
Kubernetes cluster optimization using hybrid
shared-state scheduling framework

Oana-Mihaela Ungureanu
University Politehnica of Bucharest

Bucharest, Romania
oana.ungureanu30@gmail.com

Călin Vlădeanu
University Politehnica of Bucharest

Bucharest, Romania
calin@comm.pub.ro

Robert Kooij
Delft University of Technology

Delft, The Netherlands
Singapore University of Technology

and Design
Singapore, Singapore
r.e.kooij@tudelft.nl

ABSTRACT
This paper presents a novel approach for scheduling the
workloads in a Kubernetes cluster, which are sometimes
unequally distributed across the environment or deal with
fluctuations in terms of resources utilization. Our proposal
looks at a hybrid shared-state scheduling framework model
that delegates most of the tasks to the distributed schedul-
ing agents and has a scheduling correction function that
mainly processes the unscheduled and unprioritized tasks.
The scheduling decisions are made based on the entire clus-
ter state which is synchronized and periodically updated
by a master-state agent. By preserving the Kubernetes ob-
jects and concepts, we analyzed the proposed scheduler be-
havior under different scenarios, for instance we tested the
failover/recovery behavior in a deployed Kubernetes cluster.
Moreover, our findings show that in situations like collo-
cation interference or priority preemption, other central-
ized scheduling frameworks integrated with the Kubernetes
system might not perform accordingly due to high latency
derived from the calculation of load spreading. In a wider
context of the existing scheduling frameworks for container
clusters, the distributed models lack of visibility at an upper-
level scheduler might generate conflicting job placements.
Therefore, our proposed scheduler encompasses the func-
tionality of both centralized and distributed frameworks. By
employing a synchronized cluster state, we ensure an optimal
scheduling mechanism for the resources utilization.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ICFNDS, July 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7163-6. . . $15.00
https://doi.org/10.1145/1122445.1122456

CCS CONCEPTS
• Computer systems organization → Cloud comput-
ing; Fault-tolerant network topologies; • Computing
methodologies → Shared memory algorithms.

KEYWORDS
Kubernetes cluster, pod, service, taints, tolerations, affinity,
anti-affinity, optimistically concurrent transaction, oppor-
tunistic scheduling, node feasibility, priority preemption,
collocation interference, inherent rescheduling

ACM Reference Format:
Oana-Mihaela Ungureanu, Călin Vlădeanu, and Robert Kooij. 2019.
Kubernetes cluster optimization using hybrid shared-state sched-
uling framework. In Proceedings of ACM International Conference
on Future Networks and Distributed Systems (ICFNDS). ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Nowadays server virtualization is widely used in data cen-
ters and its main aim is to decouple applications from the
underlying infrastructure. Either used as hardware virtual-
ization (virtual machines) or operating system level virtual-
ization (containers), virtualization technologies are shaping
the world of application deployment. The difference between
the two types of virtualization mainly consists in the way the
operating system is running: virtual machines are running
their own operating system on top of a hypervisor which
virtualizes the server’s resources, while in containers, re-
sources are virtualized at the operating system level as they
encapsulate the application’s processes and dependencies
[31].

Containers and, in particular, Docker containers [8] have
gained much popularity in the last couple of years due to the
increasing number of container-based applications and the
early adoption of DevOps technologies by large companies
such as Google and Netflix. The manner in which an applica-
tion is build, packaged and deployed has been simplified by
container management frameworks such as Kubernetes [18]

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ICFNDS, July 2019, Paris, France Oana Ungureanu, et al.

developed by Google, Docker Swarm [32] or Apache Mesos
[26].

Nevertheless, in a container cluster (consisting of at least
one master and multiple worker nodes) the resources utiliza-
tion fluctuates for various reasons: users do not submit their
jobs at the same time, jobs are different in terms of resource
requirements, input data size differs for daily jobs, thus jobs
pass during their life time through many stages and types of
parallelism with different resource requirements. An impor-
tant role in container management frameworks is played by
the scheduler’s components which are directly responsible
for the distribution of workload across available hosts. The
load spreading should be done according to cluster size as
long as capacity constraints are not violated and it depends
on the updated state of the cluster. From a deployment per-
spective, the scheduler manages the life cycle of containers
and their distribution across nodes [9].
In a production environment running high-performance

management clusters, the workload is mixed thus a single
scheduler is not able tomanage accordingly the long-running
service jobs and batch analytics. Each application has dif-
ferent requirements which will increase the complexity and
implementation of a scheduler. The scheduler’s processing
logic becomes an issue: queuing and job prioritization need
to be carefully addressed [30].

The centralized (monolithic) schedulers (e.g., Borg [3],
Apache Hadoop YARN [37], Docker Swarm [32], Kubernetes
[18] and Firmament [13]) usually run complex algorithms
for quality of Service (QoS) and high quality task placements
with higher latencies, whereas the distributed schedulers
(e.g., Sparrow [28]) use less complex algorithms that mini-
mize the latency at task placements, but the resources uti-
lization is not visible at an upper-level scheduler. The third
category called hybrid or semi-distributed (e.g., Tarcil [7])
utilizes elaborated algorithms for the long-running tasks and
rely on simple algorithms for short running tasks, but since
it offers no visibility over the cluster state, it will sometimes
end with job placement conflicts.

Apart from the listed schedulers categories, we have iden-
tified in the most recent literature two additional types of
schedulers: two-level and shared-state schedulers. In con-
trast to the monolithic schedulers that use a centralized
scheduling algorithm for all jobs, the two-level schedulers
have a decentralized scheduling model which delegates con-
trol over scheduling to the frameworks (e.g., Hadoop-on-
Demand [1] andMesos, using the framework Marathon [26]).
In a shared-state scheduling mechanism, an application-
level scheduler updates multiple replicas of the cluster state.
Every change triggers the scheduler to issue an optimistically
concurrent transaction to update local changes to the shared
cluster state (e.g., Omega [24], Apollo [2], Nomad [15] and
Tarcil [7]).

Due to the fact that Kubernetes is a centralized type of
scheduler, we propose an optimization of the Kubernetes
workload distribution using a hybrid shared-state sched-
uling framework. The problems identified in our deployed
Kubernetes cluster workload presented in Section 4 show
that a centralized model cannot solve problems like service
high-availability, collocation interference, priority preemp-
tion or inherent rescheduling. Therefore, our approach is a
request-model hybrid scheduler in which the application-
level scheduler (the master-state agent) receives and updates
the replicas of the entire cluster state. Compared to other
current approaches, our proposal differs from a classical
semi-distributed scheduling model (i.e., Tarcil [7]) where the
short-tasks with low-priority are run by distributed agents,
whereas the rest of the tasks are placed according to the
central scheduler logic. We introduce the scheduling cor-
rection function that processes the unscheduled and un-
prioritized jobs of both categories. From the resources uti-
lization perspective, if task workload tends to idle certain
nodes (nodes are under-utilized) our approach recalls the
"opportunistic scheduling" model in which the schedul-
ing agents run tasks at lower priority so they can be evicted
if nodes tend to become over-utilized. (i.e., Tarcil [7] and
Apollo [2]).

This paper is structured as follows: firstly we present in
Section 2 a taxonomy of the scheduling mechanisms in con-
tainer management frameworks. This survey constitutes a
novel contribution as we could not find in the literature a
complete comparison of the existing schedulers. In order to
analyze the cluster fluctuation behavior over time, we de-
ployed a Kubernetes cluster and presented its architecture
in Section 3. Next, Section 4 highlights the identified prob-
lems in the Kubernetes Default Scheduler also based on our
tested scenarios and in Section 5 we presented our proposed
hybrid shared-state scheduler architecture. In Section 6 we
conducted an analysis of the proposed scheduler features
compared to the existing integrated centralized schedulers
in Kubernetes and in Section 7 we presented some of our
conclusions and proposal of future work.

2 RELATEDWORK AND A BRIEF TAXONOMY OF
THE EXISTING SCHEDULING MECHANISMS

Since there is not a unique solution to solve every problem
within the computing domain, multiple cluster schedulers
have been developed by different large companies. For in-
stance, Google (main contributor of Omega [24] and Ku-
bernetes [18]) targets an architecture that gives control to
the developers, assuming that they respect the rules con-
cerning the priority of their jobs in the cluster, while Yahoo
(main contributor for YARN [37]) targets an architecture
that enforces capacity, fairness and deadlines [14]. Table 1

Kubernetes cluster optimization using hybrid shared-state scheduling framework ICFNDS, July 2019, Paris, France

Table 1: Taxonomy of the different existing scheduling frameworks in the current literature

Scheduler Centralized schedulers Two-level schedulers Shared-state Hybrid Fully distributed

Borg ✓
Omega ✓
Apache Hadoop YARN ✓
Apollo ✓
Kubernetes ✓
Hadoop-on-Demand ✓
Apache Mesos ✓
Docker Swarm ✓
Firmament-Poseidon ✓
Nomad ✓
Sparrow ✓
Tarcil ✓ ✓

summarizes our survey and classifies different schedulers
identified in the current literature.

Kubernetes represents a widely used centralized sched-
uling mechanism and is the third container-management
system developed at Google and the first open-source project,
its predecessors being Borg [3] and Omega [24]. Unlike the
first two, Kubernetes models its core as a shared persistent
store, exposed through APIs. Building management APIs
around containers is considered more developer-oriented
and shifts the primary concern of data center provisioning
from machine to the application layer.
Another monolithic scheduler is implemented in Docker

Swarm [32]. The scheduler relies on filters to reduce the
nodes’ range based on container properties and strategies to
decide on which node to schedule a container using three
methods: random, spread and binpack. There have been new
proposed scheduling strategies in Docker Swarm [5] based
on classes (premium, advances and best effort) according to
user needs. In this way, the CPU cores are distributed across
containers based on the load and user economic model [25].
Apache Hadoop YARN (developed by Yahoo) [37] is a popular
architecture for Hadoop that delegates many scheduling
functions to per-application components. Its architecture
also corresponds to a monolithic scheduler due to the fact
that its resource master provides a global scheduler that
processes the request from the application masters.
A more recent example of a centralized scheduler is Fir-

mament [13], a flow-based scheduler. Firmament models the
entire cluster as a flow network as it runs amin-cost max-flow
(MCMF) optimization over the network to make scheduling
decisions. Firmament has been integrated with Kubernetes
under the Poseidon Project [29]. More key features of this
scheduler will be presented in Section 6.

The Mesos’ two-level scheduler is presented by Hind-
man et al. in [16]. This model is based on a resource manager
that allocates computing resources to multiple parallel, in-
dependent ""scheduler frameworks". A resource offering
may refer to a bundle of resources that a framework can del-
egate on a cluster node to run tasks. The scheduler decides
how many resources to allocate per framework using an
organizational policy such as fair sharing, while frameworks
decide which resources to accept and which tasks to run on
them. Hadoop-on-Demand (currently replaced by YARN) is
another two-level scheduler that also uses a central coodi-
nator to dynamically assign the allocation of resources to
each scheduler. This strategy is called "pessimistic" and
considered less error-prone since each resource is taken care
at a time by a single scheduler.
Schwarzkopf et al. [24] implemented a new parallel sin-

gle shared-state scheduler for Omega. There is no central
resource allocator in Omega; all of the resource-allocation
decisions take place in the schedulers. Each one of the sched-
ulers receives an updated copy of the resource allocations
called "cell state" used for scheduling decisions. In this
manner, every scheduler has an overall view of the clus-
ter state and can allocate any available resources with the
right permissions and priorities. Every time a decision is
made by the scheduler, it triggers a commit and updates the
shared copy of the cell state. In case the commit fails due to
mis-synchronization between the commit and update, the
whole process is retaken and in the worst case scenario the
scheduling algorithm is being re-run.
The authors of [2] developed a shared-state scheduler

named Apollo where the jobs’ scheduling is done indepen-
dently and a Resource Monitor (RM) collects load information
from each Process Node (PN), providing an overall view of the
cluster state. Based on this information the Job Manager (JM)

ICFNDS, July 2019, Paris, France Oana Ungureanu, et al.

makes scheduling decisions. The JM receives feedback also
from the PN so it can perform task runtime estimation.When
a task starts running, the PN provides information regarding
the memory usage, CPU, execution time and I/O throughput.
Moreover, the PN keeps an updated matrix of the estimated
wait-times for future tasks based on the running and queued
tasks. Apollo scheduler employs an ""opportunistic mode"
as it runs tasks at a lower priority so they can be easily pre-
empted or terminated if the server runs out of resources.
The Apollo scheduler also employs correction mechanisms
that periodically re-evaluate the scheduling decisions and
make adjustments whenever necessary. For example, in case
two tasks are simultaneously scheduled on the same server
and they are competing for resources, in order to avoid such
conflict, a small random number is added to each completion
time estimation.

Nomad scheduler [15] developed byHashiCorp, represents
another shared-state scheduling mechanism that uses a
different architecture consisting of jobs, nodes, allocations
and evaluations. The set of tasks that should run on a node
is mapped to the jobs using allocations, while the scheduling
mechanism of calculating the right allocations is called eval-
uation. Multiple schedulers are used in this architecture, for
instance a service scheduler for long-lived services, a batch
scheduler for optimized placement of batch jobs, a system
scheduler to allocate tasks on the nodes and another core
scheduler for internal processes.
In contrast to the shared-state scheduler, Sparrow [28]

employs a fully distributed schedulingmechanism based
on multiple schedulers that operate in parallel without main-
taining a state of the entire cluster. On the contrary, the
load information is retrieved from the worker machines. The
tasks are also run by the worker machines so the jobs can
be handled by schedulers.

Tarcil [7] is a hybrid shared-statewithout a central coor-
dinator scheduling framework where the schedulers work in
parallel and have an updated local copy of the shared server
state as well as the status of the Resource Units (RU). Once
a task is assigned to a server by a scheduling agent, the RU
status is updated along with the master cluster state copy
and the admission control is notified by the local monitor.
The per-RU local monitor evaluates the performance and
informs the agent whenever an allocation adjustment needs
to be done with respect to CPU or memory saturation that
ultimately triggers the auto-scaling mechanism. Every time a
scheduling agent makes a decision, it also updates the master
state. Conflicts can also occur since all schedulers have full
access to the cluster state and this issue is resolved through
the "lock-free optimistic concurrency" method. The
role of the admission control is to preserve a queue of the
jobs until resources become available and to estimate the
application wait-time.

In our approach we employed a similar hybrid shared-
state architecture where the collocated task interference is
managed by a scheduling correction function. In contrast to
the admission control component implemented in Tarcil, our
scheduling correction function compares the wait-time task
forwarded by the resource nodes with its estimate, calculated
based on the number of concurrent transactions made over
time by each of the scheduling agents.
Looking at the scheduling frameworks listed in Table 1,

Firmament-Poseidon is the only scheduling framework that
has been integrated so far with Kubernetes system. In or-
der to optimize the scheduling in our deployed Kubernetes
cluster, our proposal targets either a future integration/co-
existence with the Kubernetes default scheduler or a written
plugin to replace the default one. Therefore, in our analysis,
we will further consider the Kubernetes defined concepts
and components as well as the "Binding-Object" function
that maps the pod requirements with the nodes capacity
and resource allocation. The rest of the paper will focus on
the integrated scheduling frameworks with Kubernetes as
we will analyze the problems we encountered in a deployed
Kubernetes cluster.

3 ARCHITECTURE OF OUR DEPLOYED
KUBERNETES CLUSTER

In comparison to the other container management solutions,
Kubernetes (K8S) uses the concepts of "Labels" and "Pods"
for grouping containers that form a single deployed service.

A Pod has been defined as the smallest unit in the Kuber-
entes object model which represents a running process in
a cluster. A Service (or micro-service) consists of a logical
set of pods and a policy to access them. A Label Selector
determines the set of Pods targeted by a service. A Job can
consist of multiple tasks that will create one or more pods.
The job completes when a specified number of successful
"completions" (the pod life cycle ends) is reached [18].

Figure 1: Workload distribution in our K8S deployed cluster

Kubernetes cluster optimization using hybrid shared-state scheduling framework ICFNDS, July 2019, Paris, France

The ReplicasSet role is to ensure a set of Pods replicas
running at certain time. On the other hand, a Deployment
can create and update the ReplicaSet or the pod’s state [17].
The DeamonSets gives the option to run a particular pod

on a set of nodes that match the expressed criteria. In this
manner a database can be run on a defined set of nodes while
ensuring the service availability without re-scheduling. On
the other hand, StatefulSets allow pods to be rescheduled on
other machines as long as a set of replicas maintains service
availability [23].

Figure 1 shows the workload distribution in our deployed
Kubernetes cluster. The testbed consists of a Kubernetes
cluster with one master node, three workers and an NFS
server running on the master node. The cluster has been
deployed in a virtualized VMware environment. Each node
has 32 GB of RAM, an 8 cores Processor and a disk space of
150 GB. As it concerns the workload distribution, it can be
observed that the number of deployed Pods is almost twice
the number of Deployments which is almost equal to the
number of ReplicasSets.

At control plane level, the master’s main responsibility is
to take decisions like scheduling and detecting events (e.g.,
start of a new pod). The K8S master system components are:

• kube-apiserver : the front-end for the Kubernetes
control plane that uses the master’s API to retrieve
current state information and also update the API with
new information about the desired state (i.e., on which
node a new pod should be scheduled, or which pod
should be moved to another node) [18].

• kube-scheduler : the Kubernetes scheduler is one of
the core components. Its main logic is to bind pods to
nodes whenever a new node appears based on policies
that contain a set of rules, called predicates and prior-
ities [20]. The scheduler is constantly looking at the
Kubernetes API for unscheduled pods and once pods
are found, it makes a decision about the node where to
place the pods based on the node’s resources and ap-
plied filters (i.e., memory, disk space, ports). The node
with the greatest eligibility that gets the best score will
be elected to run the pod [6].

• kube-controller-manager : monitors the shared state
of the cluster through the kube-apiserver in order to
reach a desired state.

The K8S standard node components run on each of the
nodes ensuring a runtime environment:

• Kubelet : is an agent that runs on each node in the clus-
ter and ensures containers described in the PodSpec
are running without errors.

• kube-proxy : maintains network rules on the host
[18].

Figure 2 shows the architecture of the cluster we deployed
that contains the standard K8S components for both master
and worker nodes, the system components, the extra com-
ponents and services we deployed on top. Apart from the
K8S standard master system components, other components
have been deployed to ensure cluster functionality:

Figure 2: Our Kubernetes deployed cluster architecture, sin-
gle master deployment with three worker nodes

• The Flannel daemon is responsible for setting up and
managing the network that interconnects all of the
Docker containers created by Kubernetes [18].

• ETCD is a distributed reliable key-value store [10].
• A Docker Bootstrap instance is used to start ETCD
and Flannel, on which the Kubernetes components
depend [19].

• Vault provides a token-based authentication method
for Kubernetes pods [36].

• Heapster which provides cluster monitoring and per-
formance analysis for Kubernetes [33].

Apart from the K8S components we have deployed on the
master node a MySQL database, an identity management com-
ponent for authentication purposes and an Ngnix ingress
controller acting as a load balancer for the pods [27]. The
Fluentd service runs on both master and worker nodes and
provides log information, collects events and can be con-
figured to send out alerts [11]. Note that in a production
enviroment a high-availability (HA) deployment is required
with at least three masters and three worker nodes, but in
our case due to resource constraints (i.e., memory, CPU), we
proceeded with a single master deployment.

4 IDENTIFIED PROBLEMS IN KUBERNETES
SCHEDULER

As Kubernetes clusters are very dynamic and their state
change over time, there may be a desire to move already
running pods to some other nodes for various reasons:

• Nodes are under or over-utilized

ICFNDS, July 2019, Paris, France Oana Ungureanu, et al.

• Taints or labels are added to or removed from nodes,
pod/node affinity requirements are not satisfied any-
more

• Nodes failed and their pods moved to other nodes
• New nodes are added to clusters

For instance, we assume three services A , B and C , each
scaled to run three replicas on three different nodes. IfWorker
1 becomes unrecheable, the scheduler running on the master
node will notice that we only have two pods of each ser-
vice. The Master Node will immediately reschedule one of
each replicas on the remaining healthy nodes. The scheduler
tries to avoid having duplicates on the same node, but in the
case Worker 1 recovers in the meantime, it will be massively
under-utilised compared to the other nodes. There is a high
chance that all the new Av2 pod replicas will be scheduled
on Worker 1 after its recovery. If Worker 1 were to fail again,
the availability for service A is totally lost [35].
Figure 3a shows the initial resource consumption in our

deployed K8S cluster, where Worker 1 has 84.45% utilization
in terms of memory limits. Our findings show that in a long-
time running cluster environment after Worker 1 fails, the
workload is not equally balanced across the nodes, Worker 2
pod allocation will increase up to 20%, while memory limits
requests achieve 97.6% and CPU 80.75%. A similar behavior
happens forWorker 3 which reaches 99% CPU requests. Even
after Woker 1 recovers (see Figure 3b), Workers 2 and 3 are
over-utilized with the same memory consumption rate of
97.6% and 80.75%, respectively, while Worker 1 is completely
under-utilized. As for the Master CPU and memory utiliza-
tion, it remains the same and it does not react to the cluster
state changes.
In a Kubernetes cluster, scheduling happens at pod cre-

ation only when pods are spread out intelligently but what-
ever change occur with the pods distribution across all nodes,
is not proactively enforced. Kubernetes default scheduler is
lacking of an optimal pod-by-pod scheduling mechanism as
well as a rescheduling mechanism when the cluster state has
been changed.

A possible solution to the high-availability issue is theKu-
bernetes Descheduler [20], a recent open-source project
currently in beta release that has as a primary goal to re-
establish balance within the cluster and avoid multiple pod
replicas on the same node. Since Kubernetes clusters are very
dynamic and their states change over time, the Descheduler
includes several strategies:

• RemoveDuplicates – This strategy aims is to kill or
reschedule identical pods on different nodes.

• LowNodeUtilization – The Descheduler searches for
the nodes that are under-utilized and evicts pods in
order to re-create the drained pods on those under-
utilized nodes.

(a) Initial resource consumption in the deployed K8S cluster

(b) Resource consumption in the deployed K8S cluster after
Node 1 recovers

Figure 3: Resource consumption in the deployed K8S cluster

• RemovePodsViolatingInterPodAntiAffinity –This
strategy ensures that pods violating the interpod anti-
affinity rule are removed from the nodes.

• RemovePodsViolatingNodeAffinity – The strategy
enforces the pods which are violating the node affinity
rule to be removed from the nodes.

Nevertheless, the current version of the Descheduler does
not provide a strategy to consider the number of pending
pods or the pod life time. Moreover, it does not consider the
pod taints and toleration filters nor the Kubernetes sched-
uler’s predicates. Currently, there is no integration with the
cluster autoscaler or with metric providers to obtain the
real load metrics. Another important aspect is that the De-
scheduler does not have a QoS mechanism implemented as
"Best efforts" pods might be evicted before "Burstable" and
"Guaranteed" pods.

5 THE PROPOSED HYBRID SHARED-STATE
SCHEDULER

The proposed architecture of the hybrid shared-state sched-
uler (Figure 4) consists of several Scheduling Agents (SAs)
configured as slaves, a master that has an overview of the
cluster state, the Master-State Agent (MSA) and a Scheduling

Kubernetes cluster optimization using hybrid shared-state scheduling framework ICFNDS, July 2019, Paris, France

Correction (SC) function that estimates the queuing time for
the remaining unscheduled and unprioritized jobs. The Re-
source Node (RN) stores information regarding the resources
utilization (i.e., memory usage, CPU, throughput and exe-
cution time) and shares this information with the SAs. The
RNs manage the life time of each task, while the SAs run the
life cyle of a job. Each SA processes this information along
with the job priorities and Node Feasibility (NF), thus, after
it takes a job placement decision, it sends the updated state
to the MSA which further sends it to the SC and all the SAs.

Similar to the shared-state scheduler presented in Apollo
[2], each RN has a local queue and sends a wait-time matrix
with the resources availability (i.e.,memory usage, CPU time
and I/O throughput) to the SA that predicts a task runtime.
The SC function also calculates an average expected task
runtime based on the information retrieved from the RNs.
The main difference in our approach consists in the role that
the SAs play in the decision’s logic and the overall scheduling
mechanism. In contrast to the Apollo scheduler where the
process nodes send the load information to a central resource
monitor, in our proposed scheduling mechanism the job
placement decision is taken at the level of each SA based
on the task runtime, pod priorities and task-wait time. More
specifically, both batch-jobs and long running tasks are being
processed locally be each of the SAs, while the unscheduled
and unprioritized jobs are being taken care of by the SC.

Figure 4: The proposed hybrid shared-state scheduler archi-
tecture

Scheduling Correction (SC) function
One of the main advantages of this kind of scheduling frame-
work is that all the scheduling corrections are done outside
the SAs by the SC function which has full control over the
cluster state. The SC’s role is to both maintain an updated
state of the entire cluster and add in its queue the unsched-
uled and unprioritized jobs. The unscheduled jobs could be
the result of slower processing tasks with high I/O latencies

that have no pod priority specfications. On the other hand,
the unscheduled tasks might constitute the reason for pod
conflicts (pods that share the same node affinity/anti-affinity
rule) when pods are competing for the same resources that
generate collocation interference of the pods.
We consider the total job execution time of an incoming

job in the SC queue S = [S1, S2, . . . , Sn]. We define the total
execution time of a task (Si) as the sum of the task estimated
wait-time (Twi) plus the estimated task runtime (Ri), where
i ∈ {1, ..,n}. The interference time for an incoming job is
I = [I1, I2, . . . , In]. In Tarcil [7], the interference is quanti-
fied using a set of microbenchmarks that determines the
amount of pressure a job can tolerate and generate at the
same time in a shared resource (i.e., caches, memory, and I/O
channels). For the time being we consider in our approach
the interference related to the response time/performance
of the RN to the requested queries. Both parameters (Si) and
(Ii) are expressed in [ms] as the measure for job processing
latency. In order to calculate the total execution time for an
unscheduled task, S ′i , the SC function assigns a weight to the
time derived from the interference latency (see Equation 1).

wi = 1 −
Ta
Tw i

(1)

The weight (wi) (see Equation 2) is generated based on
a list with the latest estimated task runtime calculated by
the SC function taking into account the wait-time matrix
provided by the RNs. In order to calculate (wi), we propose
to normalize the average estimated task runtime (Ta) to the
retrieved estimated taskwait-time (Twi). Then, the prioritized
SC queue contains the new values for the total execution
time of an unscheduled job S ′ = [S ′1, S

′
2, . . . , S

′
n] with the

minimal collocation interference time (see Equation 2). The
prioritization is then made based on the task with the highest
total execution time so it can be executed on the chosen RN.

S ′i = Si +wi × Ii (2)

The unprioritized jobs category refers to the collocated
jobs (e.g. StatefulSets used for running databases) that need
to share the same node resources. We consider the colloca-
tion execution time C = [S ′1, S

′
2, . . . , S

′
n] and the collocation

function PC which depends on the Node Feasibility (Fn) and
the average of total execution time for an unscheduled task
(Te x e c). Until now in Kubernetes version 1.12, the scheduler
worked on the principle to stop looking for more feasible
nodes once it finds a certain number of them, hence this
action improves the scheduler’s performance in large clus-
ters. The number is specified as a percentage of the clus-
ter size and it is controlled by a configuration parameter
called the percentageOfNodesToScore. The range should
be between 1 and 100. Larger values are considered as 100%,
default value of this option is 50% and zero is considered

ICFNDS, July 2019, Paris, France Oana Ungureanu, et al.

without the configuration option. A new mechanism has
been recently introduced in Kubernetes 1.14 which scores
the percentage of nodes based on the cluster size when there
is no specification in the configuration. The minimum score
will be 5% of the cluster size if the user does not provide
a configuration option smaller than 5% [21]. Therefore, we
consider the optimal values in the interval [0.2 - 0.5]. In
addition, we recall the average estimated task runtime (Ta)
normalized by the average of total execution time for an
unscheduled job (S ′n = Ta

Te x e c
). In this manner we determine

the collocation cases: if PC =1, the collocation of resources
is optimal and the result is sent to the SAs, if Pc < S ′n we
have a sub-optimal scheduling, otherwise the SC employs
the entire queue rescheduling (Equation 3):

PC =

{
1 − Fn , if Fn ≥ S ′n .

Fn Fn < S ′n .
(3)

Since the proposed scheduling is a distributed model, the
tasks wait-time and runtime are not always accurate and this
may generate competing decisions between the scheduler
agents. Moreover, multiple scheduling agents can allocate
tasks to the same resource node at the same time which again
might generate conflicts.
As in Omega [24] and Tarcil [7], we employ the lock-free

optimistic concurrency to resolve the conflicts between SAs.
This functions as follows: the system forwards a local copy
of the master state to each of the scheduler agents. When the
agent makes a job placement decision, it will update the MSA
using an "atomic write" operation. If there is a likelihood
for the job commit to be successful, the resources are allo-
cated to the corresponding agent and the other competing
agents will have to reschedule the job placement.

6 ANALYSIS OF OUR PROPOSED HYBRID
SHARE-STATE SCHEDULER IN COMPARISON
TO OTHER EXISTING SCHEDULERS
INTEGRATEDWITH KUBERNETES

Both Kubernetes [18] and Firmament [13] are centralized
schedulers that demand complex algorithms for task sched-
uling and prioritization. In Section 4 we identified several
problems with the Kubernetes Default Scheduler including
node over/under-utilization and node failures that lead to
cluster instability and loss of high-availability when multiple
pod replicas are scheduled on the same node. To solve sev-
eral of these issues, a Kubernetes Descheduler [20] has been
developed and already integrated with K8S system, therefore
we will consider it as a legitimate candidate in our analysis.

The Firmament scheduler is already integratedwith Kuber-
netes under the Poseidon project [29] and runs the min-cost
max-flow (MCMF) optimization algorithm. Even though its
main concern is to solve the pod-by-pod scheduling and

rescheduling by considering a globally optimal scheduling
environment and real-time metrics, it cannot solve problems
such as collocation interference avoidance.
Our new proposed scheduler is partially distributed as

it incorporates the scheduling logic across the scheduling
agents, but it also maintains an updated copy of the cluster
state in the MSA and a central scheduler for the unscheduled
jobs which makes it a hybrid scheduler. In addition to that,
our approach preserves the Kubernetes object pod specifi-
cations in order to simplify the future integration with the
Kubernetes architectural framework.

At code level, the Kubernetes scheduler creates a Binding
Object function which makes the connection between the
pod specifications and the nodes’ utilization. Upon creation
of a Binding Object, the Kubernetes API will update the Pod’s
Spec.NodeName [34] (see Figure 5). The nodeSelector is
a field of PodSpec and it includes a map of the key-value
pairs. In order for a pod to be considered eligible to run on a
node, that particular node should have as labels each of the
indicated key-value pairs.

Consequently, we will perform a comparison of the com-
mon features as well as the differences between the three
scheduling candidates integrated with the Kubernetes sched-
uling framework (Descheduler, Firmament-Poseidon and the
Hybrid shared-state proposed scheduler), see Table 2. We
further analyze how our proposed scheduler intends to solve
some of the encountered issues in our K8S deployed clus-
ter by considering as a reference the Kubernetes Default
Scheduler.

(A) The node Affinity/Anti-Affinity defines the man-
ner in which nodes are selected by the scheduler us-
ing custom labels on the nodes and selectors on the
pods. Normally, these rules must be met by a pod
to be scheduled on a particular node and in case the
node runs out of resources, the pod will not be sched-
uled. The rule applies by setting the parameter called
"requiredDuringSchedulingIgnoredDuringExecution" of
the nodeAffinity field.
i. Descheduler – The node affinity/anti-affinity repre-
sents a strategy to remove from the nodes the pods
which are not compliant with the node affinity. For
instance, if Pod A initially scheduled on Node A, met
the node affinity rule at the time of scheduling (ad-
mitting that parameter requiredDuringSchedulingIg-
noredDuringExecution was initially set), in the likely
event that over time another Node B becomes avail-
able and meets the node affinity rule requirement,
then pod A will be evicted from Node A.

ii. Firmament-Poseidon scheduler – Satisfies the node
affinity/anti-affinity rules since it can co-exist and

Kubernetes cluster optimization using hybrid shared-state scheduling framework ICFNDS, July 2019, Paris, France

Figure 5: K8S Binding Object function - Relationship between Node Selector and Affinity Requirements, extracted from [34]

run as an alternate scheduler to the Kubernetes De-
fault Scheduler by preserving the Kubernetes Bind-
ing Object function.

iii. Hybrid shared-state proposed scheduler – Includes
support for the node affinity/anti-affinity as the sched-
uling decisions and job placements are processed by
the distributed scheduling agents. This feature is
particularly useful especially in situations when the
K8S system components only need to be allocated
to the master node, or when it creates a dedicated
set of nodes to a particular group of users or as-
signs pods with special hardware requirements to
the right resource nodes.

(B) Inter-pod Affinity/Anti-affinity rule represents a
constraint against pod labels rather than node labels.
For instance, a stateful pod which runs a high I/O data-
base might have a storage backend requirement on a
preferred node. Moreover, due to latency constraints,
a set of pods can be ensured to run on the same node
[18]. The Kubernetes Default Scheduler provides two
types of pod affinity and anti-affinity corresponding
to "hard" vs. "soft" requirements. There are currently
two types of node affinity rules, named requiredDur-
ingSchedulingIgnoredDuringExecution and preferred-
DuringSchedulingIgnoredDuringExecution. The first rule
collocates pods running service A and service B in
the same zone since they communicate to each other,
whereas the latter represents a softer requirement - if
the condition to run the pods in the same zone is not
satisfied, it will stop making another node selection.

(C) Taints and Tolerations are the opposite of the node
affinity as they allow a node to reject a set of pods.
A pod may be bound to a node such that the node’s
taints match the pod’s tolerations. A pod must not be

bound to a node if the node’s taints do not match the
pod’s tolerations [22].
i. Descheduler –Does not include support for pod inter-
affinity nor taints and tolerations. Nevertheless, it
has a strategy to remove pods violating inter-pod
anti-affinity. This strategy makes sure that pods vio-
lating inter-pod anti-affinity are removed from the
nodes. For example, if pod A, pod B and pod C are
running on the same node and all three pods have
anti-affinity rules which prohibit them to run on the
same node, then pod A will be evicted from the node
so that pod B and pod C can continue to run. This
issue might happen if the anti-affinity rules for pods
B and C are created when they were already running
on the node. Currently, the Descheduler does not
present any parameters associated with this strategy.

ii. Firmament-Poseidon – Includes support for the pod
affinity/anti-affinity as well for node taints and tol-
erations. Despite all these, its performance in terms
of pod affinity/anti-affinity match is relatively slow
in comparison to the Default Scheduler [29].

iii. Hybrid shared-state proposed scheduler – Ensures this
feature in a similar way to the Kubernetes Default
Scheduler with the difference that the distributed
scheduling agents process the inter-pod affinity/anti-
affinity/taints and tolerations rules. The "required-
DuringSchedulingIgnoredDuringExecution" affinity
groups pods of service A and B in the same zone,
as they have an intensive communication with each
other, while the field "preferredDuringSchedulingIg-
noredDuringExecution for anti-affinity will ensure
the pods are spread out from each other. The ser-
vice collocation is performed in our proposal by
the scheduling correction (SC) function whose role

ICFNDS, July 2019, Paris, France Oana Ungureanu, et al.

Table 2: Features Comparison in Kubernetes Integrated Schedulers

Feature Default Scheduler Descheduler Poseidon-Firmament Proposed scheduler

Node Affinity/Anti-Affinity y y y y
Inter-pod Affinity/Anti-Affinity y partially y y
Taints/Tolerations y n y y
Baseline Scheduling/Optimal Scheduling n y partially y
Collocation Interference Avoidance n n partially y
High-availability n y n y
Priority Preemption y n partially y
Inherent Rescheduling n n y y

is to find a node alternative for the preferredDur-
ingSchedulingIgnoredDuringExecution rule.

(D) Baseline Scheduling/Optimal Scheduling – In or-
der to make scheduling decisions in accordance to the
resource requirements, the scheduler uses predicates
and priorities. Predicates represent hard constraints in
the sense that if they are violated, the pod will not be
run properly (e.g., the amount of memory requested
by a pod). The role of a priority function is to score
a relative value for the pod to run on a targeted node
and prioritize the nodes where pods members of the
same running service are not present. The priority
function is also an indicator of the pod reliability as it
reduces the chances that a node failure will disable all
the containers of a particular service [4]. Kubernetes
scheduler processes one pod a time. This might result
in assigning tasks to sub-optimal machines that will
inevitably lead to sub-optimal scheduling.
i. Descheduler – The under-utilization of nodes is de-
termined by a configurable threshold. This threshold
can be configured for CPU, memory, and number
of pods in terms of percentage. For example, if a
node is below 20% CPU utilisation and below 20%
memory utilisation and it has less than 20 pods, it
is considered under-utilised. If a node is above 50%
CPU utilisation and memory utilisation or has more
than 50 pods, it will be considered over-utilised [20].

ii. Firmament-Poseidon – Implementation of the Kuber-
netes scheduler’s predicates is not fully supported.
This scheduler employs bulk scheduling which pro-
cesses all the unscheduled tasks at the same time
including their soft and hard constraints. For each
task the scheduling algorithm typically performs
a feasibility check to identify suitable nodes, then
scores them according to a preference order and
finally places the task on the best-scoring node [13].

iii. The Hybrid shared-state proposed scheduler – When
calculating the node feasibility, the scheduling agents

iterate over the array of nodes in a round-robin fash-
ion. For a given pod, the scheduling agents starts
from the start of the array and checks feasibility of
the nodes until it finds enough nodes as specified
by the percentageOfNodesToScore. For the next
pod, the scheduler continues from the point where
the node array stopped at, while checking feasibil-
ity of nodes for the previous pod. The SC function
employs this capability for the collocated services
using the node Feasability score. If the collocation
result is less than the average estimated task runtime
normalized by the average of total execution time of
the unscheduled job, the RNs will send an updated
wait-time to the SC function so it can start running
again the scheduling algorithm.

(E) Collocation InterferenceAvoidance occurs between
pods competing for the same node resources. Stateful
applications (e.g., databases) might have more require-
ments (i.e., CPU, memory, etc.) than stateless services,
thus the scheduler needs to designate a specific set of
nodes to run the database, whereas for batch jobs the
workload resources requirements are uniform across
Replicasets/Deployments/Jobs.
i. Descheduler – Current design does not solve the
issue of pods conflicts.

ii. Firmament-Poseidon – offers an option in the form of
a configurable API policy to write the scheduling pol-
icy that avoids task and pod collocation interference
[29]. The collocation interference avoidance feature
partially exists in Firmament-Poseidon, whereas the
Kubernetes Default Scheduler provides extensive
support [18].

iii. Hybrid share-state proposed scheduler – This issue is
solved in our approach calling the SC function which
assigns a weight to the interference time derived
from the wait-time retrieved from the RNs for each
of the tasks and the average estimated task runtime.

Kubernetes cluster optimization using hybrid shared-state scheduling framework ICFNDS, July 2019, Paris, France

In this manner we differentiate the pod priorities by
the calculated job execution time.

(F) High-availability – the service high-availability sce-
nario mentioned in Section 3 where multiple pod repli-
cas might be scheduled on the same node without
taking into consideration service availability shows
that the Kubernetes Default Scheduler does not have
a mechanism adapted to the cluster dynamicity.
i. Descheduler – The Remove Duplicates strategy en-
sures there is only one pod associated with a Replica
Set, Deployment, or Job running on the same node.
If there are more, those duplicate pods are evicted
in order to better spread the pods in the cluster [20].

ii. Firmament-Poseidon – currently this scheduling frame-
work does not provide any strategy to ensure service
availability and workload balance across the cluster
in case of node failure or recovery.

iii. Hybrid share-state proposed scheduler –When a node
recovers, it will send a notification to theMSAwhich
will forward an updated copy of the current cluster
state to all the SAs so they will avoid scheduling
service duplicates on the recovered node.

(G) Priority preemption – In case a pod cannot be sched-
uled, the scheduler tries to evict the lower priority pods
in order to reschedule the available pods. The pods
need to be created with priorityClassName so the
scheduler orders the pending pods by their priorities
in the scheduling queue. If none of the nodes satisfies
the specified requirements of the pod, a priority-based
preemption is triggered for that pod.
i. Descheduler – It respects the following principle: Best
efforts pods (with the lowest priority) are evicted be-
fore Burstable pods (that hold some form of minimal
resource guarantee) and Guaranteed (top-priority)
pods.

ii. Firmament-Poseidon –Apreemption cost is employed.
Partially exists in Poseidon-Firmament [29] versus
extensive support in Kubernetes Default Scheduler.

iii. Hybrid share-state proposed scheduler – The pods
with the lowest priority which have not been sched-
uled are evicted from the SAs queues and they will
be send to the SC queue instead. In a StatefulSet we
need to terminate completely it before its replace-
ment. Thus, this job category is treated as unprior-
itized by the SC function. Therefore, based on its
score, one of the following possibilities will apply:
optimal scheduling, sub-optimal or rescheduling.

(H) InherentRescheduling –When a node is terminated,
the pods previously running on that nodewill be resched-
uled on the available nodes. If a new node is created
with the exact resources configuration as the termi-
nated node, the pods will not be rescheduled on this

new node. Moreover, if one of the nodes where the
pods have been scheduled happens to fail, the cluster
will experience an outage [12].
i. Descheduler – Will only evict the pod duplicates, it
has no support for the inherent rescheduling.

ii. The Poseidon-Firmament scheduler – Supports work-
load rescheduling as it functions based on the (MCMF)
optimization and the scheduler looks at the entire
cluster workload. This means that in each schedul-
ing iteration it considers all the pods, hence it can
migrate or evict pods from certain nodes without
producing any outage in the cluster.

iii. Hybrid share-state proposed scheduler – Since all the
schedulers are whole time aware of the cluster state,
this scenario is unlikely to happen. The SAs perma-
nently synchronize their state with the MSA and an
optimal scheduling is being run for each of the jobs
according to the resources requirements.

7 CONCLUSIONS AND FUTUREWORK
This paper presents a novel scheduling framework for the
Kubernetes system. The proposed hybrid-state scheduler
provides scheduling corrections (SC function) for the pro-
cessing of unscheduled and unprioritized jobs and assigns
distributed agents (SAs) to optimize locally the main tasks,
whereas the application-level scheduler (MSA) synchronizes
the cluster state across all agents. This approach is meant to
solve encountered problems like the behaviour of an aver-
age workload running in our deployed Kubernetes cluster
under different scenarios, where we deployed 50 services
in more than 75 pods. In order to classify and address the
scheduling issues of other existing scheduling frameworks,
we conducted a thorough survey of the main scheduling
mechanisms along with their differences in Section 2.
Since a centralized model previously proved not to per-

form in all scenarios like resiliency and fault-tolerance sched-
uling, we made an in-depth analysis of our proposed hy-
brid shared-state scheduler capabilities. Our findings show
that a shared-state scheduler integrated with the Kubernetes
Default Scheduler will solve problems like collocation in-
terference, priority preemption, high-availability or base-
line scheduling that we encountered in our deployed Kuber-
netes cluster. In contrast to the other existing schedulers that
have been integrated with Kubernetes system, our approach
should perform an optimal scheduling and rescheduling due
to the synchronized state of the cluster and the manner in
which the SC function processes task execution time for each
of the pods.
As a future work we propose a code implementation for

our proposed hybrid shared-state scheduler and the inte-
gration with Kubernetes scheduler as well as testing our
aforementioned discussed scenarios.

ICFNDS, July 2019, Paris, France Oana Ungureanu, et al.

REFERENCES
[1] Apache. Hadoop On Demand 2007. Scheduler. Retrieved March 13,

2019 from https://hadoop.apache.org/docs/r1.2.1/hodscheduler.html
[2] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-

ping Qian, Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable
and Coordinated Scheduling for Cloud-scale Computing. In Proceed-
ings of the 11th USENIX Conference on Operating Systems Design and
Implementation. USENIX Association, Berkeley, CA, USA, 285–300.
http://dl.acm.org/citation.cfm?id=2685048.2685071

[3] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and
John Wilkes. 2016. Borg, Omega, and Kubernetes. (2016), 50–57.
https://doi.org/10.1145/2890784

[4] B. Burns and C. Tracey. 2018. Managing Kubernetes: Operating
Kubernetes Clusters in the Real World. O’Reilly Media. https://
books.google.ro/books?id=UG15DwAAQBAJ

[5] C. Cérin, T. Menouer, W. Saad, and W. B. Abdallah. 2017. A New
Docker Swarm Scheduling Strategy. In 2017 IEEE 7th International
Symposium on Cloud and Service Computing (SC2). 112–117. https:
//doi.org/10.1109/SC2.2017.24

[6] Oleg Chunikhin. 2018. Implementing Advanced Scheduling
Techniques with Kubernetes. Retrieved March 13, 2019 from
https://thenewstack.io/implementing-advanced-scheduling-
techniques-with-kubernetes/

[7] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. 2015.
Tarcil: Reconciling Scheduling Speed and Quality in Large Shared
Clusters. In Proceedings of the Sixth ACM Symposium on Cloud Com-
puting. ACM, New York, NY, USA, 97–110. https://doi.org/10.1145/
2806777.2806779

[8] Docker 2019. What is a Container? Retrieved March 12, 2019 from
https://www.docker.com/resources/what-container

[9] Dominik Ernst, David Bermbach, and Stefan Tai. 2016. Understand-
ing the Container Ecosystem : A Taxonomy of Building Blocks for
Container Lifecycle and Cluster Management.

[10] Etcd 2018. Etcd. Retrieved March 16, 2019 from https://etcd.io/
[11] Fluentd 2018. Fluentd Project. Retrieved March 16, 2019 from

https://www.fluentd.org/
[12] GitHub Kubernetes 2017. Automatic pod rescheduling. Retrieved

March 13, 2019 from https://github.com/kubernetes/kubernetes/
issues/47965

[13] Ionel Gog,Malte Schwarzkopf, AdamGleave, Robert N.M.Watson, and
Steven Hand. 2016. Firmament: Fast, Centralized Cluster Scheduling
at Scale. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation. USENIXAssociation, Berkeley, CA,
USA, 99–115. http://dl.acm.org/citation.cfm?id=3026877.3026886

[14] Armand Grillet. 2016. Comparison of Container Schedulers. Re-
trieved March 12, 2019 from https://medium.com/@ArmandGrillet/
comparison-of-container-schedulers-c427f4f7421

[15] Hashicorp. Nomad Project 2007. Nomad. Retrieved March 13, 2019
from https://www.nomadproject.io/

[16] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011.
Mesos: A Platform for Fine-grained Resource Sharing in the Data Cen-
ter. In Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation. USENIX Association, Berkeley, CA, USA,
295–308. http://dl.acm.org/citation.cfm?id=1972457.1972488

[17] Toye Idowu. 2018. What is a Kubernetes Deployment? Deployment in
K8S Explained. RetrievedMarch 16, 2019 from https://www.bmc.com/
blogs/kubernetes-deployment/

[18] Kubernetes 2019. Kubernetes Documentation. Retrieved March 12,
2019 from https://kubernetes.io/docs/

[19] Kubernetes 2019. Unofficial Kubernetes. Retrieved March 16, 2019
from https://unofficial-kubernetes.readthedocs.io/en/latest/getting-
started-guides/docker-multinode/

[20] Kubernetes Incubator 2019. Descheduler for Kubernetes. Re-
trieved March 12, 2019 from https://github.com/kubernetes-incubator/
descheduler

[21] Kubernetes Repository 2018. Scheduler Performance Tuning. Re-
trieved March 13, 2019 from https://github.com/kubernetes/website/
blob/master/content/en/docs/concepts/configuration/scheduler-
perf-tuning.md

[22] Ian Lewis and David Oppenheimer. 2017. Advanced Scheduling in
Kubernetes. Retrieved March 13, 2019 from https://kubernetes.io/
blog/2017/03/advanced-scheduling-in-kubernetes/

[23] Sean Loiselle. 2018. Kubernetes: The State of Stateful Apps. Re-
trieved March 13, 2019 from https://www.cockroachlabs.com/blog/
kubernetes-state-of-stateful-apps/

[24] Schwarzkopf Malte, Konwinski Andy, Abd-El-Malek Michael, and
Wilkes John. 2013. Omega: Flexible, Scalable Schedulers for Large
Compute Clusters. In Proceedings of the 8th ACM European Conference
on Computer Systems. ACM, New York, NY, USA, 351–364. https:
//doi.org/10.1145/2465351.2465386

[25] Tarek Menouer and Christophe Cérin. 2017. Scheduling and Resource
Management Allocation System Combined with an Economic Model.
In ISPA/IUCC. IEEE, 807–813.

[26] Mesos Apache Org. 2018. The Apache Software Foundation. Apache
Mesos. Retrieved March 12, 2019 from http://mesos.apache.org/

[27] Ngnix 2019. NGINX Ingress Controller for Kubernetes. Retrieved
April 30, 2019 from https://github.com/kubernetes/ingress-nginx

[28] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013.
Sparrow: Distributed, Low Latency Scheduling. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM,
New York, NY, USA, 69–84. https://doi.org/10.1145/2517349.2522716

[29] Poseidon 2017. A Firmament-based Kubernetes scheduler. Retrieved
March 13, 2019 from https://github.com/kubernetes-sigs/poseidon

[30] Malte Schwarzkopf. 2016. The evolution of cluster scheduler archi-
tectures. Retrieved March 13, 2019 from http://firmament.io/blog/
scheduler-architectures.html#fig1e

[31] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and Y. C. Tay.
2016. Containers and Virtual Machines at Scale: A Comparative
Study. In Proceedings of the 17th International Middleware Confer-
ence. ACM, New York, NY, USA, 1:1–1:13. https://doi.org/10.1145/
2988336.2988337

[32] Swarm 2017. Swarm: a Docker-native clustering system. Retrieved
March 12, 2019 from https://github.com/docker/swarm

[33] The Helm Project 2019. Heapster. Retrieved March 13, 2019 from
https://github.com/helm/charts/tree/master/stable/heapster

[34] Dominik Tornow. 2018. The Kubernetes Scheduler. Retrieved
March 13, 2019 from https://medium.com/@dominik.tornow/the-
kubernetes-scheduler-cd429abac02f

[35] César Tron-Lozai. 2018. Keep your Kubernetes cluster bal-
anced: the secret to High Availability. Retrieved March 13,
2019 from https://itnext.io/keep-you-kubernetes-cluster-balanced-
the-secret-to-high-availability-17edf60d9cb7

[36] Vault Project 2018. Kubernetes Auth Method. Retrieved March 16,
2019 from https://www.vaultproject.io/docs/auth/kubernetes.html

[37] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley,
Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. 2013. Apache
Hadoop YARN: Yet Another Resource Negotiator. In Proceedings of
the 4th Annual Symposium on Cloud Computing. ACM, New York, NY,
USA, 5:1–5:16. https://doi.org/10.1145/2523616.2523633

https://hadoop.apache.org/docs/r1.2.1/hod_scheduler.html
http://dl.acm.org/citation.cfm?id=2685048.2685071
https://doi.org/10.1145/2890784
https://books.google.ro/books?id=UG15DwAAQBAJ
https://books.google.ro/books?id=UG15DwAAQBAJ
https://doi.org/10.1109/SC2.2017.24
https://doi.org/10.1109/SC2.2017.24
https://thenewstack.io/implementing-advanced-scheduling-techniques-with-kubernetes/
https://thenewstack.io/implementing-advanced-scheduling-techniques-with-kubernetes/
https://doi.org/10.1145/2806777.2806779
https://doi.org/10.1145/2806777.2806779
https://www.docker.com/resources/what-container
https://etcd.io/
https://www.fluentd.org/
https://github.com/kubernetes/kubernetes/issues/47965
https://github.com/kubernetes/kubernetes/issues/47965
http://dl.acm.org/citation.cfm?id=3026877.3026886
https://medium.com/@ArmandGrillet/comparison-of-container-schedulers-c427f4f7421
https://medium.com/@ArmandGrillet/comparison-of-container-schedulers-c427f4f7421
https://www.nomadproject.io/
http://dl.acm.org/citation.cfm?id=1972457.1972488
https://www.bmc.com/blogs/kubernetes-deployment/
https://www.bmc.com/blogs/kubernetes-deployment/
https://kubernetes.io/docs/
https://unofficial-kubernetes.readthedocs.io/en/latest/getting-started-guides/docker-multinode/
https://unofficial-kubernetes.readthedocs.io/en/latest/getting-started-guides/docker-multinode/
https://github.com/kubernetes-incubator/descheduler
https://github.com/kubernetes-incubator/descheduler
https://github.com/kubernetes/website/blob/master/content/en/docs/concepts/configuration/scheduler-perf-tuning.md
https://github.com/kubernetes/website/blob/master/content/en/docs/concepts/configuration/scheduler-perf-tuning.md
https://github.com/kubernetes/website/blob/master/content/en/docs/concepts/configuration/scheduler-perf-tuning.md
https://kubernetes.io/blog/2017/03/advanced-scheduling-in-kubernetes/
https://kubernetes.io/blog/2017/03/advanced-scheduling-in-kubernetes/
https://www.cockroachlabs.com/blog/kubernetes-state-of-stateful-apps/
https://www.cockroachlabs.com/blog/kubernetes-state-of-stateful-apps/
https://doi.org/10.1145/2465351.2465386
https://doi.org/10.1145/2465351.2465386
http://mesos.apache.org/
https://github.com/kubernetes/ingress-nginx
https://doi.org/10.1145/2517349.2522716
https://github.com/kubernetes-sigs/poseidon
http://firmament.io/blog/scheduler-architectures.html#fig1e
http://firmament.io/blog/scheduler-architectures.html#fig1e
https://doi.org/10.1145/2988336.2988337
https://doi.org/10.1145/2988336.2988337
https://github.com/docker/swarm
https://github.com/helm/charts/tree/master/stable/heapster
https://medium.com/@dominik.tornow/the-kubernetes-scheduler-cd429abac02f
https://medium.com/@dominik.tornow/the-kubernetes-scheduler-cd429abac02f
https://itnext.io/keep-you-kubernetes-cluster-balanced-the-secret-to-high-availability-17edf60d9cb7
https://itnext.io/keep-you-kubernetes-cluster-balanced-the-secret-to-high-availability-17edf60d9cb7
https://www.vaultproject.io/docs/auth/kubernetes.html
https://doi.org/10.1145/2523616.2523633

	Abstract
	1 Introduction
	2 Related work and a brief taxonomy of the existing scheduling mechanisms
	3 Architecture of our deployed Kubernetes cluster
	4 Identified problems in Kubernetes scheduler
	5 The proposed hybrid shared-state scheduler
	Scheduling Correction (SC) function

	6 Analysis of our proposed hybrid share-state scheduler in comparison to other existing schedulers integrated with Kubernetes
	7 Conclusions and future work
	References

