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Abstract-Cascading failures are the typical reasons of black­
outs in power grids. The grid topology plays an important role 
in determining the dynamics of cascading failures in power 
grids. Measures for vulnerability analysis are crucial to assure a 
higher level of robustness of power grids. Metrics from Complex 
Networks are widely used to investigate the grid vulnerability. 
Yet, these purely topological metrics fail to capture the real 
behaviour of power grids. This paper proposes a metric, the 
effective graph resistance, as a vulnerability measure to de­
termine the critical components in a power grid. Differently 
than the existing purely topological measures, the effective graph 
resistance accounts for the electrical properties of power grids 
such as power flow allocation according to Kirchoff laws. To 
demonstrate the applicability of the effective graph resistance, 
a quantitative vulnerability assessment of the IEEE 118 buses 
power system is performed. The simulation results verify the 
effectiveness of the effective graph resistance to identify the 
critical transmission lines in a power grid. 

I. INTRODUCTION 

The electric power grid is crucial for economic prosperity, 

and national security. Disruptions to electrical power grids 

paralyse the daily life in modern societies causing huge eco­

nomical and social costs for these societies [1]. The strong de­

pendencies of other critical infrastructures such as telecommu­

nications, transportation, and water supply on electric power 

grid amplifies the severity of large scale blackouts [2], [3]. The 

key importance of the electric power grid to society encourages 

further research into sustaining power system reliability and 

developing new methods to evaluate and mitigate the risk of 

cascading blackouts. 

Power grid security is traditionally assessed relying on flow­

based methods (e.g. N -x contingency analysis [4]). The flow­

based methods model the continuous and discrete dynamics 

of the components and solve non-linear algebraic equations 

to determine the electric power flow distribution over the 

grid components. A complete security assessment based on 

flow-based methods requires evaluating a combinatory number 

of contingencies. However, this results in significant compu­

tational complexity and the associated computational time, 

enforcing power systems analysts to seek for alternatives [4]. 

The strong connection between the topology and the ro­

bustness of a grid prompts a vulnerability assessment from a 

topological perspective. The recent advances in the field of 

complex networks [5], [6] reveal its promising potential to 
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investigate power grids vulnerability at the systems level from 

a topological perspective. 

Topological investigation of electrical power grids demon­

strates that power grids belong to the classes of small world [6] 

networks, and they have scale free [5] characteristics, suggest­

ing that power grids have "hub" components having significant 

criticality compared to the rest of the network. These com­

ponents are crucial for the grid [7]. Their removal weakens 

the system robustness significantly, or results in the largest 

possible damage in network performance. Identifying these 

critical components in a power grid is a major concern for 

power system security and attracts significant attention from 

the power system research community [8], [9], [10]. Identi­

fying these critical components in a power grid in advance 

enables power grid operators to improve system robustness by 

monitoring and protecting these components continuously. 

To assess the structural vulnerability of power grids, several 

studies [9], [11], [12] have proposed extended topological 

approaches, while many others [13], [14], [15] have used graph 

theoretical metrics including average shortest path length [16], 

[17] and its derivatives such as efficiency [8]. These purely 

topological metrics consider only the structure of a power 

grid ignoring the electrical properties of the components in the 

network. However, in a power grid, the electric power is not 

governed only by the physical couplings (interconnections), 

but also by the electromagnetic couplings, and it flows through 

the network according to Kirchoff Laws. Therefore, the purely 

topological approaches considering only the topology fail to 

capture the real system behaviour. This paper proposes a 

metric, effective graph resistance, as a vulnerability measure 

to determine the critical lines in a power grid, while differently 

than the existing topological metrics, accounting for the power 

flow allocation according to Kirchoff Laws. 

11. MODELLING CASCADING FAILURES IN POWER GRIDS 

A power grid is a multi-layered network that is composed of 

three functional parts: generation, transmission, and distribu­

tion. Power is provided from generation buses to distribution 

stations through the transmission buses that are all inter­

connected via transmission lines. In a graph representation of a 

power grid, nodes represent generation, transmission, distribu­

tion buses, and substations, while links model the transmission 

lines and transformers. All the parallel transmission lines in the 
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system are represented by an equivalent single link in a graph 

representation. Additionally, the links in a graph representation 

are weighted by the admittance (or impedance) value of the 

corresponding transmission line. 

The electrical properties of a grid including impedances, 

voltage levels at each individual power station, voltage phase 

differences between power stations and loads at terminal 

stations control the power flow in the grid. This paper es­

timates the flow values for each component in the network 

by using linear DC power flow equations [18] which is an 

approximation of nonlinear AC power flow equations [19]. In 

a DC model, the active power flow fij through a transmission 

line lij connecting node i and node j is related to the voltage 

phase values at both nodes i and j and the impedance of the 

line lij as follows: 

Bij 
fij = - = bijBij 

Xij (1) 

where Bij is the voltage phase difference between node i and 

node j, Xij is the reactance, and bij is the susceptance of lij. 
The entire system can be modelled solely by: 

d d 
Pi = L fij = L bijBij 

j=l j=l 
(2) 

where Pi is the real power flow at node i and d is the degree 

of node i. In terms of matrices, Eq. (2) can be rewritten as: 

P=BO (3) 

where P is the vector of real power injections, 0 contains the 

voltage phase values at each node, and B is the bus susceptance 

matrix in which Bij = -X�j and Bii = "L�=1 -Bij. Since all 

the active power injections are known in advance, given the 

bus susceptance matrix B, the voltage phase values at each 

node can be calculated directly by using: 

(4) 

After obtaining the voltage angle values at each node, the 

power flow values through each line can be computed by using 

Eq. (1). 
The maximum capacity of a line is defined as the maximum 

power flow that can be afforded by the line. The flow limit of 

a transmission line is imposed by thermal, stability or voltage 

drop constraints [20]. This paper assumes that the maximum 

capacity CL of a line I is proportional to its initial load LL,in 
by a tolerance parameter O( CL = oLLL,in. 

In a power grid, transmission lines are protected by relays 

and circuit breakers. A relay of a transmission line measures 

state variables (e.g. current), and compares them with a thresh­

old value. When the threshold is violated, and this violation 

lasts long enough, the relay notifies a circuit breaker to trip the 

transmission line in order to prevent that the transmission line 

is permanently damaged due to e.g. overloading. This paper 

assumes a deterministic model for line tripping mechanism. A 

circuit breaker of a line I trips at the moment the load LL of 

the line I exceeds its maximum capacity CL: ILL! CL I > 1. 

An initial outage of a component changes the balance of 

the power flow distribution over the grid and causes a redis­

tribution of the power flow over the network. This dynamic 

response of the system to this triggering event might overload 

other parts in the network. The protection mechanism trips 

these newly overloaded components, and the power flow is 

again redistributed potentially resulting in new overloads. This 

cascade of failures continues until no more components are 

overloaded. 

Ill. COMPLEX NETWORKS PRELIMINARIES 

This section explains the relevant basic concepts from com­

plex networks theory, introduces the effective graph resistance, 

and elaborates on how it is computed in electric power grids. 

A. Complex networks basics 

A network G(N,L) consisting of a set of nodes Nand 

links L, can fully be represented by its adjacency matrix. The 

adjacency matrix A of a simple, unweighted graph G(N,L) 

is an N x N symmetric matrix reflecting the interconnection 

of the nodes in the graph. aij = 0 indicates that there is no 

edge between nodes i and j, otherwise aij = 1. In case of a 

weighted graph, the network is represented by the weighted 

adjacency matrix W where Wij corresponds to the weight of 

the line between nodes i and j; a weight can be a distance, 

cost, or delay. 

The Laplacian matrix [21] Q is another way to fully 

characterize a graph, and defined as: 

Q=�-A (5) 

where � is the diagonal matrix of strengths of G: 6i="L; Wij. 
Hence, the Laplacian can be constructed as: 

if i = j. 
if i i- j and (i, j) E L 
otherwise. 

(6) 

where 6i is the strength of node i, and L is the set of links in 

G. 

A walk between pair of nodes i and j is a set of nodes and 

links that begins at node i and ends at node j, while a path 
Pij refers to a walk in which no nodes are revisited. The path 
length I (Pij) is the sum of the weights of constituent edges in 

the path Pij. The shortest path length I (P/j) is the minimizer 

of l(Pij) over all Pij. The average shortest path length IG of 

a network G is defined as: 

IG = N(; _ 1) L l(P/j) 
if-jEG 

(7) 

B. Effective graph resistance in power grids 

Considering a network G(L, N) with a Laplacian matrix 

constructed by the conductance values of the lines, the ef­

fective resistance [21] between a pair of nodes i and j Rij 
is the potential difference between these nodes when a unit 

current is injected at node i and withdrawn at node j. The 

effective graph resistance is the sum of the individual effective 
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resistances between each pair of nodes in the network. The 

effective graph resistance can be computed in two different 

ways: (a) by aggregating the effective resistances between each 

pair of nodes, and (b) by the eigenvalues of the Laplacian 

matrix of the grid. 

The required steps to compute the effective graph resistance 

based on pairwise effective resistances are (i) constructing the 

Laplacian matrix of the grid, (ii) determining the generalised 

inverse of the Laplacian matrix, (iii) computing effective 

resistances between each pair of nodes, and (iv) summing up 

the effective resistances. 

The Laplacian matrix of a power grid Q reflects the in­

terconnection of buses with transmission lines according to 

the description in Eq. 6. The weight Wij corresponds to the 

susceptance [19] (i.e. inverse of reactance) value between 

nodes i and j. The Laplacian matrix constructed by the 

susceptance values is equivalent to the admittance matrix in 

the electrical power systems theory. 

The effective resistance Rij between nodes and j is 

computed as: 

(8) 

where Q+ is the generalized inverse of Q obtained by the 

Penrose pseudo-inverse operator [22]. 

Subsequently, the effective graph resistance Rc of a power 

network is computed by summing up all the effective resis­

tances between all pairs in a network. 

N N 
Rc = L: L: Rij 

i=lj=i+l 
(9) 

Another way to compute the effective graph resistance of 

a power grid requires computation of the eigenvalues of the 

Laplacian matrix of the grid. This approach requires summing 

the reciprocal of the eigenvalues: 

N-11 
Rc=N L: -

i=l J.Li 
(10) 

where J.Li is the ith eigenvalue of the Laplacian matrix. This 

methodology is computation ally more efficient, but it does 

not give any insight into the individual effective resistances 

between pairs of buses. 

In a DC model of a electrical power grid, the effective 

resistance Rij between buses i and j is equal to the equivalent 

impedance Zeq,ij between these buses. Fig. 1 illustrates the 

case. 

IV. EFFECTIV E GRAPH RESISTANCE AS A METRIC TO 

ASSESS GRID VULNERABILIT Y 

In purely topological approaches such as shortest path 

length, electrical power is assumed to follow the shortest or 

the most efficient path. Relying on this assumption, a shortest 

path between a pair of nodes is determined. The criticality of a 

transmission line is then quantified based on the impact of its 

removal on the network average shortest path length. However, 

electric power is not governed only by topological, but also 

A A 

B B 

Fig. l. Multiple L branches between nodes A and B with impedances 
Zl, Z2, .. , ZL can be replaced by one single branch with an impedance value 
Zeq,AB' Zeq,AB is related to the potential difference between A and B as: 
VA - VB = JZeq,AB. Assuming a unit electric current J, the equivalent 
impedance equals the potential difference between nodes A and B, and also, 
per definition, the effective resistance between nodes A and B. 

by the electrical properties of the grid. The electric power 

flows through all the possible paths rather than following one 

single path (e.g. the shortest path). Consequently, these purely 

topological approaches, that consider only the topology of 

a grid and ignore the electric characteristics, fail to capture 

the real behaviour of the grid in terms of robustness and 

vulnerability. 

In power grids, utilization of multiple paths precludes the 

existence of a physical shortest path between two buses. 

However, the concept of effective resistance makes it possible 

to determine a distinct electrical path between two nodes by 

conceptually replacing the multiple paths between two nodes 

with a single equivalent path. The effective resistance between 

two nodes is the total cost incurred to transfer electric power 

between these nodes. Consequently, the effective resistance is 

the (real) electrical path length between two nodes, and can 

replace its purely topological counterpart (the shortest path 

length) for a realistic vulnerability analysis of power grids. 

The concept of effective resistance makes it possible to 

construct the electrical topology of a power grid. An electrical 

topology of a power grid shows the electrical connections 

between buses, rather than the physical connections as a 

physical topology does. In an electrical topology of a power 

grid, the nodes represent generation, transmission, distribution 

buses, and substations while a link between nodes i and j 

corresponds to the effective resistance Rij. Fig. 2 shows the 

physical and the electrical topology of the IEEE 14 power 

system [23]. 

In a physical power grid topology, the existence of parallel 

paths between two nodes, and a homogeneous distribution of 

their impedance values result in a smaller effective resistance 

between these two nodes. The number of parallel paths in 

the physical topology refers to the number of redundant 
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Fig. 2. The physical (left) and the electrical (right) topology of the IEEE 14 power system. In the physical topology the conductances, and in the electrical 
topology the effective conductances (i.e. 1/ Rij), are used as weights for a better illustration. In the physical topology, a relatively thicker and more visible 
line corresponds to a stronger connection (i.e. a smaller effective resistance), while a relatively thinner and less visible line corresponds to a relatively weaker 
connection (i.e. larger effective resistance). 

(backup) paths. In case of a failure in one of the paths 

between two nodes, the power flow carried by the rendered 

path is distributed over the backup paths. Therefore, a higher 

number of backup paths implies a more robust network against 

cascading failures due to line overloads. On the other hand, 

a relatively more homogeneous distribution of the impedance 

values results in a relatively more homogeneous distribution 

of power flow over these parallel paths increasing the robust­

ness of the power grid against cascading failures [24], [25]. 
Therefore, a power grid with a relatively smaller effective 

graph resistance implies a relatively more robust power grid 

with respect to cascading failures. Ko<; et al. [26] verifies the 

relationship between Rc and the robustness of a power grid. 

From an electrical topology point of view, a relatively small 

Rc results in relatively strong local electrical connections (e.g. 

electrical connection between buses 1 and 2 in the electrical 

topology in Fig. 2) and relatively strong remote electrical 

connections (e.g. electrical connection between buses 6 and 

13 in the electrical topology in Fig. 2) between buses. The 

strong local electrical connections in a part of a power grid 

allows a better accommodation of power flow in that area, 

increasing the local robustness [24], [25]. On the other hand, 

the strong remote electrical connections between distant buses 

enable transfer of electrical power flow from a region of the 

grid to another region resulting in a better accommodation of 

power flow over the entire power grid. In case of a congestion 

in one part of the grid (e.g. as a result of a failure), the excess 

power in the associated part is easily transferred to the rest of 

the grid, enabling the utilization of the redundant capacity in 

the rest of the grid. Accordingly, relatively stronger electrical 

connections between buses (i.e. a relatively smaller effective 

graph resistance) allow a better accommodation of power flow 

and increase the ability of a power grid to distribute the excess 

power over the rest of the network ensuring a higher tolerance 

against local failures. 

The effective graph resistance locates the transmission lines 

that are contributing most to the electrical connections in a 

power grid. Removal of these lines reduces the ability of 

a power grid to better accommodate power flow, hence, the 

attack tolerance of the grid. Accordingly, these lines are the 

lines with the highest criticality in a power grid and a robust 

operation of a power grid requires continuous monitoring and 

protection of these lines. 

V. USE CASE:IDENTIFY ING THE CRITICAL LINES IN A 

POWER GRID 

This section demonstrates how the effective graph resistance 

is used as a metric to asses power grid vulnerability, and to 

determine the critical components for the system. 

For a quantitative criticality analysis, the IEEE 118 buses 

power system [23] is considered. To assess the criticality of 

a transmission line based on Rc, this section deploys an 

analogous approach to the one given in [7], [27]: the criticality 

of a transmission line I in a grid G is determined by the relative 

increase in the effective graph resistance 6.R� that is caused 

by the deactivation of line I: 

6.R� = Re-l - Rc 
Rc 

(11) 

where Rc (G - I) is the effective graph resistance of the grid 

that is obtained from G by removing t. 
The original grid Rc, and the impact of each individual line 

removal on Rc are computed. By substituting these values 

in Eq. 11, the impact of each transmission line on the grid 

robustness (6.R�) is assessed. At the same time, the criticality 

of each transmission line is also quantified based on le (6.t�) 

by following the same approach. Fig. 3 shows the results for 

all transmission lines in the IEEE 118 power system, while 
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Fig. 3. Relative increase in effective graph resistance and in average shortest path for IEEE lIS test case 

TABLE I 
MOST CRITICAL 10 TRANSMISSION LINES IN IEEE lIS POWER SYSTEM 

BASED ON RG AND IG 

Line ID llRh(%) Line ID lllh(%) 
165-6S IS.94 bS-65 10.02 
bS-65 15.70 165-6S 7.97 
b3-24 11.03 bO-3s 5.44 
16S-S1 10.94 IS2-S3 4.S6 
bO-3s 10.70 lS-30 4.39 
ISO-SI 10.57 16S-S1 4.27 
170-71 9.90 ISO-SI 3.95 
lS-30 S.30 177-S2 3.61 
IS2-S3 7.52 123-24 3.44 

lS-5 6.22 iI03-110 2.43 

Table I shows the 10 most critical lines identified by Rc and 

le. 

In Fig. 3 and Table I, the line criticality analysis based 

on Rc shows that the transmission line with the ID of 104 
(connecting bus 65 to bus 68) is the most critical line for 

the IEEE 118 power system. Deactivation of line 104 causes 

nearly a 19% increase of the effective graph resistance of the 

grid. On the other hand, the analysis based on the average 

shortest path length suggests that the transmission line with 

the ID of 96 (connecting bus 38 to bus 65) is the most critical 

line and its removal results in nearly 10% increase of average 

shortest path length of the grid topology. 

The top 10 most critical lines according to Rc are al­

most the same as the top 10 lines based on le. However, 

these lines have different rankings in their criticality. The 

purely topological le ignores the electrical properties and 

identifies the criticality of transmission lines purely based 

on the centrality of their location in the grid. On the other 

hand, Rc incorporates the impact of the electrical properties 

of transmission lines in addition to the importance of their 

central locations. This makes the difference between the two 

approaches and results in different ranking of importances of 

these components. 

To validate the results from Table I, the IEEE 118 power 

system is attacked by removing the critical lines identified by 

Rc and le, and the damage is quantified. The simulations are 

performed by MATCASC [28], a MATLAB based cascading 

failures analysis tool implementing the model in Sec. 11. 
The damage caused by the cascade is quantified in terms 

of normalized served power demand: served power demand 

divided by the total power demand in the grid. The attack 

vulnerability of the grid differs under various operative states 

for the same attack. To capture the vulnerability of the system 

under different operative states, the normalized served power 

demand is averaged over 100 random instances of power 

demand, varying in the interval of [Pd, 3Pd] (Pd is the base 

power demand given in [23]). 

Initially, the top lO critical lines identified by Rc (see 

Table I) are attacked one after the other. After each successive 

attack, the served power demand in the grid is quantified. The 

same analysis is performed by attacking the top 10 critical 

lines based on le (see Table I), and 10 lines based on random 

removals. Fig. 4 shows how the fraction of served power 

demand decreases after each successive attack. The largest 

damage results after an attack strategy based on Rc validating 

the effectiveness of Rc to identify the critical transmission 

lines in a power grid. 

V I. CONCLUSION AND DISCUSSION 

This paper proposes the effective graph resistance Rc as a 

global vulnerability measure for power grids. Based on Rc, 
the critical transmission lines in a power grid are determined. 
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Fig. 4. Effectiveness of attacks based on effective graph resistance, average 
shortest path length, and random removals for IEEE 118 power system 

The proposed metric RG serves as a better tool to assess the 

grid vulnerability compared to traditional average shortest path 

length by incorporating the electrical properties of power grids 

such as power flow allocation according to Kirchoff Laws. The 

proposed approach is applied on the IEEE 118 power system 

to determine the critical components. Results are compared to 

the traditional topological metric average shortest path length. 

Simulation results verify the effectiveness of RG as a measure 

to assess power grid vulnerability. 
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