 2. For a system of m differential equations in Eq. (4), the steady state of (v) can be 
calculated by solving a polynomial equation of order m. 
 
Proof. Solving Eq. (4) leads to:

���
�� = 0 → 	� = 6��

6��7�     (5) 

 

If v≠0 then Eq. (2) and (5) lead to: ∑
���
� ��6�

6��7� = 1      (6) 
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Thus, when ∑ (��0�)���� ⩽ 1 → 	 ⩽ 0;∑ (��0�)���� > 1 → 	 > 0.    (7) 
 
Eq. (7) confirms the epidemic threshold found in Theorem 1. Next, we use Eq. (6) to calculate the 

steady state: ℎ(	) = ∏
���
� (0�	 + 1) − ∑

���
� ��0� ∏

���,�=�
� (0�	 + 1) = 0.    (8) 

So h(v) is a polynomial equation of order m with these preconditions: {�� , . . , �� ∈ 〈0. .1〉 ∧
0�, . . , 0� > 0}. Solving h(v) provides the steady state of v and by filling in v in Eq. (5) the steady 
state of every vj. This finishes the proof of the theorem. 
 
Theorem 3. If β1 = .. = βm, then Eq. (1) has m – 1 solutions in the form of hyper-planes passing 
through the origin. The intersection of the hyper-planes is also a solution of Eq. (1) and its 
dynamics are described by a logistic equation.  
 
Proof. Assuming vj = λj v1 (i=2..m), where the λj ‘s are constants, it follows that 
��D
�� − E� ��+�� | �D�GD�+ ≡ −	�(HIE�I + H�E� + H-) = −	�J(E�) with 

 
HI = ���(	�(�� − ��) + ��); H� = ��	��(�� − ��) + ����� − ����� + �� − ��; H- = −�����. (9) 
 
Hence, if β1 = .. = βm, then c

0
, c

1
 and c

2
 are constants. Then, because c

2 
> 0 and c

0
 < 0, it follows 

that f(λj) has exactly one positive root λ*j, for i=2..m. Therefore, the hyper-planes vj = λ*j v1 
(i=2..m) are solutions of Eq. (1), when β1=..=βm. Using the first equation in Eq. (1), we can show 
that on the intersection of the m – 1 hyper-planes, the dynamics are described by a logistic 
equation: 
��+
�� = ���	� �� ��E∗��

��� � (1 − 	�) − ��	� ,      (10) 

where λ*1 = 1.  
 
This concludes the proof of the theorem. 
 
 
3. CALCULATION METHOD IN DETAIL FOR TWO SUBPOPULATIONS 
In this section, the least complex heterogeneous situation is explored in more detail. By filling in 
m=2 in Eq. (8) it follows that:   
 
h(v)=R1R2v

2+(R1+R2 – R1R2)v+1 – n1R1 – n2R2=0.      (11) 
 
The method always yields a solution for v, since in Eq. (11) the discriminant d > 0. For two 
subpopulations with parameters {n1, n2, R1, R2} d is calculated as: 
 
d=R1

2R2
2+(R1 – R2)

2+2R1R2(R1 – R2)(n1 – n2).      (12)  
 
We know from Theorem 1 that for n1R1+n2R2≤1 system (4) with m=2 the virus dies out, i.e.  
v=0 is the global attractor. Hence we only consider the case n1R1+n2R2>1. Then, because h(0)<0 
and h(1)>0, it follows that there is a unique solution 0<v<1 for Eq. (11). A simple calculation 

shows that the only solution satisfies 	 = 6+6LM6+M6L7√�
I6+6L . 

Next, we will show that for Eq. (4) with m=2, under the condition n1R1+n2R2>1, the steady state of 
v corresponds to a stable equilibrium point of the system in Eq. (4). 
 
It follows from the analysis above that for n1R1+n2R2>1 system (4) with m=2 has an equilibrium 
point located in the region A={(v1, v2) | 0<v1<1, 0<v2<1}. 
We know from the proof of Theorem 1 that for n1R1+n2R2>1 the origin has an unstable manifold 
entering A, while trajectories of the system can never leave the region A. Therefore, by 
application of the Poincaré-Bendixson theorem [12] on A, the ω-limit set for system (4) for m=2, 
can be either an equilibrium point or an isolated periodic orbit. To rule out the existence of 
periodic orbits for system (4) with m=2, we can use the Bendixson-Dulac criterion, see [12]. In 
fact, because periodic orbits cannot intersect v1=0 or v2=0, we can use the Dulac function  
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O(	�,	I) = �
�+�L which leads to 

P(QRS+RT )
P�+ + P(QRSLRT )

P�L = −(����0�	�I	I + ���I0�	II + �I��0I	�I + �I�I0I	�I	I)O U 0.  (13) 

 
Therefore, the system in Eq. (4) with m=2 has no periodic orbits and hence the equilibrium point, 
corresponding with the steady state v, is globally stable. 
 
Next, we will assess the impact of the fraction nodes of type 1, i.e. n1, on the value of v, i.e. the 
fraction of infected nodes. From Eq. (9) it is easy to verify that 

 
P�
P�+ =

6+M6L
√� .          (14) 

 
Hence v is always a monotonic function of n1, unless R1=R2, which corresponds to the 
homogeneous case. Figure 1 depicts several possibilities for the case R2=2. 
 
For n1=0, the homogeneous case were all nodes belong to type 2, the fraction of infected nodes v 
equals 1–1/R2=0.5. For the case R1>R2, according to Eq. (14), v increases monotonically with n1 
hence for this case the homogeneous case n1=0 gives the least number of infected nodes.  
 
Clearly, R1=R2 is the homogeneous case with v=0.5. 
 
If 1<R1<R2 then v decreases monotonically with n1, while for n1=1 it holds that v>0. Hence for this 
case the homogeneous case n1=1 gives the least number of infected nodes. Finally, if R1<1 then 
v decreases monotonically with n1 while for n1=1 it holds that v≤0. Hence for this case the optimal 

situation, where the virus dies out, occurs from �� = 6LM�
6LM6+ onwards. 

 

 
FIGURE 1: The Steady State of v as a function of n1 

 

 

We would like to stress once more, that our model is more general than previous models, see 
e.g. [2], [4], [7, [8], [11], because none of these models can deal with heterogeneous spreading 
rates. As a simple example, consider the case with two malware populations, with n1 = 0.7,  β1 = 
0.4, δ1 = 1 and n2 = 0.3,  β2 = 0.05, δ2 = 1, where every node has four neighbors, i.e. k = 4. If we 
would want to apply the results of [2], [4], [7, [8], [11], and we would use for the spreading rate β 
the mean of β1 and β2 , then the effective spreading rate would become 0.225, which is below the 
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epidemic threshold 1/k = 0.25. However, applying our, more accurate model, we arrive at the 
conclusion that the malware persists, because n1 β1 + n2 β2 = 0.295 > 0.25 = 1/k.  

 

4. SPECIAL CASE #1: MALWARE RESERVE 
In this section we consider the case that subpopulation #2 has no defense against malware, i.e. 
δ2=0, or equivalently, R2=∞. Then it follows from Eq. (1) that in steady state, the whole 
subpopulation #2 is infected, i.e. in steady state v2=1 holds. 
Using Eqs. (2), (5) and taking lim R2→∞, it is easy to show that the steady state fraction of 

infected nodes v satisfies 	 = 6+M�7V6+L7I(�+M�L)6+7�
I6+ . 

 

 
FIGURE 2: Steady state v for the case δ2=0 

 
Figure 2 shows the steady state v as a function of R1, for different values of n2, the fraction of 
nodes that belong to the malware reserve. We observe that the whole population benefits if the 
size of the malware reserve is decreased. We also see that even if subpopulation #1 has 
adequate protection against malware (i.e. R1<1), they still become infected because of the lack of 
security for subpopulation #2. For instance, if R1=0.5 and n2=0.2, then in steady state 13% of 
subpopulation #1 is infected. This is easily verified from Figure 2 and the equality v=n1v1+n2, 
which holds for δ2=0. 
 
5. SPECIAL CASE #3: DIVERSIFICATION AGAINST MALWARE  
In this section we consider the case that subpopulation #2 is immune for malware infections, i.e.  
β2=0, or equivalently, R2=0. Then it follows from Eq. (1) that in steady state, the whole 
subpopulation #2 is uninfected, i.e. in steady state v2=0 holds. 
Using Eq. (12) with R2=0 it follows that the steady state fraction of infected nodes v satisfies 
	� = 1 − �

�+6+ ; 	I = 0 → 	 = �� − �
6+.       (15) 
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FIGURE 3: Steady state v for the case β2=0 

 
Figure 3 shows the steady state v as a function of R1, for different values of n1, the fraction of 
nodes not immune to the malware. We observe that the whole population benefits if the size of 
the immune population increases. We also see that in case of an immune subpopulation, there 
exists a threshold value for the basis reproduction number R1, below which the virus dies out. It is 

clear from Eq. (15) that this threshold value satisfies 0� = �
�+. 

This threshold value for R is the minimum value necessary to “sustain” an infection level above 
zero in that compartment. The lower the threshold value, the more malware is able to match it. In 
Table 1 the threshold value (R) was calculated for popular software using market shares [13]. In 
this example, the software for which the most malware is expected is MS Windows, MS Office, 
MS Internet Explorer and Mozilla Firefox – in that order. However, market share statistics vary to 
much to draw explicit conclusions based on the numbers presented. 
 
6. CORRELATING SECURITY MEASURES WITH MODEL PARAMETERS 
Like all models, the SIS model is an approximation of reality. It should be applied with care and 
respect for its limitations and premises. One of its limitations is that it is necessary to assume that 
the population is completely symmetrical, i.e. the different nodes are distributed evenly in the 
network. 
 

Platform 
Software 

Platform 
Market 

Share 3Q10 
Threshold 

R Remark 
Webclient Windows 0,8821 1,13  
Webclient MacOS 0,0682 14,66  
Webclient Linux 0,0108 92,59  
Webclient Symbian 0,0021 476,19  
Webclient Blackberry 0,0045 222,22  
Webclient Other 0,0323   
Webbrowser IE 0,4622 2,16  
Webbrowser Firefox 0,2992 3,34  
Webbrowser Chrome 0,1240 8,06  
Webbrowser Safari 0,0555 18,02  
Webbrowser Opera 0,0193 51,81  
Webbrowser Other 0,0398   
Office Suite MS Office 0,8800 1,14 (Dutch market share only) 
Office Suite OpenOffice 0,0800 12,5 (Dutch market share only) 
Office Suite Wordperfect 0,0090 111,11 (Dutch market share only) 
Office Suite Other 0,0310   

TABLE 1: Calculation Example of Threshold Values for popular Software 
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In its simplest, homogeneous form, the value of the single set of parameters of the SIS-model (β, 
δ, R) are determined by the effectiveness of security measures taken by the defenders and the 
attempts of the attackers to outsmart them (see Table 2). 
 

 Cyber Defense (Reduce R) Cyber Attack (Increase R) 

β 

Prevent malware infection: 
• Intrusion prevention system, firewall, 

heuristic AV software for on-access scanning 
• “white-list” software, USB media, e-mail 

content, web content to download 
• Configuration: restrict user rights, harden 

systems, sandboxing, good passwords 
frequently changed,... 

• Separate compartments: network, software, 
user rights, encrypted files 

• Good procedures for changes / updates 
• Invest in knowledge and awareness 
• Better, less vulnerable software 
• Preventive security audits 
• Legal software for employees @home 

Increase risk of infection by malware: 
• IP / MAC address spoofing 
• Multiple attack patterns in malware 
• Web site offers customized malware 
• Domain Generation Algorithms (DGA) 
• Social engineering, imitation of legitimate 

software, e.g. AV software 
• Malware on trusted sites 
• Sharing / stealing knowledge, source code 
• Commercial and freeware Malware kits 
• Fuzz testing of software for vulnerabilities 
• Testing malware with security software 
• Stealth malware, encryption, code 

obfuscation 
• Massive and rapid spread of malware 

(reverse engineering of patches?) 
• Targeted malware, APT (“precision ammo”) 

δ 

Improve disinfection (detection+correction): 
• Multiple AV packages for scheduled scans 
• Intrusion Detection System, logging 
• Management procedures for incidents and 

changes, including an Incident Response 
Plan 

• Invest in knowledge and awareness 
• Postmortem security audits 
• Periodically re-install clean software image 

on all PC’s 

Reduce loss of infected computers: 
• Root kits, anti-virtualization techniques, 

disable security software and update 
mechanisms 

• Encryption, remove trace data, multiple 
layered code obfuscation 

• Malware self-activation / self removal under 
certain conditions 

• Malware updates faster than AV 
• Patching of infected computers (!) 
• Continuity plan for botnet, e.g. rotating web 

servers, integrate infected computer in >1 
botnets, bullet proof hosting of C&C servers 

• Imitation behavior of legitimate software 

TABLE 2: The Battle Between Cyber Attack and Cyber Defense 
 
The infectivity of different occurrences of malware may vary widely, depending on the knowledge 
of the attacker and the purpose of the malware. For this moment we neglect the differences 
between malware samples, because we like to focus on the protective measures of the 
defenders. The infectivity of all malware is then considered to be equal. 
When individuals or organizations use different security measures, the parameter (R) is likely to 
differ. For instance, if one organization prohibits the user to install software, this will reduce the 
risk of infection considerably. 
 
Correctly estimating the corresponding value of the parameter (R) from the operational security 
measures is difficult. The Eurostat Newsrelase of Feb 8, 2011 presents a list of statistics on 
Internet security of the EU countries in 2010. 
 
One of the statistics was the percentage of individuals who reported that they caught a computer 
infection resulting in loss of information or time using the Internet in the 12 months prior to the 
survey. Another statistic was the percentage of individuals who used the Internet in the last 12 
months and stated that they used IT security software to protect their private computer and data. 
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FIGURE 4: Correlating the usage of security software and percentage of infections 

 
After deleting the incomplete data entry of Romania, both statistics were plotting against each 
other using an XY diagram (see Figure 4). When we treat this population as homogeneous, the 
lowest value of 14 percent infections and highest value of 58 are far off the mean value of 33.45. 
The usage of security software vs. the (resulting) percentage of infections seems a clearcut case, 
but the data shows little correlation - the trend line shows an R

2
 value of 0.12. With a total 

variance of 100.54 for 29 countries, this model's accuracy is low. 
 
We can decrease the total variance by introducing subpopulations with their own mean values. 
Sorting the list of countries using the percentage of infection, we can divide the population in a 
group of leaders and a group of laggards. We have determined that the minimal variance of the 
total population is 41.29 when the group of leaders consists of 22 countries (mean value is 29.14) 
and the group of laggards consists of 7 countries (mean value is 47.0). 
 
Interestingly, the higher accuracy has little influence on the correlation per subpopulation between 
the usage of security software vs. the resulting percentage of infections; in fact, for the group of 
laggards, the correlation line shows that the higher the usage of security software is, the higher 
the resulting percentage of infections becomes. A possible explanation is that security software is 
necessary to detect malware infections and that the laggards are more often tricked in using 
bogus anti-virus software, which in fact is malware. However, even the correlation in the leaders 
group has dropped to 0.06, so the usage of security software seems to be a poor predictor of the 
resulting percentage of infections. 
 
7. CONCLUSIONS 
We have introduced a new method to calculate the steady state for heterogeneous populations. 
Based on analysis of this method, we think that a heterogeneous model can be accurately 
matched with a logistic function. We can also predict that either a minimal or maximum value of 
the infected fraction of the population occurs when the heterogeneous population becomes 
homogeneous. Thus, when the security level of the least secure group increases or the fraction of 
this group decreases, the whole population benefits from this. 
 
The analysis also reveals that a minimum occurs when the population ceases to be a mono-
culture, i.e. not every node shares the same vulnerabilities for malware. More diversity is an 
effective measure against the propagation of malware. Although all separate compartments can 
attract malware, the existing measures become more effective and the total level of infections is 
less that in a similar population which all use the same hard- and software. The opposite is also 
true: the bigger a mono-culture is, the less infectious malware has to be to persist. 
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Finally, we like to suggest some directions for future research. First of all, since it has been 
proven difficult to correlate model parameters of the (heterogeneous) SIS model to the use of 
security software, future research can be directed to derive realistic parameter values for other 
(clusters of) security measures. Secondly, our presented model assumes a static topology, 
whereas in real-life, computer networks are changing in time. In line with [10], where 
homogeneous virus spread for dynamic networks is considered, we suggest to generalize our 
results for heterogeneous malware populations to dynamic networks. Finally, although our 
heterogeneous model incorporates different infection and curing rates per subpopulation (βi, δi, 
Ri) , our results depend on the assumption of a form of complete symmetry in the network, i.e. 
every node is connected to the same fractions of nodes from each subpopulation. More research 
is needed to reveal how the results are influenced when this symmetry assumption is dropped.  
 
8. REFERENCES 
[1] MessageLabs Intelligence. “2010 Annual Security Report”, December 7, 2010 

http://www.inteco.es/file/27gHxrzWsYyeyRTFYq8MuQ [2012-10-05]  
[2] J.O. Kephart and S.R. White. “Direct-graph epidemiological models of computer viruses”, Proc. 

IEEE Computer Society Symposium on Research in Security and Privacy, pp. 343-359, 1991. 
[3] R. Pastor-Satorras and A. Vespignani. “Epidemic Spreading in Scale-Free Networks”, Physical 

Review Letters, Vol. 86, No. 14, April, 3200-3203, 2001. 
[4] A. Ganesh, L. Massoulié and D. Towsley. “The Effect of Network Topology on the Spread of 

Epidemics”, Proc. IEEE INFOCOM.05, Miami, 2005. 
[5] N.T.J. Bailey. “The Mathematical Theory of Infectious Diseases and its Applications”, London:  

Charlin Griffin & Company, 2nd ed., 1975. 
[6] D.K. Daley and J. Gani. “Epidemic modelling: An Introduction”, Cambridge University Press, 1999. 
[7] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. “Epidemic spreading in real networks: An 

eigenvalue viewpoint”, IEEE Computer Society, 22nd International Symposium on Reliable 
Distributed Systems (SRDS’03), pages 25—34, Los Alamitos, CA, USA, 2003. 

[8] P. Van Mieghem, J. Omic, and R.E. Kooij. “Virus spread in networks”. IEEE/ACM Transactions on 
Networking, 17(1), 1-14, 2009. 

[9] Y. Wang and C. Wang. “Modeling the Effects of Timing Parameters on Virus Propagation”. ACM 
Workshop on Rapid Malcode, Washington, DC, Oct. 27, 2003. 

[10] T. Gross, C. Dommar D’Lima and B. Blasius. “Epidemic dynamics on an adaptive network”, 
Physical Review Letters 96, 208701–4, 2006. 

[11] J. Omic, R.E. Kooij and P. Van Mieghem. “Heterogenous protection in regular and complete bi-
partite networks”, Proc. of Networking 2009, Aachen Germany, 11-15 May, 2009. 

[12] J. Guckenheimer and P. Holmes. “Nonlinear oscillations, dynamical systems, and bifurcations of 
vector fields”, New York: Springer, 1983 

[13] See for market share used (OS, Browser and Office software) [2012-05-20]:  
http://marketshare.hitslink.com/operating-system-market-share.aspx?qprid=8;  
http://marketshare.hitslink.com/browser-market-
share.aspx?qprid=0&qpcustomd=0&qptimeframe=M&qpsp=155;  
www.webmasterpro.de/portal/news/2010/02/05/international-openoffice-market-shares.html 
 

 
 


