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Decentralized Planning of Energy Demand
for the Management of Robustness and Discomfort

Evangelos Pournaras, Matteo Vasirani, Robert E. Kooij, and Karl Aberer

Abstract—The robustness of smart grids is challenged by
unpredictable power peaks or temporal demand oscillations that
can cause blackouts and increase supply costs. Planning of de-
mand can mitigate these effects and increase robustness. However,
the impact on consumers in regards to the discomfort they ex-
perience as a result of improving robustness is usually neglected.
This paper introduces a decentralized agent-based approach that
quantifies and manages the tradeoff between robustness and
discomfort under demand planning. Eight selection functions of
plans are experimentally evaluated using real data from two
operational smart grids. These functions can provide different
quality of service levels for demand-side energy self-management
that capture both robustness and discomfort criteria.

Index Terms—Demand, discomfort, planning, robustness,
smart grid, tree topology.

I. INTRODUCTION

T HE MAIN operational objective of smart grids is to
match energy supply and demand. The extent to which

supply can meet demand or demand can be adjusted to certain
supply is an indication of network and system robustness.
Demand-side energy management plays a crucial role in ro-
bustness as micro-generation via distributed renewable energy
resources and technologies such as electrical vehicles make
matching supply and demand challenging [1]–[3]. Yet, in
demand-side energy management, robustness by itself cannot
capture the dynamics of smart grids. Robustness has an
impact on human factor that is often neglected or under-
emphasized [3]–[6].

This paper claims that improving robustness via demand-
side energy management causes a level of discomfort for
consumers. The discomfort cost that consumers experience in
order to realize a more robust smart grid is referred to as
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quality of service under demand-side energy self-management.
The goal of this paper is to quantitatively evaluate tradeoffs
between robustness and discomfort under demand planning.
These tradeoffs can be managed via selections performed by
agents that plan the demand of consumers. The performance
of different selection schemes is experimentally evaluated with
real data from two operational smart grids. Results show that
quality of service, with respect to robustness and discomfort,
is manageable.

This paper is outlined as follows. Section II illustrates the
main concepts of decentralized demand planning. Section III
illustrates the plan generation process. Section IV outlines how
local and coordinated selections of plans is performed. Section V
shows how robustness and discomfort are computed. It also
illustrates how the data of two smart grid projects are used in
the experimental evaluation that follows in Section VI. Finally,
Section VII concludes this paper and outlines future work.

II. ROBUSTNESS VERSUS DISCOMFORT IN DEMAND

PLANNING

Demand planning of a consumption source is defined in this
paper as the computation of a time series with the amount of
energy intended for consumption by this source in a future
period of time T . Consumption sources in demand-side energy
management can be defined at different aggregation levels.
For example, the household appliance, the wall outlet, the
meter of a house, or even the feeder of a neighborhood are all
different aggregation levels at which demand can be planned.
For simplicity, this paper studies demand planning at the level
of household meters; yet, the approach illustrated in this paper
can be extended to other aggregation levels as well.

Planning of demand can be applied as a proactive approach
for creating a more homogeneous demand curve via load-
shifting and/or load-adjustment. The former action shifts load
from high peak times to low peak times without a significant
influence in the average load over time [4]. The latter action
decreases (or increases) average load via, e.g., incentives
mechanisms [5]. Both types of action can be applied to
improve robustness by preventing disruptions, such as blackout
events, or minimize their impact in case they occur [7]. They
can also be used for a more efficient utilization of energy
resources, e.g., renewables [8].

On the other hand, discomfort refers to the impact that
consumers experience on their lifestyle by load-shifting and
load-adjustment performed to obtain a higher robustness. This
paper distinguishes two types of discomfort that consumers
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may experience shifting discomfort and adjustment discomfort.
Shifting discomfort is related to the inconvenience experienced
by load-shifting. For example, if planned demand suggests the
availability of warm water for showering at later or earlier
time than the intended one, this is an indication of discomfort.
Adjustment discomfort is related to the inconvenience experi-
enced by load-adjustment. For example, if planned demand
suggests lower demand than the intended one for heating
during winter, this is an indication of discomfort. However,
if the planned demand is higher than the intended one, this is
an indication of negative discomfort, assumed to be perceived
as comfort. Section V shows how discomfort can be computed
in the context of two operational smart grid projects.

Demand-side energy management is often performed in
a centralized fashion with utilities companies having a sig-
nificant level of control in demand planning. This approach
raises several issues related to scalability and privacy. Costly
investments in computing resources are required by utility
companies in order to store and process a large amount
of streaming data originated by consumers [9]. Moreover,
detailed information about household demand can be used to
extract information about the lifestyle of consumers resulting
in violation of their privacy [10]. This paper studies an alterna-
tive decentralized approach for demand-side self-management:
software agents represent the demand preferences of con-
sumers, control their demand by generating a set of possible
plans Pi = {p1

i , . . . ,p
l
i} ∀ agent i, and specify the selected

plan si ∈ Pi for execution according to criteria defined by
a selection function. Possible plans are actually alternative
demand time series for the same future period of time.

Agents can generate two types of possible plans in regards
to the discomfort that these plans cause to consumers when
executed: 1) equivalent; and 2) nonequivalent possible plans.

Equivalent possible plans are assumed to have a similar
impact on the discomfort of consumers. In contrast to lighting
sources or television, generating equivalent possible plans
is feasible for thermostatically controlled appliances whose
operation can be planned without significant disturbance in
the lifestyle of consumers [11].

However, possible plans can be nonequivalent as they may
cause different levels of discomfort, e.g., possible plans with
varied level of average demand (over the planning time). This
paper focuses on planning of demand based on nonequivalent
possible plans. By adopting nonequivalent possible plans, two
opposing objectives need to be met: maximizing robustness
of smart grids while minimizing discomfort that consumers
experience. If consumers need to decrease their demand as a
response to a power peak that threatens the stability of smart
grids, discomfort is unavoidably increased.

III. PLAN GENERATION

Fig. 1 illustrates the concept of the plan generation illus-
trated in this section. Possible plans can be locally generated
by clustering historical demand data. Clustering groups time
series demand data sampled every certain time period, e.g.,
every day, for a total period of time, e.g., a week or a
month. Grouping is based on the computation of a proximity
metric such as the Euclidean or the Manhattan distance [12].

Fig. 1. Plan generation based on historical demand data.

The number of clusters is usually part of the clustering
parameterization and represents the number of possible plans
that agents generate.

The total period of time from which historic data are used
as input in clustering can be defined by a sliding clustering
window. For example, the California ISO (CAISO) demand
forecasting methodology predicts demand based on the energy
consumption of the past 10 days [13]. The same principle can
be adopted for the generation of possible plans in a following
day [14].

Each possible plan is devised by computing the represen-
tative demand time series of each cluster. More specifically,
each possible plan is the medoid of a cluster and is computed
by the median of the historical time series that belongs to this
cluster. In clustering, the centroid, computed by the mean, is
often employed as the center of clusters. However, this paper
considers the centroid as not appropriate for demand planning.
The centroid is a computed time series that is not necessarily
included in the input historical demand data. The historic
demand can be used to reason that the centroid is actually a
nonpossible plan as consumers have not necessarily devised
such a demand configuration before via their consumption
devices. In contrast, the medoid is a plan that is in theory
achievable as it corresponds to a consumption pattern observed
in the historical consumption data, and therefore, it is a
repetition of an earlier consumption pattern. This approach
can be extended to capture temporal constraints. For example,
if in the next 3 h the consumption should not exceed a certain
value, then the medoids that do not meet this constraint can
be excluded from the plan generation.

A critical aspect in the clustering process is the number of
clusters l that corresponds to the number of possible plans.
Previous experimental work shows that a higher number of
possible plans in demand-side energy management results
in improved robustness for smart grids [11], [15]. A higher
number of possible plans means that agents have a higher
degree of freedom to adjust demand according to system ob-
jectives. However, a higher number of possible plans increases
computational cost1 and causes a lower cluster size on average.
A cluster with a lower size results in a devised possible plan
that is less representative of the past energy consumption. This
effect is interpreted as providing a higher level of authority to

1The increased computational cost concerns the generation process, but also
the optimization performed by EPOS as illustrated in Section IV.
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agents to autonomously reason about the level of household
demand and is referred to in this paper as the intervention
level of home automation technologies for demand planning.
The intervention level Iji of a possible plan j generated by
agent i is defined as follows:

Iji = 1− Cj
i∑l

p=1 C
p
i

(1)

where the relative cluster size is computed by the size of the
cluster Cj

i , j ∈ {1, . . . , l} and the sum
∑l

p=1 C
p
i of the total

number of historic time series sampled for clustering.

IV. PLAN SELECTION

Agents select and execute one of their possible plans to
meet different system objectives of smart grids. Two types of
agent selections are distinguished in this paper: 1) local; and
2) coordinated selections.

A local selection of an agent is independent of other agent
selections. For example, selecting the plan with the minimum
average energy consumption is a local selection that each agent
can perform individually without exchanging information with
other agents. However, for more complex system objectives
related to load-shifting, agent selections are interdependent and
coordination between agents is required.

Centralized coordination is not a scalable approach as the
complexity for computing the optimum combination of agent
selections is exponential. More specifically, in a network of
n agents with l number of possible plans per agent, the
complexity of a brute-force operation is O(ln). A brute-force
operation computes the sum of all combinations between
the possible plans of agents. The sum of each combination
computed by an agent i is referred to as the combinational plan
cji . This paper focuses on large-scale decentralized coordina-
tion of agent selections using the Energy Plan Overlay Self-
stabilization system (EPOS) [11], [15]. In EPOS, agents are
organizationally structured in a tree topology through which
they interact and coordinate their selections as shown in Fig. 2.
EPOS decreases computational complexity to O(lc), where c
is the number of children per agent for a c-ary tree. Fault
tolerance can be provided with self-organization mechanisms
such as adaptive epidemic tree overlay service (AETOS) [16]
that builds and maintains reconfigurable tree topologies in
dynamic distributed environments.

Coordination in EPOS is performed in bottom-up consec-
utive coordination steps between children and their parents.
During a coordination step, the children of a tree level provide
to their parents their possible plans together with the summa-
tion of all selections performed in the branch underneath. For
each agent i with c children, this summation is the aggregate
plan ai =

∑c
v=1 av =

∑
h∈|Bi| sh ∀ agent h belonging to the

branch Bi underneath agent i. The possible and aggregate
plans are input in a selection function. The output of the
selection function indicates the selected plan of each child. The
process of consecutive coordination steps repeats up to the root
that broadcasts to each agent i the global plan g =

∑n
i=1 si

of the system that is the summation of all agent selections.
The broadcast completes the coordination phase after which

Fig. 2. Agents of EPOS structured in a tree topology to coordinate their plan
selection.

TABLE I
SELECTION FUNCTIONS FOR DEMAND-SIDE ENERGY MANAGEMENT

∗ut
i =

at
i+cti∑T

t=1(a
t
i+cti)

is the demand utilization at planning time t.

each selected plan si can be executed. More details about the
algorithm execution and the agent interactions are illustrated
in earlier work [11], [15].

This paper studies and evaluates the selection functions of
Table I. The functions that perform local selections receive
as input local information such as each possible plan pj

i and
intervention level Iji . MAX-DEMAND and MIN-DEMAND are the
actual upper and lower bound of demand adjustment. They
also represent the maximum adjustment comfort and discom-
fort that consumers can experience, respectively, as illustrated
in Section V. The functions for coordinated selections receive
the aggregate plan ai and each combinational plan cji for
input. The homogeneity of the planned demand over time
is captured by these functions with various metrics such as
the standard deviation (MIN-DEVIATIONS), the relative standard
deviation (MIN-RELATIVE-DEVIATIONS), the load factor [17]
(MAX-LOAD-FACTOR), and the entropy [6] (MAX-ENTROPY).

For the purpose of this paper, the functionality of EPOS
is significantly extended. More specifically, the contributions
of this paper to EPOS are the following: 1) scope extension
from the aggregation level of single devices to the aggregation
level of household; 2) scope extension from equivalent to
nonequivalent possible plans; 3) introduction of several other
selection functions besides MIN-DEVIATIONS and REVERSING-
DEVIATIONS [11], [15]; and 4) evaluation of EPOS using real
data from operational smart grids instead of synthetic data.
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V. VALIDATION IN SMART GRID PROJECTS

The actual robustness and discomfort that consumers ex-
perience via demand planning are validated a posteriori us-
ing real consumption data from two operational smart grid
projects, the Electricity Customer Behavior Trial2 in Ireland
and the Olympic Peninsula Smart Grid Demonstration3 in the
USA. The data of the projects are referred to in this paper
as CONTROL-DATA d and are used for generating possible
plans and making quantitative comparisons with the global
plan g.

The possible plans of agents are generated by clustering
time series consumption data of the past 10 days that is
the length of the sliding clustering window. The number of
plans is selected based on two different criteria: 1) statically
by assigning a default number of plans to each agent; and
2) dynamically by computing the number of plans based on
project data. In the former case, the minimum number of l = 2
is selected. This number minimizes the intervention level and
the computational cost in each agent. In the latter case, the
number of possible plans is computed by letting agents reason
about the preferences of consumers based on selections they
made in the context of each project, e.g., survey answers and
temperature setpoints.

A robustness metric is introduced in this paper to compare
the demand homogeneity achieved with each selection func-
tion. Robustness can be quantified by the distance of each
demand value in the computed global plan g from its average
avg(g) that represents the optimum “flat” demand curve. This
distance can be compared with the respective distance of
CONTROL-DATA d. The robustness R between the two demand
curves is computed by the mean-square error as follows:

R =
1

T

T∑
t=1

ρt (2)

where

ρt =

⎧⎨
⎩

(ĝt − d̂t)2, if ĝt ≥ d̂t

−(ĝt − d̂t)2, if ĝt < d̂t
(3)

and

ĝt = 1− |gt − avg(g)|
avg(g)

and d̂t = 1− |dt − avg(d)|
avg(d)

. (4)

Normalization is performed to remove information about the
level of demand between the global plans formed by different
selection functions. A robustness value by itself cannot indi-
cate quantitatively the homogeneity of a selection function.
Normalization provides more unbiased relative comparisons
between different selection functions and a better distinction of
robustness from the following discomfort metrics that capture
the different demand levels rather than the homogeneity.

Shifting discomfort is computed by the root-mean-square
error between the selected plans and CONTROL-DATA for each
agent i

2Available: http://www.ucd.ie/issda/data/commissionforenergyregulationcer/
(last accessed September 2013).

3Available: http://svn.pnl.gov/olypen/ (last accessed September 2013).

Ds =

n∑
i=1

⎧⎨
⎩ws

i

√√√√ 1

T

T∑
t=1

(sti − dti)
2

⎫⎬
⎭. (5)

The weight ws
i of each agent i quantifies the interest of each

consumer for load-shifting. A high value of ws
i shows that a

consumer is not so self-interested in load-shifting or the impact
of shifting discomfort is perceived more “negative” compared
to consumer with a low ws

i. The value of this weight is selected
in the context of the smart grid projects illustrated in the rest
of this section.

Adjustment discomfort is computed by summing positive
and negative errors between the selected plans and CONTROL-
DATA for each agent i

Da =

n∑
i=1

wa
i

T∑
t=1

(
sti − dti

)
. (6)

The weight wa
i of each agent i is related with how “negative”

different consumers perceive the adjustment discomfort due
to demand reduction. Similarly to ws

i, the values of wa
i are

selected within the context of the smart grid projects.

A. Electricity Customer Behavior Trial Project

This project is a cost-benefit analysis that assesses the
impact on electricity consumption of consumers in Ireland.
The project ran in the period 2009–2010 with 5000 residential
and business consumers participating. The data are cleaned
from missing values and filtered out to contain the energy
consumption time series of 782 residential consumers that
belong to the control group.4

Agents reason about the number of possible plans based on
the following two questions5:

Question 1. My household may decide to make minor changes
to the way we use electricity.

Question 2. My household may decide to make major changes
to the way we use electricity.

The answer aq in each of the above question q belongs to
{1, . . . , 5}, where 1 stands for a strong agreement and 5
stands for a strong disagreement. Table IV of Appendix A
illustrates how agents reason about the number of possible
plans they generate.6 The number of plans computed by
this algorithm is referred to in this paper as l= f1(z=x).
The main intuition behind the generation algorithm is the
normalization of the answers to the two questions a1 and a2 in

4These consumers are not affected by the dynamic pricing schemes applied
for the purpose of the project.

5The question block “55122” of the pretrial residential survey contains these
two questions.

6From the total number of 782 residential consumers, 132 of these do not
participate in the pretrial survey. For 116 of these consumers, the question
block “54132” of the posttrial survey is used for computing Table IV. This
question block is the respective posttrial question block “55122” of the
pretrial survey. (My household made minor/major changes to the way we
use electricity.) For the final 16 residential consumers that do not participate
in neither of the pretrial nor posttrial surveys, the number of possible plans is
computed by the median number of possible plans in the the rest of the 766
consumers.
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l ∈ {z−2, . . . , z+3}. The constant z is used as a scaling factor
for the number of possible plans in the generation process.

The weights of discomfort are computed by the answers of
consumers to the following two questions:

Question 3. I am interested in changing the way I use electri-
city if it helps environment.7

Question 4. It is too inconvenient to reduce our usage of
electricity.8

Based on the possible answers {1, . . . , 5}, where 1 stands for
a strong agreement and 5 stands for a strong disagreement,
the weights ws

i and wa
i for each agent i are computed by

normalizing the answers in the range [0, 1].

B. Olympic Peninsula Smart Grid Demonstration Project

This project assesses the adjustment of individual energy use
based on price signals exchanged within a two-way bidding
market [18]. The project concerns the period of March 2006–
March 2007 with 112 household participants regionally dis-
tributed in the Olympic Peninsula of the USA. The data subset
from November 2006 to March 2007 is selected during which
the fewest number of missing values is observed. The demand
of each consumer is captured every 5 min. Demand data
are aligned to the sampling rate of the Electricity Customer
Behavior Trial project by aggregating 12 consecutive demand
bids of each hour to a single hourly demand bid.

Demand data are filtered out to contain 29 consumers that
either belong to the CONTROL group or have a FIXED type
of contract and have lower than 20% of their values missing.
Two extra consumers are excluded as their demand time series
containing a large proportion of zero values. Therefore, the
final number of consumers used is 27. The missing values in
the final consumers are interpolated by computing the average
demand values in the past and future 10 days.

In the context of this project, the demand adjustment is
achieved by dynamically modifying the temperature setpoints
of various household devices. Motivated by this approach,
the number of possible plans l= f2(z=x) is defined by a
function that captures the selected temperature setpoints of
consumers during project runtime. More specifically, the range
of minimum and maximum temperature setpoints selected is
normalized to l ∈ {z, . . . , z + 4} for a given constant z.

This project contains a significantly lower number of par-
ticipants than the Electricity Customer Behavior Trial project
resulting in a low statistical significance in the illustrated
results. Most demonstration projects are small in scale and
it is challenging to validate demand-side energy management
mechanisms in large-scale systems. Nonetheless, this project
provides a second confirmation of the findings of this paper. It
also shows how the clustering methodology illustrated in this
paper can be applied in different projects, e.g., how the number
of possible plans can be computed in two different ways in
the context of each project: survey questions or choices of
temperature setpoints.

7This is question “4331” in the residential pretrial survey.
8This is question “4352” in the residential pretrial survey.

VI. EXPERIMENTAL EVALUATION

This section quantitatively evaluates the tradeoff between
robustness and discomfort under different selection func-
tions. An implementation of the hierarchical clustering algo-
rithm [19] in Weka9 is used for generating the possible plans
of agents. Two z values are evaluated for each project10: z=2,
z=3 for the Electricity Customer Behavior Trial project and
z=1, z=2 for the Olympic Peninsula Smart Grid Demon-
stration project. The first choices of z = 2 and z = 1 for each
project bound the lowest values of l to the minimum values
of 0 and 1. The second choices of z = 3 and z = 2 shift the
distribution by 1. The normalized histograms for each z value
and weights of discomfort are shown in Appendix A.

Agents are engineered as distributed application of Pro-
topeer [20] that is a prototyping toolkit for large-scale
distributed systems. Agents perform local selections or coor-
dinated ones by implementing EPOS in Protopeer as well.
Each coordination phase of EPOS runs for 10 different
3-ary tree topologies. Each topology is built by the AETOS
overlay service [16]. AETOS self-organizes agents in different
random positions for each tree topology to capture the effect
of topological positioning. The effect of different types of
tree topologies is evaluated in earlier work [21], [15]. Each
coordination phase of EPOS concerns a random day of the
week and simulates one demand–response event.

A. Robustness Versus Discomfort

Tables II and III summarize the performance of the selection
functions in each project. The data illustrated concern the
average of the total period of time studied in each project.
Performance is measured by the three metrics introduced
in this paper: 1) robustness; 2) shifting discomfort; and 3)
adjustment discomfort. Three planning generation schemes
are evaluated in each project, one static with l=2 and two
dynamic.

Robustness improves for every selection function that
performs coordinated selections in both projects and every
generation scheme. The highest improvement is achieved
by the MAX-ENTROPY and MIN-RELATIVE-DEVIATIONS. MIN-
INTERVENTIONS does not have a significant influence on ro-
bustness. As the average number of possible plans increases
more than l = 2, robustness also increases in average 52%, for
l = f1(z=2); 61% for l = f1(z=3); 30%, for l = f2(z=1);
and 39%, for l= f2(z=2), confirming earlier findings con-
cerning equivalent possible plans [11], [15].

Shifting discomfort maximally decreases under MIN-
INTERVENTIONS and MIN-DEMAND. MAX-DEMAND, MAX-
ENTROPY, and RANDOM cause the highest shifting discomfort.
The high robustness of MAX-ENTROPY is actually achieved
through an increase in shifting discomfort. The lowest shift-
ing discomfort under coordinated selections is achieved by
MIN-DEVIATIONS. Compared to l=2, shifting discomfort is
influenced by the increase in the number of possible plans

9Available: http://www.cs.waikato.ac.nz/ml/weka/ (last accessed September
2013).

10If l≤ 1, then agents select the median time series from the historic sliding
window.
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TABLE II
PERFORMANCE OVERVIEW FOR THE ELECTRICITY CUSTOMER BEHAVIOR TRIAL PROJECT

TABLE III
PERFORMANCE OVERVIEW FOR THE OLYMPIC PENINSULA SMART GRID DEMONSTRATION PROJECT

as follows: 1) 0.4% average increase for l= f1(z=2); 2)
0.3% average decrease for l= f1(z=3); 3) 14% average
increase for l= f2(z=1); and 4) 11.4% average increase for
l = f2(z=2).

Adjustment discomfort maximally decreases under MAX-
DEMAND and MAX-ENTROPY. MIN-DEMAND and MIN-
DEVIATIONS cause the highest adjustment discomfort. The high
robustness of MIN-DEVIATIONS is achieved through an increase
in adjustment discomfort, in contrast to MAX-ENTROPY that
achieves high robustness by increasing shifting discomfort.
The increase in the number of possible plans influences
adjustment discomfort as follows: 1) 19% average increase
for l= f1(z=2); 2) 23% average increase for l = f1(z=3);
3) 30.3% average increase for l = f2(z=1); and 4) 15.9%
average increase for l = f2(z=2).

This section also illustrates the cumulative distribution func-
tions of robustness and discomfort for each selection function
and project. A cumulative distribution function FX(x)= Pr
(X ≤ x) for X =R,Ds, or Da shows how robustness and
discomfort are distributed during the runtime of the projects.
Therefore, they provide detailed observations compared to the
results of Tables II and III. Cumulative distribution functions
focus on f1(z=2) and f2(z=2).

Fig. 3 illustrates the cumulative distribution functions of
robustness for the two projects. The selection functions that
perform coordinated selections are shifted to positive robust-
ness values, whereas local selections and especially MAX-
DEMAND are shifted toward negative robustness values. The
Electricity Customer Behavior Trial project concerns data of
a higher number of consumers and a longer period of time
than the Olympic Peninsula Smart Grid Demonstration project.
This explains the higher overlap of the cumulative distribution
functions in the second project.

Fig. 4 illustrates the cumulative distribution functions of
shifting discomfort for the two projects. MIN-INTERVENTIONS

Fig. 3. Cumulative distribution functions of robustness R for z = 2. (a)
Electricity Customer Behavior Trial project. (b) Olympic Peninsula Smart
Grid Demonstration project.

and MIN-DEMAND are positioned to values of lower shifting
discomfort in contrast to MAX-DEMAND that is clearly posi-
tioned to higher values. The selection functions that perform
coordinated selections are positioned to higher values com-
pared to MIN-INTERVENTIONS and MIN-DEMAND.

Fig. 5 shows that under local selections, the cumulative
distribution functions of adjustment discomfort are shifted to
negative values, yet, MIN-INTERVENTIONS and MIN-DEMAND

cause adjustment discomfort and that is why their distributions
are shifted to positive values. Under coordinated selections, the
distributions vary significantly, with MAX-LOAD-FACTOR and
MAX-ENTROPY shifted to negative values that cause comfort
to consumers, whereas the rest of the selection functions are
mainly located between positive and negative values.

This observation can be explained by the fact that coordi-
nated selections acquire a flat demand curve by either increas-
ing or decreasing the average demand, e.g., January 19, 2010
and May 28, 2010, respectively, for the Electricity Customer
Behavior Trial project. Therefore, adjustment discomfort is
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Fig. 4. Cumulative distribution functions of shifting discomfort Ds for z = 2.
(a) Electricity Customer Behavior Trial project. (b) Olympic Peninsula Smart
Grid Demonstration project.

Fig. 5. Cumulative distribution functions of adjustment discomfort Da for
z = 2. (a) Electricity Customer Behavior Trial project. (b) Olympic Peninsula
Smart Grid Demonstration project.

highly influenced by temporal factors related to the weather
and different choices that consumers make in different seasons
of a year. The demand curves in Section VI-B confirm this
explanation.

B. Demand Curves

Fig. 6 illustrates the demand curves of CONTROL-DATA and
the global plans of each selection function on January 19,
2010 and May 28, 2010 under l = 2. These data concern
the Electricity Customer Behavior Trial project. CONTROL-
DATA has two main demand peaks, one low peak in the
morning between 06:00 and 08:00 and one high peak in
the evening between 17:00 and 21:00. The morning peak is
more distinguishable on May 28, 2010 than January 19, 2010,
whereas the evening peak is higher and more distinguishable
in the winter day.

Fig. 7 illustrates the demand curves of CONTROL-DATA and
the global plans of each selection function on January 16, 2007
for the Olympic Peninsula Smart Grid Demonstration project.
The minimum number of possible plans l = 2 is selected in
this case as well. The high winter peak is observed in the
morning, with a low evening peak following.

The MAX-DEMAND and MIN-DEMAND in Figs. 6(a), (c),
and 7(a) are the upper and lower bounds that form the demand
envelope of planning within which the performance of all
selection functions lies. MIN-INTERVENTIONS results in plan
selections with low energy consumption. This means that

Fig. 6. Actual demand curve and the demand of the global plans for the
Electricity Customer Behavior Trial project under l = 2. (a) Local selection
on 19/01/2010. (b) Coordinated selection on 19/01/2010. (c) Local selection
on 28/05/2010. (d) Coordinated selection on 28/05/2010.

Fig. 7. Actual demand curve and the demand of the global plans for the
Olympic Peninsula Smart Grid Demonstration project on January 16, 2007
under l = 2. (a) Local selection. (b) Coordinated selection.

possible plans with extreme high values are not the cluster
with the largest size. In Fig. 6(b) and (d), the global plans
are observed above the CONTROL-DATA during most hours on
January 19, 2010 compared to May 28, 2010. This means
that robustness requires a demand increase for a longer period
of time during a winter day compared to a spring day.
This demand increase is the actual load-shifting performed
to suppress the high power peak. MIN-DEVIATIONS decreases
the high peak up to 9% on January 19, 2010 and 16% on May
28, 2010 for the Electricity Customer Behavior Trial project.
Respectively, the high peak decreases 44% on January 16,
2007 for the Olympic Peninsula Smart Grid Demonstration
project.
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C. Quality of Service

This section shows how performance tradeoffs between
robustness and discomfort can determine quality of service
in demand-side energy self-management. More specifically,
assume that consumers, utility companies or system operators
need to choose one of the selection functions that satisfies
certain robustness and discomfort criteria. Choice is performed
as follows:

argmax
o∈F

= αrr
o + βrs

o + γra
o (7)

where rr
o, r

s
o, r

a
o ∈ [0, 7] are the ranks of a selection

function o∈F= {RANDOM, MIN-DEMAND, MAX-DEMAND,
MIN-INTERVENTIONS, MIN-DEVIATIONS, MIN-RELATIVE-
DEVIATIONS, MAX-LOAD-FACTOR, MAX-ENTROPY} for the
three respective performance metrics: 1) robustness R; 2)
shifting discomfort Ds; and 3) adjustment discomfort Da.
Ranking is derived by the results of Tables II and III with
the value of 0 corresponding to the lowest performance and
the value of 7 to the highest performance. The weights α, β,
and γ indicate the relative “importance” of each performance
metric and it holds that α+ β + γ = 1.

The relation between a certain choice of a selection function
and the threshold values of α, β, and γ, which result in this
selection, can be computed and visualized using decision trees
built by the C4.5 algorithm [22]. Learning is performed by a
10-fold cross-validation of a training set generated using (7)
with 66 different threshold combinations of α, β, and γ under
a step-wise increment of 0.1. Each decision tree concerns the
aggregate results of all temporal demand data in each project,
yet, such trees can be computed for more specific time periods,
e.g., seasons or months.

Fig. 8 illustrates the decision tree for the performance
results of the Electricity Customer Behavior Trial project.
This tree contains two selection functions that perform local
selections (MAX-DEMAND and MIN-INTERVENTIONS) and two
selection functions that perform coordinated selections (MIN-
RELATIVE-DEVIATIONS and MAX-ENTROPY). MAX-DEMAND is
chosen when β ≤ 0.3 and α ≤ 0.1. MIN-INTERVENTIONS is
chosen under β > 0.3 and α ≤ 0.3. However, for criteria that
define high α, MAX-ENTROPY and MIN-RELATIVE-DEVIATIONS

are selected depending on the values of discomfort. In this
case, lower adjustment discomfort weights result in choices
of MIN-RELATIVE-DEVIATIONS over MAX-ENTROPY.

Fig. 9 illustrates the respective decision tree for the Olympic
Peninsula Smart Grid Demonstration project. This tree has
lower complexity than the tree of the Electricity Customer
Behavior Trial project. It provides choices between three selec-
tion functions, MAX-DEMAND, MIN-INTERVENTIONS, and MIN-
RELATIVE-DEVIATIONS, which are determined by the shifting
discomfort and adjustment discomfort.

D. Summary of Findings

The main findings of this paper are summarized as follows.
1) MAX-ENTROPY and MIN-RELATIVE-DEVIATIONS achieve

the highest robustness.

Fig. 8. Decision tree of selection functions for the Electricity Customer
Behavior Trial project.

Fig. 9. Decision tree of selection functions for the Olympic Peninsula Smart
Grid Demonstration project.

2) MIN-INTERVENTIONS achieves the lowest shifting dis-
comfort and MAX-DEMAND the lowest adjustment dis-
comfort.

3) MIN-DEVIATIONS achieves the highest peak shavings.
4) A higher number of possible plans increases robustness

at a cost of higher discomfort.
5) Peak shaving is achieved either via an overall demand

increase or decrease over time.
6) Quality of service under demand planning can be man-

aged by decision trees that compute tradeoffs between
robustness and discomfort.

VII. CONCLUSION AND FUTURE WORK

This paper concludes that the tradeoff between robustness
and discomfort in demand-side energy self-management is
quantifiable, manageable, and can provide different quality
of service levels. More specifically, the experimental valida-
tion with real data from two operational smart grid projects
confirms the load-shifting and load-adjustment potential of
various selection functions, but also their discomfort impact
on consumers. These selection functions can become a highly
modular element of decentralized demand planning mecha-
nisms such as EPOS [11], [15], in future smart grids. Other
factors related to malicious agents and a fair distribution of
discomfort between consumers are part of future work.
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TABLE IV
COMPUTING THE NUMBER OF POSSIBLE PLANS FOR THE ELECTRICITY

CUSTOMER BEHAVIOR TRIAL PROJECT

The constant z represents a default value for l.

Fig. 10. Normalized histograms for the number of possible plans l. (a)
Electricity Customer Behavior Trial project. (b) Olympic Peninsula Smart
Grid Demonstration project.

Fig. 11. Normalized histogram of shifting ws
i and adjustment wa

i discomfort
weights derived from the pretrial survey of the Electricity Customer Behavior
Trial project.

APPENDIX A
SUPPLEMENTAL MATERIAL

Table IV illustrates how the number of possible plans is
generated for the Electricity Customer Behavior Trial project.
As consumers tend to agree more to changes in energy
consumption, the number of plans also increases. If a con-
sumer chooses in Question 2 for major changes in his/her
electricity, then a higher intervention level is introduced by
increasing the number of possible plans (e.g., conditions 1–3
in Table IV).

Fig. 10 illustrates the normalized histograms for the number
of possible plans l in the two smart grid projects. These two

histograms are generated according to Table IV using two
different values of z.

Fig. 11 illustrates the normalized histogram for the two
weights of discomfort based on the answers of consumers in
Question 3 and 4.
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