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Abstract

The cascading failure phenomenon in a power grid is related to both the structural as-
pects (number and types of buses, density of transmission lines and interconnection of com-
ponents), and the operative state (flow distribution and demand level). Existing studies most
often focus on structural aspects, and not on operative states. This paper proposes a new
metric to assess power network robustness with respect to cascading failures, in particular
for cascading effects due to line overloads under targeted attacks. The metric takes both the
effect of structural aspects and the effect of the operative state on network robustness into ac-
count, using an entropy-based approach. IEEE test systems and real world UCTE networks
are used to demonstrate the applicability of this robustness metric.

Keywords: Cascading Failures, Robustness, Complex Networks, Power Grid, Entropy,
Metric

1 Introduction
The electric power grid is indispensable in today’s society. The large dependency in developed
countries on the electric power necessitates a great reliability and availability of the electric
power grid. Although careful control and management of the power grid greatly limits the risk
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of failures, analysis of 15 years of blackout data by the North American Electrical Reliability
Council (NERC) reveals that blackouts exhibit a power law distribution suggesting that large
blackouts are much more likely than expected [12]. Accordingly, Chen et al. [8] show that the
US power transmission grid suffered more than 400 major blackouts between 1984 and 1999,
causing economic cost in the order of tens of billion dollars per year. For example, in 2003, the
North-Eastern and Mid-Western United States and, South-Eastern Canada suffered a catastrophic
blackout leaving 50 million people without power for up to several days [24]. A more recent
example is the large blackout in Brazil in 2009 that left 40% of the country without power for up
to five hours [9].

Post-mortem investigations of blackouts reveal that major blackouts are mainly due to suc-
cessive malfunctioning of a large set of dependent components that are often triggered by an
initial disturbance (e.g. lightning, natural disasters, contact between vegetation and conductors
and human error) [3, 25]. In a scenario of cascading failures due to line overloads, failure of any
single transmission line changes the balance of power flow and leads to a global redistribution
of flows across the grid. Global redistribution of flows, in turn, lead to overloaded transmission
lines. Circuit breakers trip these overloaded lines when they reach their maximum flow limits
(due to thermal, stability or voltage drop constraints) and new overload failures follow. This
cascading process may stop after a few steps but it can also propagate and leave a considerable
part of a network without power.

To counter this effect, the problem of cascading failures has to be analysed from the point
of view of the system level and from the perspective of the global network [1, 22]. Recent
advances in the field of complex networks theory [31, 4] have shown the promising potential of
the complex networks approach to model and analyse power networks at the system level.

This paper proposes a metric that quantifies robustness of a power transmission grid with
respect to cascading failures by targeted attacks. A power grid is considered to be a complex
network, and the electric power the physical quantity flowing through it. Steady-state operation
and cascades due to line overloads are considered. The rest of this paper is organized as follows.
Section 2 provides an overview of literature on modelling and quantifying cascading failures
and robustness in power networks. Section 3 explains how cascading effects in a power grid are
modelled by using a complex networks approach. Section 4 introduces the robustness metric
based on the model proposed in Section 3. Section 5 applies the proposed robustness metric on
different use cases and analyses their robustness. The paper ends with a discussion, conclusions
and suggestions for future work.

2 Cascading Failures in Power Grids
Power grid robustness, including the cascading failures phenomenon, is an active field of re-
search. Most contributions from the literature are based on modelling and analysing cascad-
ing effects in power networks using complex systems approaches [12, 8, 11, 30]. In addi-
tion [19, 10, 17], authors also deploy complex network theory where the power grid is considered
as a complex network in which electricity is exchanged between nodes through the shortest or
most efficient path. The cascading failure mechanism is simulated in the resulting models of
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power grids. In these approaches, the load of a particular component is modeled by between-
ness centrality [27], that equals the number of shortest paths from all nodes to all others that
pass through that component. The capacities of individual transmission lines are assumed to be
proportional to their initial loads with a modelling parameter, namely, the network tolerance pa-
rameter α (See Eq. (6) in Sec. 3.3 for details). In [19] and [17] the damage of cascading failures
is quantified in terms of the relative size of the giant component [27] while in [10] it is measured
in terms of the decrease in network efficiency [18]. In contrast to these more theoretical studies,
Kinney et al. [15] have deployed the model proposed in [10] to simulate cascading failures in the
North American power grid. They assess network robustness with respect to cascading failures
for different tolerance parameter values in targeted- and random failure scenarios, while Wang et
al. [30] investigate the robustness of the Western United States power grid under different attack
strategies.

In addition to these cascading failure modelling studies, other studies address the problem of
locating the most important components in the network so that these components can be backed
up in emergency cases to avoid overloading of these components [18, 19, 20]. Although there
is substantial literature on understanding/analysing cascading failures in power networks, and
increasing network survivability, little attention has been paid to quantifying network robustness
with respect to cascading failures. To the best of our knowledge, Youssef et al. [33] and Bao et
al. [3] are the only studies that propose metrics to measure network robustness with respect to
cascading failures induced by random failures, and there is no metric yet to quantify network
robustness against cascading failures under targeted attacks. The robustness metric in [33] de-
pends on the probability of link survivals as well as the depth of the cascading failure, while
Bao et al. [3] deploy the entropy of global load distribution as an indicator of the size of cascad-
ing failures. However, the computation of these metrics for a power grid necessitates substantial
computational time because it requires simulating a cascading failure in a power grid. This makes
it very challenging to deploy these metrics as real-time measures based on which the grid can be
dynamically optimized.

Two aspects are of importance in determining the cascading failure robustness of a power
network: (i) the structure and (ii) the operative state of a network. The structure of a network de-
fines the interconnection of the components (i.e. topology) together with their specific attributes
(e.g. electrical characteristics and maximum flow limits of transmission lines). The operative
state of a network relates to how homogeneously load flow is distributed across a network and
how heavily a network is loaded. The structure of a network is mainly static while the operative
state is continuously changing depending on the loading profile in the network. This dynamic
character of the operative state makes cascading failure robustness of power networks also dy-
namic. This means that a power grid can be assessed to be very robust at time t, while a new
operative state (e.g. due to a new loading profile) at time t + k can make the same grid to be
critically vulnerable.

Although the importance of the operative state on cascading effects is emphasized by numer-
ous researchers [19, 10, 17, 6], existing studies [5, 6] attempt to assess the power grid robustness
for cascading failures relying solely on the structural properties of a network. This paper pro-
poses a robustness metric, that, in contrast to the existing studies, takes both relevant aspects into
account: the structural properties and the operative states when determining network robustness.
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This paper extends the previous work [16], that presents the initial concepts of RCF . In [16],
Koç et al. focus on validation of the robustness metric. This paper elaborates on the modelling of
cascading effects in power grids and application of the robustness metric on different use cases
including the IEEE test systems and real world transmission grids.

3 Modelling Cascading Failures in Power Grids
This section models cascading effects due to line overloads in power networks using a complex
networks approach. This requires modelling a power grid as a graph, estimating line flows across
the grid by using direct current (DC) load flow analysis [13, 26], modelling cascading effects in
the grid and finally quantifying the damage caused by cascading failures.

3.1 Modelling power grid as a graph
This paper models a power grid as a graph to analyse the cascading effects due to line over-
loads. A power grid is a complex interconnected network, composed of three functional parts:
generation, transmission, and distribution. Power is provided from generation buses to distribu-
tion stations through transmission buses that are inter-connected to each other via transmission
lines. In a graph representation of a power grid, generation, transmission, distribution buses,
substations and transformers are represented by nodes. Transmission lines are modelled as links.
Fig. 1 and Fig. 2 illustrate the single-line diagram and the graph representation of IEEE 30 bus
system [14] consisting of 30 bus bars and 41 transmission lines.

3.2 Estimating line power flows: DC load flow equations
The power flow in a grid is controlled by its physical properties: impedances, voltage levels
at each individual power station, voltage phase differences between power stations and loads
at terminal stations. Power flow equations estimate the flow values for each component in the
network. Alternative current (AC) power flow equations are non-linear equations that model the
flows of both active and reactive powers, while DC load flow equations are a simplification and
linearisation of AC power flow equations that consider only the flow of active power [13, 26].
Throughout this paper, DC load flow analysis is performed to estimate the flow values across the
network because AC load flow analysis may not converge when the lines and generators trip and
it introduces significant complexity in the model [3]. In the AC model, the active power flow fij
through a transmission line lij connecting node i and node j is related to complex voltage at both
nodes i and j and impedance value of the line lij as follow [26]:

fij =
|Vi||Vj|
zij

sin(θij) (1)

where |Vi| is the voltage amplitude at node i, θij is the voltage phase difference between node
i and node j, and zij is the impedance of transmission line lij . The above non-linear equation is
linearised by the following assumptions:
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Figure 1: Single-line diagram of IEEE 30 buses test case

Figure 2: Graph representation of IEEE 30 buses test case topology

• reactive power balance equations are neglected;

• all voltage magnitudes are considered to be 1 p.u.;

• line resistance is ignored so that line impedance equals line reactance zij ≈ xij;

• voltage phase differences are very small so that sin(θij) ≈ θij .
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These assumptions make DC load flow analysis seven to ten times faster compared to AC
load flow analysis. On the other hand, DC assumptions introduce 5% error in the systems and
constrain the model to be used only in high voltage transmission grids [21]. By incorporating the
above assumptions in Eq. (1), the DC power flow equation is obtained:

fij =
θij
xij

= bijθij (2)

where bij is the susceptance of line lij . The entire system can be modelled solely by using
the following linear equation:

Pi =
d∑

j=1

fij =
d∑

j=1

bijθij (3)

where Pi is the real power flow at node i and d is the degree of node i. In terms of matrices,
Eq. (3) can be rewritten as:

P = Bθ (4)

where P is the vector of real power injections, θ contains the voltage angles at each node, and
B is the bus susceptance matrix in which Bij = − 1

xij
and Bii =

∑d
j=1−Bij . Since the losses in

the system are neglected, all active power injections are known in advance. Hence, given the bus
susceptance matrix B, the voltage angles at each node can be calculated directly by using:

θ = B-1P (5)

After obtaining the voltage angle values at each node, power flow values through each line
can be computed using Eq. (2).

3.3 Modelling cascading effects due to line overloads
A cascading effect in a power grid can be induced in different ways including instability of
voltage and frequency, malfunctioning of protection system, and overloads. This paper focusses
on cascading effects due to line overloads. The capacity of a line is defined as the maximum
power flow that can be carried by the line. This paper assumes that the maximum capacity of
line i, Ci, is proportional to its initial load Li(0). A tolerance parameter of line i, αi, relates Ci

to Li(0) as:

Ci = αiLi(0) (6)

To simulate a cascading failure, the line-to-be-attacked is removed from the topology. Once a
line is pruned, its flow is distributed over its neighbours. This simulation assumes that the excess
power is distributed over all available adjacent lines based on their initial load [29]. Distribution
of the excess power may cause overloading of other neighbours resulting in disconnection of
these lines by circuit breakers. This paper focuses on line failures due to cascading effects and
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not on node failure as a result of overload. Power carried by the newly failed lines is also
redistributed. This procedure continues until no more lines are overloaded. For the sake of
simplicity, this paper assumes a deterministic model for line tripping. A circuit breaker for line
l trips at the moment the load of the line l exceeds its maximum capacity. Furthermore, no
mitigation strategies are deployed to alleviate the cascade process.

3.4 Quantifying the damage by cascading effect
After a cascading failure occurs, the survivability of a network against cascading failures is
quantified empirically by the metrics Demand Survivability (DS), Link Survivability (LS) and
Capacity Survivability (CS). DS is the fraction of the satisfied power demand after a cascading
failure occurs in a network. LS is defined as the fraction of lines that are still in operation after a
cascading failure, whereas CS is formulated as the fraction of the capacity of these operational
lines. A line is considered to be operational if it is not tripped by its protection mechanism
and if it is not disconnected and isolated from generators so that it still delivers power after the
cascading failure. LS and CS are given in Equation (7) and Equation (8). L and C stand for the
total number of links and the sum of the capacity of these links in the original network before the
cascading failure while L′ and C ′ are the new values after the cascading failure.

LS =
L

′

L
(7)

CS =

∑L
′

i=1Ci∑L
j=1Cj

(8)

DS, LS and CS are simulation-based metrics quantifying power network robustness empiri-
cally. They are computed off-line and require substantial computational power and time for large
networks, unlike the proposed robustness metric RCF (See Sec. 4). DS, LS and CS are used to
validate RCF in Sec. 5.2 and in Sec. 5.3.

4 Robustness Metric
The proposed robustness metric RCF relies on two main concepts: electrical nodal robustness
and electrical node significance. This section elaborates on these new concepts and explains the
computational algorithm with which to calculate the robustness metric value.

4.1 Electrical nodal robustness
The robustness metric this paper introduces is an aggregate of local robustness values that indi-
cate electrical nodal robustness. Electrical nodal robustness quantifies the ability of a node to
resist cascades of link overload failures based on the model introduced in Sec. 3. Quantifying
electrical nodal robustness requires both flow dynamics and network topology to be taken into
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account. Three factors are of importance: (i) the homogeneity of load distribution on out-going
links; (ii) the loading level of the out-going links; and (iii) the out-degree of the node.
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Figure 3: Different load distribution homogeneities, same node out-degree

50#

50#

100#

A

B

C#

33.3#

33.3#
#

33.3#
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Figure 4: Same load distribution homogeneities, different node out-degree

In Figure 3, the effect of load distribution homogeneity on cascades of link overload failures
is considered in a very simple case to provide a basic intuition about cascading failure robust-
ness. Node A distributes 100 unit of power to nodes B, C, and D. Assuming a network tolerance
parameter α of 2, for a load distribution of 60, 25 and 15 unit power (i.e. capacity of lines A-B,
A-C and A-D are 60 × α = 120, 25 × α = 50 and 15 × α = 30, respectively), a failure in line
A-B results in a load increase of line A-C to 62.5 and A-D to 37.5. New flow values exceed
the maximum capacities of the line A-C (i.e. 50) and A-D (i.e. 30), causing an overload failure
in both lines A-C and A-D. However, if the load is distributed relatively more homogeneously
over lines (e.g. 40, 30 and 30: capacity values for links are 80, 60 and 60, respectively), when
one of the links fails, none of the neighbouring links overloads (none of the line capacities is ex-
ceeded). Consequently, a more homogeneous load distribution across lines increases robustness
with respect to cascades of link overload failures while a relatively heterogeneous load distribu-
tion increases the chance of link overload failure spread. Note that for an increased loading level
of 60%, link overload failure occurs in both of the cases in Figure 3, whereas for a loading level
of 30%, in neither of the cases failure spreads. This shows that there is an inverse relationship
between the electrical nodal robustness and loading level of the network. Finally, the effect of
node out-degree on the electrical nodal robustness is illustrated in Figure 4. In both of the cases,
flow is distributed uniformly over the available paths. However, again for the loading level of
50%, Case 2 is more tolerant to cascade of link overload failures than Case 1. This reflects the
effect of out-degree on the electrical nodal robustness: the larger out-degree a node possess the
higher electrical nodal robustness it has.
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Quantifying the electrical nodal robustness entails incorporating the three factors illustrated
in Figure 3 and Figure 4. To capture the first and the last behaviours a well-known concept from
information theory is used: entropy. Furthermore, the network tolerance parameter α, proposed
in [19], is used to incorporate the loading level of the network. Deployment of entropy for the
electrical nodal robustness computation makes it possible to capture important cascading failure
dynamics. Entropy of a load distribution of a node increases as flows over lines are distributed
more homogeneously and the node out-degree increases. The entropy of a given distribution is
computed by Equation (9):

H =
L∑
i=1

pi log pi (9)

where pi stands for values in the distribution under consideration, while L refers to the num-
ber of the samples in the distribution. Tailoring Equation (9) to the electrical nodal robustness
concept, L refers to the out-degree of the corresponding node, whereas pi corresponds to nor-
malized flow values on the out-going links, given as:

pi =
fi∑L
j=1 fj

(10)

In Equation (10) fi refers to the flow value in line i. When applying Equation (9) to the
cases in Figure 3, the absolute values of entropy are 0.4072 and 0.4729, respectively. Assuming
the same network loading level for each case, these values imply that the second case is more
robust than the first case with respect to cascades of overload failures coinciding with the afore-
mentioned observations. When computing entropy values for the cases in Figure 4, 0.3010 and
0.4772 are obtained for Case 1 and Case 2 respectively. Note that in case of a higher out-degree
and a more homogeneously load distribution, the resulting entropy value becomes larger. This
illustrates how the entropy concept captures topology-and load distribution homogeneity effects
on cascading failure robustness.

The effect of the loading level of the network on robustness is incorporated using the network
tolerance parameter α. The loading level of an arbitrary line i (LLi) is the ratio between the load
and the maximum capacity of the corresponding line. Hence, there is an inverse relationship
between the loading level and the tolerance parameter of a line:

αi =
1

LLi

(11)

Combining Equations (9), (10) and (11), the electrical nodal robustness of a node i (i.e.Rn,i),
which takes both the flow dynamics and topology effects on network robustness into account, is
then defined as:

Rn,i = −
L∑
i=1

αipi log pi (12)

In Equation (12), the minus sign (-) is used to compensate the negative electrical nodal ro-
bustness value that occurs due to logarithm of normalized flow values (i.e. pi).
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4.2 Electrical node significance
Due to the scale-free nature of power grids, some of the buses act as hubs i.e. deal with a relatively
larger amount of power, while other nodes distribute a relatively small amount of power. When
a failure occurs at a link that originates from one of the hub buses, a significant amount of power
is exposed to the remainder of the network. Redistributing this excess power over adjacent
components eventually causes further link overload failures, which potentially results in a large-
scale power outage. Nevertheless, if a failure occurs at a link that is connected to a less important
node, its power is immediately re-routed to adjacent components and the disturbance can, usually,
be suspended. This suggests that nodes have different impacts on the context of cascading failure
robustness and this impact depends on the amount of power, distributed by the corresponding
node. In this paper, impact of a particular node is reflected by electrical node significance (i.e.
δ). Electrical node significance of an arbitrary node i is computed as:

δi =
Pi∑N
j=1 Pj

(13)

where Pi stands for total power distributed by node i while N refers to number of nodes in
the network.
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Figure 5: Electrical node significance distributions (in a sorted fashion) for IEEE 118, WSCC
179 and IEEE 247 bus test systems

Electrical node significance is a centrality measure which can be used to rank the relative im-
portance (i.e. criticality) of nodes in a power grid in the context of cascading failures. An attack
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on the node with the highest δ results, most likely, in the largest cascading effect in the network.
An assessment of different centrality measures (i.e. betweenness centrality, node degree, and
closeness centrality) together with δ shows that an attack strategy based on δ values results in
the largest cascading failures in a grid [28] conforming the effectiveness of δ to anticipate the
criticality of nodes in a power grid. Electrical node significance distribution can be related to
load distribution across the nodes and shows the electrical topology of a network along with how
the importance is distributed over the nodes.

The electrical node significance distributions for IEEE 118, IEEE 247 [14] and WSCC
179 [7] bus test systems, plotted in Figure 5, exhibit a power-law like character for their electri-
cal node significance distributions, with a scaling exponent [32] of 1.7, 2.8 and 2, respectively.
Figure 5 indicates the existence of a few nodes with a relatively heavier load to distribute, lead-
ing to the high heterogeneity among node. This is widely accepted as the substantial incentive
for large-scale cascading failures induced by overload failures [19, 34, 2]. However, note that δ
distribution can not be used by itself to determine the robustness level of a grid, as it does not
include the effects of structural properties on network robustness. For example, in a grid config-
uration, a node can be very critical because of the amount of power that it distributes. However
if the corresponding node has a large out-degree, then the imbalance of node criticality distri-
bution in the grid configuration does not necessarily comprise a vulnerability for the network.
RCF incorporates the effect of structural aspects on network robustness by the electrical nodal
robustness measure.

4.3 Network Robustness Metric
After computing the electrical nodal robustness and node significance values, two different val-
ues are obtained for each node in the network. The product of these two values indicates the
individual contribution of each node to the network robustness. The network robustness metric
calculation is finalized by summing up these individual contributions of each node in the net-
work. The resulting metric RCF , given in Equation (14), quantifies network robustness with
respect to cascading failures in power networks.

RCF =
N∑
i=1

Rn,iδi (14)

The normalized nature of electrical node significance assures that the robustness of power
networks with different size can be compared.

5 Cascading failures robustness analysis of electric power grid:
Case studies

This section applies the robustness metric RCF to different networks to analyse and assess their
robustness with respect to cascading failures. First a radial network is considered and new lines
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Figure 6: Radial network

are added to the original topology to analyse the effect of line adding on network robustness.
Then, robustness of different IEEE test configurations are assessed. Finally RCF is applied on a
real-world network- Union for the Coordination of Transport of Electricity (UCTE) network [23]
- to see how the network robustness evolves by changing operative states.

5.1 Effect of line adding
Adding a line to a grid topology changes the flow distribution across the network and the loading
level of the components in the network. The impact of line adding on network robustness is
explained conceptually by considering a radial network (See Figure 6) consisting of 1 generator
and 21 load buses [6]. The generator bus (i.e. Bus 1) feeds load buses through a line topology
containing 21 transmission lines. All of the load buses and transmission lines have the same
properties (i.e. demand and impedance values-line capacities). The radial network is the base
network configuration, and new lines are added progressively one at a time. Accordingly, first, a
line is added between nodes 1-22 and its impact on average electrical nodal robustness and the
network robustness RCF is assessed. Then another line is added between nodes 2-21 and again
the assessment on robustness metric is done. This is repeated until the last line is added between
nodes 10-13. Dashed lines in Figure 6 show the added lines.

Initially, in the base case, the electrical nodal robustness at each node is zero because there
is no redundancy at any node, and any failure at any node causes disintegration of the network
leaving the remainder of the network without power. Consequently, robustness of the network
is also zero (See Eq. 14). Effect of progressive line adding on the electrical nodal robustness
average and overall network robustness is shown in Fig. 7.

Adding a line to the base case results in an increase in node out-degree and a decrease in
loading level of transmission lines causing a improved electrical nodal robustness in the network.
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Figure 7: Effect of line adding on network robustness for a radial network

As a consequence, the overall network robustness RCF also increases. Fig. 7 shows that there
is an approximate quadratic relationship between the number of lines added and overall network
robustness metricRCF . On the other hand, the electrical nodal robustness average increases more
steeply when more lines are added progressively. The difference in the electrical nodal robustness
and RCF behaviours is due to the electrical node significance behaviour. Fig. 7 suggests that
the more lines are added to the original radial network, the higher network robustness gain is
achieved.

5.2 Robustness assessment of different IEEE test systems under targeted
attacks

This subsection applies the robustness metric (RCF ) on different test systems with a different
topology and different operative states. The data required for the robustness metric analysis
includes the admittance matrix of the network, the number of buses, their types and finally their
generation capacity and load values. The IEEE test systems include all of these data. In this paper
the IEEE 57, 118, and 247 [14] buses test systems are considered for robustness assessment.
Following the computational algorithm given in Sec. 4 the robustness levels of these test systems
are computed usingRCF . Subsequently, a cascading failure is simulated in these test systems and
their robustness levels are quantified empirically (following Sec. 3.3 and Sec.3.4, respectively)
to assess whether RCF can anticipate the network robustness. A cascading failure in a network
is induced by attacking the most important outgoing link (i.e. most heavily loaded outgoing link)
from the most critical node (i.e. the node with the largest δ) in the network. Removal of this link
results in a cascading failure for the power network, which relates directly to the robustness of the
power network with respect to targeted attacks. The lines-to-be-attacked in the IEEE 57, IEEE
118 and IEEE 247 buses test systems are determined as l1−15, l89−92, and l1−43, respectively.
After simulating a cascading failure in the test systems, following the computational algorithm
in Sec. 3.4, Link Survivability (LS) and Capacity Survivability (CS) are computed for the test
systems.
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Table 1: Robustness metric (RCF ), LS and CS values for IEEE 57, IEEE 118 and IEEE 247 bus
test systems.

Network RCF LS CS
IEEE 57 0.6351 0.5256 0.7508
IEEE 118 0.6806 0.8659 0.8990
IEEE 247 0.4875 0.0430 0.0517

Table 1 shows the computed RCF and empirically-determined LS-CS values. RCF suggests
that IEEE 118 buses test system is the most robust system with respect to cascading failures
amongst other configurations, while IEEE 247 buses test system is the least robust one. Robust-
ness assessment by simulation-based LS and CS values has the same results verifying the ability
of RCF to anticipate the network robustness.

The result of robustness assessment can be justified by taking a closer look to the topology of
IEEE 247 test system. In IEEE 247 buses test systems, as also can be seen in Figure 5, criticality
is distributed very heterogeneously across the network. This is because one node (i.e. Node
1) dominates generation in the configuration resulting in a relatively more heterogeneous load
distribution over the network. Another pitfall of the configuration is that Node 1 is connected to
the rest of the network very weakly (out-degree of Node is 1). Consequently, any attack on this
single line isolates the most important node from the rest of the network reducing the generation
in the network drastically. This context-based and topological weaknesses are captured by the
robustness metric RCF and IEEE 247 buses configuration is assessed as the least robust network.

Note that this assessment of test topologies holds for the given loading profile of the net-
work. For a different loading profile, the order of robustness of the networks can change. This
is because the operative state (i.e. homogeneity of load distribution across the networks and the
loading level of the networks) will change. The effect of operative state on the grid robustness is
investigated thoroughly in Sec. 5.3.

5.3 Evolution of network robustness by new operative states
This subsection applies the robustness metric RCF on a real world network -the interconnected
European UCTE network- with different loading profiles to assess the evolution of network ro-
bustness depending on different operative states. The topology of the network is static while the
operative state is changing because of new loading profiles. The UCTE network consists of 1254
nodes and 1944 links. Three different loading profiles are adopted for the network. The loading
profiles are registered in the year of 2002 and they correspond to a summer (a total demand of
2.49 TW), a winter peak (a total demand of 3.15 TW) and a winter off-peak (a total demand of
2.32 TW ) loading profile [23]. Figure 8 illustrates loading profiles for UCTE network plotting
the bus ID’s versus the demand level at the corresponding bus. In Figure 8, the biggest loads are
observed in clusters of buses with the ID of 542-546 (a cluster of buses in Belgium), 621-629 (a
cluster of buses in the Netherlands) and 800-802 (buses in Germany).

A DC load flow analysis is performed to estimate flow values in the network based on the
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Figure 8: Loading profiles for UCTE network

model introduced in Sec. 3.2. Then following the computational algorithm given in Sec. 4, the
robustness metric RCF for different configurations are computed. Maximum capacity values
of transmission lines are determined based on UCTE summer configuration and these capacity
values are used also in other configurations. In this way, the effect of the loading level on the
grid robustness is included in the robustness level calculation. Table 2 shows the result.

Table 2: Robustness metric (RCF ) values for UCTE network with different loading profiles.
Configuration RCF

UCTE summer 0.5429
UCTE winter off-peak 0.5703
UCTE winter peak 0.4414

Table 2 suggests that the UCTE winter off-peak configuration has the highest level of robust-
ness while the UCTE winter peak configuration is the most vulnerable configuration. The result
is not surprising especially when considering the demand level of each configurations. When
the grid is loaded most heavily (i.e. winter peak configuration), the aptitude of the grid to afford
failures degrades resulting in a vulnerable grid. On the other hand, when the grid has a relatively
lower demand level (i.e. winter off-peak configuration), it becomes more resilient against fail-
ures. This effect of loading level on grid robustness is captured by RCF . To investigate the effect
of load flow distribution homogeneity on the grid robustness, the robustness levels of UCTE con-
figurations are re-calculated. This time all of the configurations are assumed to have the same
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network tolerance parameter α. Accordingly all the grid configurations are assumed to have the
same loading level so that the effect of loading level on the network robustness is ignored. After
computing RCF values, a cascading failures is simulated in each configuration and its robustness
level is quantified empirically so that the theoretical RCF values can be verified. The fraction
of satisfied power (DS) after cascading failures happened is deployed as an empirical metric.
Table 3 shows the result.

Table 3: Robustness metric (RCF ) values and fraction of satisfied demand (DS) after cascading
failures for UCTE network with different loading profiles (effect of loading level ignored).

Configuration RCF DS
UCTE summer 0.4072 0.4434
UCTE winter off-peak 0.4187 0.5040
UCTE winter peak 0.4174 0.4791

RCF values in Table 3 suggests that the UCTE winter off-peak configuration is the most ro-
bust configuration while the UCTE summer configuration is the least robust one. This theoretical
result is confirmed also by the simulation-based DS values. Figure 9 illustrates how the fraction
of satisfied power demand decreases at each stage of the cascading failure. It shows that the
winter off-peak configuration preserves the highest level of power (i.e. most robust), while, on
the contrary, the summer configuration has the highest power loss (i.e. least robust).
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Figure 9: Normalized satisfied power demand per stage of the cascade in each UCTE configura-
tion
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To further the robustness analysis, Fig. 10 illustrates the electrical node significance distri-
butions for all three configurations in a sorted fashion while Table 4 shows the most critical
10 nodes with corresponding δ values for each configuration. In the UCTE summer configura-
tion, criticality is distributed the most heterogeneously amongst others while the winter off-peak
configuration distributes the node criticality most homogeneously. This means that in summer
configuration, very critical node(s) are appearing (e.g Node 627) and an attack on these nodes
can have severe effects making the UCTE summer configuration more vulnerable. On the other
hand, in the winter configurations, the criticality is distributed more homogeneously making the
network more robust against attacks.
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Figure 10: Electical Node Significances Distribution of different UCTE configurations in a de-
scending order

Both Fig. 10 and Tables 3- 4 show that, in a power grid, the cascading failure robustness
and the criticality of nodes in the context of cascading failures change depending on the loading
profile. This suggests that the power grid robustness against cascading failures is dynamic and
increasing this robustness requires reconfiguration/optimization of the grid dynamically.
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Table 4: Top 10 critical nodes in UCTE network for different loading profiles
Summer Winter off-peak Winter Peak

Rank δ Node ID δ Node ID δ Node ID
1 0.0109 627 0.0068 238 0.0085 627
2 0.0076 624 0.0068 535 0.0068 624
3 0.0071 535 0.0068 255 0.0065 829
4 0.0069 829 0.0067 218 0.0065 535
5 0.0066 932 0.0062 624 0.0065 255
6 0.0060 255 0.0062 829 0.0064 238
7 0.0059 623 0.0060 627 0.0063 218
8 0.0058 218 0.0057 486 0.0057 844
9 0.0057 238 0.0057 1122 0.0056 932
10 0.0057 844 0.0055 844 0.0056 486

6 Conclusion and discussion
This paper proposes a metric (RCF ) to assess the robustness of a given power grid with respect
to cascading failures by targeted attacks. A dynamic model of cascading failures in a power grid
is created relying on complex networks theory. A power grid is modelled as a directed graph
and DC load flow equations are used to estimate flow values in the model. The proposed ro-
bustness metric accounts for the effects of structural properties as well as for the effect of the
operative state on network robustness. This is accomplished by two new measures of which RCF

is composed: electrical nodal robustness and electrical node significance. The electrical nodal
robustness deploys an entropy-based approach to model (i) homogeneity of load distribution; (ii)
loading level of the network; and (iii) out-degree of each particular node, while electrical node
significance is a nodal centrality measure quantifying the importance of each node in the context
of cascading failures robustness. The proposed robustness metric is applied on a conceptual ra-
dial network, IEEE test systems, and real-world UCTE network to demonstrate the applicability
of the RCF in different use cases. The effectiveness of RCF in anticipating a power grid cascad-
ing failures robustness is verified by experimental results from the developed model.

In addition to capturing the effect of the operative states on the power grid robustness, another
significant property of the proposed robustness metric is that the computation of the robustness
metric RCF does not require executing computational expensive tasks such as simulation of cas-
cading failures (in contrast to [3, 33]). Moreover the metric can be computed in parallel. This
makes it possible to compute the robustness metric RCF during run-time and to monitor the ro-
bustness level of a grid dynamically. These collective properties of RCF enables it to serve as a
real-time measure based on which the network (flow) can be optimized dynamically by deploy-
ing flow controlling devices (e.g. phase shifting transform devices, thyristor controlled series
capacitor) so that a higher level of robustness can be achieved [20].

18



Future work will focus on (i) determining the upper and lower bounds of the RCF for a given
grid, and (ii) optimizing the grid in a self-organized and distributed manner. After determining
the upper and lower bounds of RCF , a robustness threshold value can be determined for a given
power grid. When the robustness of a grid is lower than the threshold value then the grid can be
intervened. Optimization of the grid implies adapting power flow in the grid dynamically. Within
the context of SmartGrids, dynamically optimizing power flow in the grid based on the proposed
robustness metric RCF has the potential to ensure a higher level of cascading failure robustness
in the network.
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