
A robust throw detection library for mobile games

Eric Rijnboutt
Leiden University

Leiden, The Netherlands
e.h.j.rijnboutt@umail.leidenuniv.nl

Olivier Hokke, Rob Kooij, Rafael Bidarra
Delft University of Technology

Delft, The Netherlands
o.j.hokke@student.tudelft.nl,

r.e.kooij@tudelft.nl, r.bidarra@tudelft.nl

1. INTRODUCTION
Current smartphones offer more and more computational

capabilities and powerful sensors, much of which remains
under-utilized for most of the time. There is an increasing
conviction that this potential can open up a whole new area
of mobile entertainment. To contribute to this, we imple-
mented a variety of throw detection methods that make use
of the accelerometer present within most smartphones, and
investigated them in order to (i) detect relevant key points in
the device’s trajectory and (ii) reliably calculate the throw
height achieved. From this research, we selected the most
robust and precise algorithm, and packed it in a general
purpose library that can be used in all sorts of mobile ap-
plications. In this interactive technical demo, we describe in
some detail the algorithm and its testing process. Finally,
to illustrate the potential and usefulness of this library, we
briefly describe its application in Catchy, a new mobile game
of which the gameplay is based on detecting when, and pos-
sibly how high, you throw your mobile phone in the air.
It provides several single- and multi-player mini-games, in
which the player has to reach certain goals throwing the
device. To the best of our knowledge, Catchy’s gameplay il-
lustrates a novel way of interaction and entertainment using
a popular device of daily use.

2. THROW DETECTION ALGORITHM
Precisely detecting the throw of a mobile phone is not an

easy task. In principle, this could be solved by using a gy-
roscope but, unfortunately, most phones still do not include
a gyroscope. We therefore decided to use the common ac-
celerometer inside the phone to measure accelerations along
its three axes (x, y and z), and use that information to detect
possible throws [3].

We created a small test application that records the values
of the accelerometer during a certain timespan (see Figure
2). With that data we created graphs representing the phone
movements. This gave us valuable insight on the relation be-
tween the different values in the graph and the three crucial

Figure 1: Key-points during a throw.

important key-points of a throw: (i) start of the free fall, (ii)
reaching the top, and (iii) end of the free fall (see Figure 1).

The three key-points were found by looking for the period
in which the phone is in free fall. Once identified, we can
calculate the time between them, and use it in the usual
equation for the covered distance

s =
1
2
· 9, 81 · t2 (1)

to calculate the reached height [2]. Unfortunately, due to
various noise and irregularity issues, finding the precise mo-
ment of the second key-point was not possible. Therefore
we decided to only focus on the total throw duration, and
calculate the reached height using the midpoint of that du-
ration, assuming that the device is caught a the same height
as it was thrown. This disallows distinguishing between the
throw- and fall-height, but that is not critical for most prac-
tical purposes.

Another difficult problem arose when coping with the vary-
ing orientation of the phone: when a phone flips or rotates
in the air, the measurements of the accelerometer are dis-
turbed by centripetal forces, often implying that the throw
key-points are not correctly detected. To solve this problem
without recurring to gyroscopes, we tried several algorithm
variants, including neural networks and fuzzy logic. Eventu-
ally, the fuzzy logic approach appeared to provide the best
solution. Fuzzy logic anticipates on the variable nature of
detected throws. It provides us with quick results and uses
approximate analysis instead of fixed and exact.

The fuzzy logic algorithm identifies throws by checking a
possible throw on several properties, and assigning to them
a ‘fuzzy-value’. Some examples of properties checked are:

• Relation with gravity: during the freefall of the phone,



the acceleromter should measure an acceleratrion of
the device of around 0m/s2. The more the value dif-
fers, the less likely it is that the device is being thrown.

• Maximum of different directions: during an optimal
throw (device in horizontal position, no rotations), the
maximum of the accelerations in the different direc-
tions (x, y and z) is close to 0m/s2. When this maxi-
mum gets bigger, the chance that the device is actually
being thrown gets smaller.

The assigned ‘fuzzy-value’ of each property is multiplied
by a weighting factor. When the weighted sum of these
values is higher than a certain threshold, a throw is recog-
nized; otherwise, it may have been e.g. a fake throw or a
bounce, and it is thus discarded. We implemented another
practical mechanism for preventing bounces to be identified
as throws: setting a clearance time span before and after a
detected throw, where no other throws can occur.

Finally, we also faced and solved an asymmetry prob-
lem: one would expect that the throw-distance and the fall-
distance are the same, but this is mostly not the case (see
Figure 1). We found an exponential relation between total
throw duration, and the ratio between fall-time and total
throw duration. The longer the throw duration, the more
the initial assumption of an equal throw- and fall-distance is
correct. We used this as a postprocessing correction, guaran-
teeing that the height of a throw is also correctly computed
when the device is thrown over short distances.

We validated all our algorithms by recording many throws
with a HD-videocamera in front of a ruler, and compar-
ing the actual height reached and other key measurements
with the results of the algorithm (see Figure 1). Finally, we
packed the throw detection algorithm in a general purpose
library designed to be used in all kinds of applications, as
illustrated by our game Catchy.

3. CATCHY
Catchy is a game for mobile phones, consisting of several

mini-games. All of them are based on precisely detecting
when, and possibly how high, you throw the device in the
air. Several single-player mini-games are incorporated in
Catchy, with the following goals:

• Highest: throw the phone as high as possible.
• Sum: throw a certain total height combining as few

throws as possible.
• Keep up: keep throwing the phone short and fast over

and over.
• Sets: throw a number of times within a given range.
• Quick: quickly throw within successive ranges.
• Exact: successively throw an exact height within a

given time limit.

The game has a multi-player mode as well, in which two
or more players either use the same phone in turns, or com-
pete in one game at the same time. The multi-player games
are:

• Tossing: throw the phone to another player, hoping
the game doesn’t say you’re out!

• Match: match a height thrown by another player, us-
ing as few throws as possible.

• Bomb tossing: throw the phone to the next player as
quickly as possible, before the time bomb explodes!

(a) (b)

Figure 2: Graphical user interfaces of (a) the test
application, and (b) one of Catchy’s mini-games.

These games can also be deployed, for example, like the
game ’truth or dare’, and be used during parties.

The mini-games are designed to challenge a player to throw
a phone, while having fun playing the game. We made it
possible to choose difficulty levels, allowing one to make the
game as hard to play as one wants. The multi-player games
were added to make it possible to play with more players us-
ing only one phone. However, in addition to throwing a cer-
tain height, like the single-player ones, multi-player games
also involve tossing a phone among players. All together,
these mini-games were designed to make Catchy an exciting
game to play more than once, expecially in groups, combin-
ing guts with a lot of fun.

Catchy goes beyond the trivial use of an accelerometer (as
e.g. in games like Teeter) by (i) using its output to detect
free fall, thereby being able to calculate the reached height
of the phone, while away from the player’s hands, and (ii)
requiring player’s catch skills in a rather startling context.
While throwing your valuable device into the air may appear
as slightly risky at first sight, it definitely adds a whole new
experience to playing a game not on but with your phone.

Catchy was developed for Android OS, and makes use of
AndEngine [1], a game engine that has an active community,
and offers much flexibility regarding the visual design. A
short trailer of Catchy showing its main gameplay features
and a feeling of the game can be found at http://goo.gl/
iOJlM. As of May 2013, Catchy is available at Google Play
(temporary reviewer version at http://goo.gl/b0GZ0).

4. REFERENCES
[1] N. Gramlich. AndEngine. http://www.andengine.org,

2012.
[2] Henderson, T. Kinematic equations and

problem-solving. http://www.physicsclassroom.com/
class/1dkin/u1l6c.cfm, 2012.

[3] D. Sachs. Sensor fusion on android devices: A
revolution in motion processing.
http://www.youtube.com/watch?v=C7JQ7Rpwn2k, 2010.


