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a b s t r a c t 

In this paper we study the generalized Gause model, with a logistic growth rate for the prey in absence 

of the predator, a constant death rate for the predator and for several different classes of functional 

response, all non-analytical. First we consider the piecewise-linear functional response of Holling type 

I, which essentially has a linear functional response on a bounded interval and a constant functional 

response for large enough prey density. Next we consider differentiable modifications of this type of 

functional response, one being a concave down function, the other one being a sigmoidal function. 

Our main interest is the number of closed orbits of the systems under consideration and the global 

stability of the system. We compare the generalized Gause model with a functional response that is non- 

analytical with the generalized Gause model with a functional response that is analytical (e.g., Holling 

type II or III) and show that the behaviour in the first case is more complicated. As examples of this 

more complicated behaviour we mention: the co-existence of a stable equilibrium with a stable limit 

cycle and the existence of a family of closed orbits. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The two main types of interaction between any pair of biologi-

al species, which are of interest to the ecologist, are either when

hey are competing together for some common source of food sup-

ly, or when one of the species preys upon the other. In this paper

e will restrict our attention to the latter case. 

The existence and the number of isolated periodic solutions

limit cycles) is one of the most delicate problems connected with

wo-dimensional predator-prey models. 

One of the first examples of a biological system modelling the

nteraction between prey and predators was formulated by Lotka

n 1925 [24] and Volterra in 1927 [30] : 

dx 

dt 
= αx − βxy, 

dy 

dt 
= −δy + γ xy. (1.1)

n system (1.1) x ( t ) and y ( t ) denote prey and predator densities re-

pectively, as functions of time. Furthermore, all constants are as-

umed to be positive. Obviously, the attention is restricted to x ≥ 0,

 ≥ 0. 

It is a well-known fact that system (1.1) has a family of periodic

rbits, but no limit cycles. Due to the fact that (1.1) has a center,
∗ Corresponding author: Singapore University of Technology and Design, iTrust, 

entre for Research in Cybersecurity, 8 Somapah Road, Singapore 487372. 

E-mail address: r.e.kooij@tudelft.nl (R.E. Kooij). 

 

S  

s  

ttps://doi.org/10.1016/j.chaos.2019.03.036 

960-0779/© 2019 Elsevier Ltd. All rights reserved. 
ystem (1.1) lacks structural stability. That is, the topological char-

cter of the phase portrait of (1.1) can be changed if we take into

ccount arbitrarily small additional effects. If for example (1.1) is

odified to include the effect of competition among the prey (by

dding −εx 2 to the first equation of (1.1) ), then the resulting sys-

em no longer has a center and the population oscillations decay,

ee [8] . 

A generalization of system (1.1) was suggested by Gause in 1934

10] 

dx 

dt 
= αx − p(x ) y, 

dy 

dt 
= −δy + γ p(x ) y. (1.2)

ere α > 0 is the growth rate of the prey in absence of the preda-

or; δ > 0 is the death rate of the predator in absence of the prey;

> 0 is the rate of conversion of consumed prey to predator. Fi-

ally, p ( x ) is the capture rate of prey per predator or functional

esponse of a predator. 

For most examples that appear in the literature (see the bib-

iography in [8] ) it is assumed that p(0) = 0 and p ′ ( x ) > 0 for all

 > 0. 

The generalized Gause model for the interaction of the two

pecies is (see [8] ): 

dx 

dt 
= xg(x ) − p(x ) y, 

dy 

dt 
= −δy + γ p(x ) y. (1.3)

ystem (1.3) incorporates density-dependent prey growth in ab-

ence of the predator. This is introduced in the model, because it

https://doi.org/10.1016/j.chaos.2019.03.036
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is quite unrealistic to assume that the prey density will become in-

finitely large in absence of predators, as will happen for (1.1) and

(1.2) . 

The growth rate g ( x ) satisfies g (0) > 0, g ′ ( x ) < 0 for all x > 0 and

there exists a k > 0 such that g(k ) = 0 . The constant k is called the

carrying capacity of the prey. A growth rate of this type is thought

to model the situation where the food supply for the prey is lim-

ited. For high densities of prey they will compete for the resources.

A famous example that belongs to systems of type (1.3) is a

system first mentioned by Rosenzweig & McArthur in 1963 [25] : 

dx 

dt 
= ax (1 − bx ) − p(x ) y, 

dy 

dt 
= −δy + γ p(x ) y. (1.4)

where p(x ) = 

x 
c+ x and a, b, c, γ and δ are positive constants. Sys-

tem (1.4) is important because it is a structurally stable model

which can exhibit persistent oscillations. 

The uniqueness of the limit cycle of system (1.4) was first

proved by Cheng [3] . However, his arguments are rather tedious;

a simplified proof was given by Kuang & Freedman [16] . Both in

[3,16] it is proved that system (1.4) has at most one closed orbit, a

stable limit cycle. This means that, within systems of class (1.4) the

limit cycle is structurally stable. Later it was proved in [18] that if

system (1.4) has a limit cycle �, then it is hyperbolic. This means

that for any arbitrarily small C 

1 perturbation of (1.4) there are no

other limit cycles in a sufficiently small neighbourhood of the per-

turbed stable limit cycle �′ . 
The functional response p ( x ) in system (1.4) was suggested by

the biologist Holling in 1959 [11] . In fact, based on actual field

data, he argued that the functional response should not only be

a monotonically increasing, but also a bounded function. The func-

tion p(x ) = 

x 
c+ x is referred to as a functional response of Holling

type II. For p(x ) = 

x 2 

c+ x 2 , we say the functional response is of

Holling type III. This sigmoidal curve is modelling predators which

exhibit some form of learning behaviour. Below a certain thresh-

old density the predator is capturing only a small number of prey

but above this threshold the predators increase their feeding rates,

until some saturation level is reached. The existence and unique-

ness of the limit cycle for system (1.4) with functional response of

Holling type III was proved by Chen & Zhang [6] . A more general

type of functional response was introduced by Kazarinov & van

der Driessche [15] : p(x ) = 

x n 

c+ x n , c > 0 , n ≥ 1 . They only studied the

existence of limit cycles. The uniqueness and hyperbolicity of the

limit cycle in this case is proved in [18] . 

Although we will restrict ourselves to monotonic functional re-

sponses, some authors also considered non-monotonic, unimodal

functional responses, see [9,27,32] . This type of function is as-

sumed to model group defense. Initially the function grows with

x , but as the prey density gets larger, the prey can defend them-

selves successfully against the predators. It is known that system

(1.3), with p ( x ) non-monotonic, can have two limit cycles, see [26] .

The non-monotonic functional response satisfying p(x ) = 

mx 
a + bx + x 2 ,

originally dubbed Monod-Haldane functional response, see [2] , is

sometimes referred to as Holling Type IV, see [12] . 

Recent research related to the generalized Gause system (1.3)

studies the impact of impulsive control [7,22] , mutual interference

[20,28] , harvesting [13,23] and singular perturbation analysis [19] . 

As can be seen from the terminology, another type of func-

tional response was proposed by Holling. The function which satis-

fies p(x ) = ax for 0 < x ≤ x 0 and p(x ) = ax 0 for x > x 0 is referred to

as a functional response of Holling type I. Note that this function

is continuous but not differentiable. System (1.4) with functional

response of Holling type I was studied by Nangen [21] . He proved

that for certain parameter values system (1.4) can have at least two

limit cycles. This implies the remarkable result that for a suitable

choice of the parameters, system (1.4) exhibits coexistence of a sta-

ble equilibrium and a stable limit cycle. As the paper of Liu is in
hinese we will summarize it here and we will also include the

ase b = 0 , which was not considered in [21] . Note that b = 0 im-

lies that the carrying capacity of the prey has become infinitely

arge. 

The systems which we consider in this paper belong to a family

f predator-prey systems of the form (1.4) extending the Holling I

ype functional response, essentially replacing the linear function

p(x ) = x on the interval 0 ≤ x ≤ 1 by a cubic function. The system

as the following form: 

dx (t) 

dt 
= xg(x ) − p(x ) y, 

dy (t) 

dt 
= −δy + p(x ) y. (1.5)

ith g(x ) = φ(1 − x 
k 
) , p(x ) = x (1 + (x − 1)(a 0 + a 1 x )) , for 0 ≤ x ≤ 1,

p(x ) = 1 , for x > 1, and φ > 0, k > 0, δ > 0. 

Here we have chosen a rescaling of the two variables x, y and a

caling of the time parameter t in such a way to make the param-

ter γ equal to 1, to make the point where the functional response

hanges character at x = 1 and to make p(1) = 1 . 

We will consider several special cases of system (1.5) all satis-

ying the additional natural condition that p ′ ( x ) ≥ 0 on the interval

 ≤ x ≤ 1: 

(1) a 0 = a 1 = 0 which implies p 1 (x ) = x for 0 ≤ x ≤ 1 and

p 1 (x ) = 1 for x > 1. This is the Holling type I case which we will

eview. We will indicate some new results in this case as well. 

(2) a 0 = −1 , a 1 = 0 which implies p 2 (x ) = x (2 − x ) for 0 ≤ x ≤ 1

nd p 2 (x ) = 1 for x > 1. Note that p 2 (x ) ∈ C 

1 but p 2 (x ) / ∈ C 

2 . We

ill prove that for p(x ) = p 2 (x ) system (1.5) has at most one limit

ycle. 

(3) a 0 = 1 , a 1 = −2 which implies p 3 (x ) = x 2 (3 − 2 x ) for

 ≤ x > 1 and p 3 (x ) = 1 for x ≥ 1. This sigmoidal function also

atisfies p 3 (x ) ∈ C 

1 but p 3 (x ) / ∈ C 

2 . 

We will show that for p(x ) = p 3 (x ) system (1.5) has at least one

imit cycle if the positive equilibrium is unstable but if the positive

quilibrium is stable, then for certain parameter values two limit

ycles can coexist. 

We now discuss the biological motivation for considering the

roposed functional responses p 2 ( x ) and p 3 ( x ). For the functional

esponse of Holling type I, clearly a threshold for the prey den-

ity is present, after which the function is assumed to be constant.

efore this threshold is reached, the function increases linearly.

n [14,28,29] the interpretation of introducing a cut-off in the re-

ponse function is motivated. According to Seo and Kot [28] and

eo and DeAngelis [29] it is plausible that individual predators

bruptly stop increasing their feeding rates when the prey den-

ity exceeds a threshold value: predators will have little difficulty

since the prey density has exceeded a threshold value) capturing

nd assimilating prey, but will switch their time to other activities

nce their ingestion rates are large enough to satisfy their ener-

etic needs. In [14] the Holling type I cut-off response function is

ecognized to be the Blackman’s equation often occurring in filter

eeders which satisfy the handling and satiation conditions of the

olling type I functional response. 

One can thus argue that a functional response with a cut-off,

.e. with a threshold for the prey density, is a realistic assumption

or predator-prey systems. 

The function p 2 ( x ) is the simplest possible function with a cut-

ff, with the same qualitative properties as Holling type II, i.e. a

ifferentiable function with a non-positive second order deriva-

ive. Likewise, the function p 3 ( x ) is the simplest possible function

ith a cut-off, with the same qualitative properties as Holling type

II, i.e. a sigmoidal, differentiable function. Obviously, many more

unctional responses with a cut-off could be considered, with the

ame qualitative properties as Holling type II and III. However, the

im of this paper is to show that even the simplest choices, i.e.

 2 ( x ) and p 3 ( x ), lead to richer dynamics, than predator-prey sys-

ems with Holling type II and III functional responses. 
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Fig. 1. Phase portrait for system (2.4) δ > 1. 

Fig. 2. Phase portrait for system (2.4) 0 < δ < 1; φ − 1 + δ > 0 . 

Fig. 3. Phase portrait for system (2.4) 0 < δ < 1; φ − 1 + δ ≤ 0 . 

Fig. 4. Phase portrait for system (2.1) δ > 1. 
For future reference we observe that system (1.5) can be trans-

ormed into a so-called generalized Liénard equation, a fact which

e will use frequently when studying the existence or uniqueness

f limit cycles. 

Applying the rescaling of time t = 

t̄ 
p(x ) 

and the nonlinear trans-

ormation y ≡ e v to system (1.5) we get: 

dx (t) 

dt 
= F (x ) − e v , 

dv (t) 

dt 
= g(x ) , (1.6)

here 

 (x ) = 

φ

k 

k − x 

(1 + (x − 1)(a 0 + a 1 x )) 
, 0 < x ≤ 1 

= 

φ

k 
x (k − x ) , x > 1 , 

g(x ) = 1 − δ

x (1 + (x − 1)(a 0 + a 1 x )) 
, 0 < x ≤ 1 

= 1 − δ, x > 1 , (1.7) 

nd 

> 0 , k > 0 , δ > 0 . (1.8)

ote that we follow the tradition in the literature of denoting the

unction on the right hand side of dy 
dt 

as g ( x ) in the Liénard system.

his is not the same function as the function g ( x ) in (1.5) . 

. Holling type I, a non-differentiable functional response 

In this section we study the family of systems (1.5) of the gen-

ralized Gause model type, where the functional response is of

olling type I, i.e. p(x ) = x for 0 ≤ x ≤ 1 and p(x ) = 1 for x > 1. 

We first consider the case where the prey has an infinitely large

arrying capacity i.e. k = ∞ , hence the prey is allowed to grow to

nfinity exponentially in absence of predators: 

dx 

dt 
= φx − p 1 (x ) y, 

dy 

dt 
= −δy + p 1 (x ) y, (2.1)

ith p 1 (x ) = x for 0 ≤ x ≤ 1 and 1 for x > 1. 

Here φ > 0 is the intrinsic growth rate in absence of predation. 

We will determine the phase portrait of (2.1) for x ≥ 0, y ≥ 0. 

To obtain the phase portrait of (2.1) we have to combine the

rajectories for 0 ≤ x ≤ 1 with those for x > 1. 

For 0 ≤ x ≤ 1 system (2.1) becomes 

dx 

dt 
= φx − xy, 

dy 

dt 
= −δy + xy. (2.2)

f course system (2.2) belongs to the class of Lotka-Volterra sys-

ems. Its first integral reads: 

(x, y ) = x − δln (x ) + y − φln (y ) , (2.3)

nd all trajectories in the first quadrant are closed and surround

he center ( δ, φ). 

The singularity ( δ, φ) exists for system (2.1) if and only if

 < δ < 1. 

For x > 1 system (2.1) becomes a linear system: 

dx 

dt 
= φx − y, 

dy 

dt 
= (1 − δ) y. (2.4)

or 0 < δ < 1 the origin of (2.4) is an unstable node and for δ > 1

t is a saddle. System (2.4) has a straight line solution y = (φ − 1 +
) x which is situated in the first quadrant if φ − 1 + δ > 0 . 

The corresponding phase portraits for system (2.4) are given in

igs. 1–3 . 

Combining the knowledge of (2.2) and (2.4) we conclude that

or δ > 1 system (2.1) has no positive equilibrium. The correspond-

ng phase portrait is given in Fig. 4 , where, as usual the phase

lane has been compactified, see for instance Andronov et al. [1] . 
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Fig. 5. Phase portrait for system (2.1) 0 < δ < 1; φ − 1 + δ > 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Phase portrait for system (2.1) 0 < δ < 1; φ − 1 + δ ≤ 0 . 
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For 0 < δ < 1 (2.1) has a positive equilibrium ( δ, φ) which has a

family of closed orbits in its neighbourhood. We can give the exact

size of this neighbourhood. 

Theorem 2.1. Consider system (2.1) with 0 < δ < 1 . Then all trajec-

tories starting on or inside the oval � = { x > 0 , y > 0 | x − δln (x ) +
y − φln (y ) = 1 + φ − φln (φ) } are closed. Trajectories starting outside

this oval become unbounded. 

Proof. The first part is trivial because � is the integral curve of

system (2.2) which is tangent to x = 1 . For the second part we

compare the trajectories of system (2.4) with those of 

dx 

dt 
= φ − y, 

dy 

dt 
= (1 − δ) y. (2.5)

Take any point A 0 (1, y 0 ) with 0 < y 0 < φ, then the trajectory of

(2.5) starting in A 0 will intersect the line x = 1 in A 1 (1, y 1 ) with

y 1 > φ. The first integral of (2.5) reads 

K(x, y ) = (1 − δ) x + y − φln (y ) . (2.6)

It follows that 

1 − δ + y 1 − φln (y 1 ) = 1 − δ + y 0 − φln (y 0 ) . (2.7)

Now we will follow the trajectory of (2.2) starting in A 1 (1, y 1 ). It

will intersect x = 1 in A 2 (1, y 2 ) with y 2 < φ. Using (2.3) we find 

1 − δ + y 2 − φln (y 2 ) = 1 − δ + y 1 − φln (y 1 ) , 

hence we conclude from (2.7) that y 2 = y 0 and thus the trajectory

starting in A 0 is closed. 

It is also differentiable because ( dy 
dx 

) (2 . 2) ;x =1 = ( dy 
dx 

) (2 . 5) . 

For x > 1 we get 

( 
dK 

dt 
) (2 . 4) = φ(1 − δ)(x − 1) ≥ 0 , 

for δ < 1. It follows that trajectories of (2.4) intersect those of

(2.5) from the left to the right for x > 1. Because the trajectories

of (2.5) x > 1 combined with those of (2.2) x ≤ 1 are closed this com-

pletes the proof. �

All possible phase portraits of system (2.1) are depicted in

Figs. 4–6 . 

The shaded regions in Figs. 5 and 6 denote the family of closed

orbits. 

Remark 2.2. For the case φ − 1 + δ > 0 , 0 < δ < 1 almost all trajec-

tories starting outside the oval � will tend to infinity such that

the predator becomes extinct while the prey density becomes un-

bounded. For trajectories starting on the semi-line y = (φ − 1 +
δ) x, x > 1 , or for trajectories reaching this semi-line in finite time,

both prey and predator densities become unbounded. However, a

slight change in the initial conditions will again lead to extinction
f the predator. For the case φ − 1 + δ ≤ 0 , 0 < δ < 1 all trajectories

re oscillatory. 

emark 2.3. The degenerate case δ = 1 is omitted. 

Next we will consider the original Holling I system 

dx 

dt 
= φx (1 − x 

k 
) − p 1 (x ) y, 

dy 

dt 
= −δy + p 1 (x ) y, (2.8)

ith p 1 (x ) = x for 0 ≤ x ≤ 1, p 1 (x ) = 1 for x > 1 and φ > 0. 

As mentioned before system (2.8) was investigated by Liu [21] .

is main result is the following: 

heorem 2.4. For certain parameter values system (2.8) has at least

wo limit cycles. 

As the paper by Liu is in Chinese and not easily accessible we

ill repeat here a sketch of the proof. First a lemma is stated that

ill appear to be useful in the rest of the paper. 

emma 2.5. Consider the generalized Gause model 

dx 

dt 
= xg(x ) − p(x ) y, 

dy 

dt 
= −δy + γ p(x ) y, (2.9)

here g ( x ) is a C 

1 -function satisfying g(0) > 0 , g ′ (x ) < 0 , g(k ) = 0

nd p ( x ) satisfies a Lipschitz condition while p(0) = 0 , p ′ (x + 0) ≥ 0

nd p ′ (x − 0) ≥ 0 , where k, x > 0 . 

(a) Suppose (2.9) has a positive equilibrium E ( x ∗, y ∗) . If
d 
dx 

( xg(x ) 
p(x ) 

) x = x ∗ > 0(< 0) then E ( x ∗, y ∗) is asymptotically unstable (sta-

le). 

(b) It is possible to indicate a closed curve J, containing and sur-

ounding all singularities in the closed first quadrant, such that on

his curve the vector field of (2.9) is either tangent or directed in-

ards. Furthermore, all trajectories starting outside J will reach J in

nite time. 

The proof of Lemma 2.5 can be found in [8] . Lemma 2.5 (a) is

ometimes referred to as the Rosenzweig-McArthur criterion. The

riterion can also be deduced from the observation that at E ( x ∗,

 

∗), the divergence of the equivalent Liénard system (1.6) satis-

es dF (x )) 
dx 

| x = x ∗ . In Lemma 2.5 (b) the conclusion is that the system

2.9) is bounded, i.e. eventually all solutions will enter a bounded

egion in the phase plane and will stay there. 

emark 2.6. The closed curve mentioned in Lemma 2.5 (b) can be

aken piecewise linear, see Fig. 7 . 

We will only give a sketch of the proof of theorem 2.4 , see [21] .

roof. Consider system (2.8) with k > 2 and δ = 1 − ε. Then for

= 0 system (2.8) is degenerate; all points satisfying y = φx (1 −
x 
k 
) , with x > 1, are singular points, see Fig. 8 . 
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Fig. 7. The closed curve J . 

Fig. 8. System (2.9) , ε = 0 . 

Fig. 9. The curve � in the proof of Theorem 2.4 . 
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Fig. 10. System (3.1) ; δ > 1. 
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It is easy to see that for 0 < ε 	 1 system (2.8) has a unique

ositive equilibrium ( x ∗, y ∗) with x ∗ < 1. Next, consider the trajec-

ory γ starting in B ( k 2 , 
φk 
4 ) and ending in C( k 2 , ̄y ) , its first intersec-

ion with the line x = 

k 
2 . Note that this situation is guaranteed if

he singularity ( x ∗, y ∗), for small ε, is a focus, not if it is a node. The

ode case was not considered in [21] and we will report on the in-

estigation of this bifurcation mechanism in more detail in a future

ublication. For small enough φ the singularity is a focus and the

rgument holds true. In that case the vector field (2.8) is tangent

r directed outward of the closed curve �, consisting of γ and the

ine segment CB , see Fig. 9 . There is at least one stable limit cy-

le outside � by Lemma 2.5 (b) and the Poincaré-Bendixson theo-

em. By Lemma 2.5 (a) ( x ∗, y ∗) is stable so again by the Poincaré-
endixson theorem there is at least one unstable limit cycle inside

. �

. A differentiable functional response 

In this section we study the family of systems (1.5) of the gen-

ralized Gause model, where the functional response is differen-

iable: p(x ) ≡ p 2 (x ) = x (2 − x ) for 0 ≤ x ≤ 1 and p(x ) ≡ p 2 (x ) = 1

or x > 1, i.e. a 0 = −1 , a 1 = 0 in system (1.5) . 

The system takes the explicit form: 

dx 

dt 
= φx (1 − x 

k 
) − p 2 (x ) y, 

dy 

dt 
= −δy + p 2 (x ) y. (3.1)

 first observation is that (3.1) has two singularities on the x -axis:

 saddle at O (0, 0) and a singularity at K ( k , 0). The x -coordinate of

 possible third singularity E ( x ∗, y ∗) has to satisfy: 

δ + p 2 (x ) = 0 . (3.2)

ase 1: δ > 1 

Because p 2 ( x ) ≤ 1, (3.2) has no solution hence (3.1) has only two

ingularities, the saddle O and a singularity at K ( k , 0). By studying

he variational matrix at K it is easy to show that for this case K is

 stable node. The corresponding phase portrait is given in Fig. 10 .

Note that this case will lead to extinction of the predator. 

Case 2: δ < 1 

Now there exists a unique x ∗ with 0 < x ∗ < 1 such that

3.2) holds. The y -coordinate of E ( x ∗, y ∗) satisfies y ∗ = 

φx ∗(1 − x ∗
k 

) 

δ
. 

Subcase k ≤ 1 

(i) If k ≤ x ∗ then y ∗ ≤ 0 and the phase portrait is again as in

ig. 10 . 

(ii) For k > x ∗, E ( x ∗, y ∗) is a positive equilibrium. Studying the

ariational matrices about K and E it is easy to show that K is a

addle whereas E is an antisaddle (i.e. an elementary singular point

ith index +1) that is asymptotically stable. 

To obtain the phase portrait of system (3.1) we have to combine

he trajectories for 0 ≤ x ≤ 1 with those for x > 1. 

For 0 ≤ x ≤ 1 system (3.1) becomes 

dx 

dt 
= φx (1 − x 

k 
) − x (2 − x ) y, 

dy 

dt 
= −δy + x (2 − x ) y. (3.3)

ystem (3.3) has no limit cycles in the strip 0 ≤ x ≤ 1 as can be

een by applying the Bendixson-Dulac criterion, see [1] , with Dulac

unction B (x, y ) = 

1 
x (2 −x ) y 

. 

For x > 1 system (3.1) becomes 

dx 

dt 
= φx (1 − x 

k 
) − y, 

dy 

dt 
= −δy + y. (3.4)

Obviously system (3.4) has no closed orbits in the first quad-

ant because for y ≥ 0 dy 
dt 

≥ 0 as 0 < δ < 1. Because k ≤ 1 trajecto-

ies of system (3.1) can only intersect x = 1 from the right to the
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Fig. 11. System (3.1) ; x ∗ < k ≤ 1. 

Fig. 12. The function h ( x ) in the proof of Theorem 3.2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. System (3.1) ; 1 < k ≤ 2. 

Fig. 14. System (3.1) ; k = 2 . 
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left, so there can be no closed orbits intersecting x = 1 . Applying

Lemma 2.5 (b) we conclude that for this case E ( x ∗, y ∗) is globally

stable. The corresponding phase portrait is given in Fig. 11 . 

Subcase k > 1 

(i) 1 < k < 2 

First we study the shape of the ∞ -isocline y (x ) = φ
x (1 − x 

k 
) 

p 2 (x ) 
≡

h (x ) . Then for 0 ≤ x ≤ 1, h (x ) ≡ h 1 (x ) = φ
(1 − x 

k 
) 

(2 −x ) 
and for x > 1, h (x ) ≡

h 2 (x ) = φx (1 − x 
k 
) . Because k < 2 both h 1 ( x ) and h 2 ( x ) are decreas-

ing, see Fig. 12 . 

By Lemma 2.5 (a) the positive equilibrium is asymptotically sta-

ble. 

To prove the nonexistence of closed orbits we can again apply

the Bendixson-Dulac criterion, with Dulac function B (x, y ) = 

1 
p 2 (x ) y 

.

Then it follows by Lemma 2.5 (b) that E ( x ∗, y ∗) is globally stable.

The corresponding phase portrait is sketched in Fig. 13 . 

(ii) k = 2 

Now the ∞ -isocline y = h 1 (x ) , 0 ≤ x ≤ 1 satisfies h 1 (x ) = 

φ
2 and

the stability of E ( x ∗, y ∗) does not follow from Lemma 2.5 (a). In

fact, for this case E ( x ∗, y ∗) is a center because system (3.3) with

k = 2 has an integrating factor μ(x, y ) = 

1 
x (1 − x 

2 
) y 

from which the

first integral can be found: 

Z(x, y ) = φln (y ) − 2 y + δln (x ) − δln (2 − x ) − 2 x. (3.5)

The oval � = { x > 0 , y > 0 | Z(x, y ) = φln ( φ2 ) − φ − 2 } , i.e. the solu-

tion of (3.3) with k = 2 tangent to x = 1 , plays an important role.

As in Theorem 2.4 , all trajectories starting on or inside � are

closed. Next we will show that all trajectories starting outside �

have � as their ω-limit set. 
We will prove this by comparing the trajectories of system

3.3) k =2 with those of the linear system: 

dx 

dt 
= 

φ

2 

− y, 
dy 

dt 
= (1 − δ) y, (3.6)

or x ≥ 1. 

Because the first integral of (3.6) reads 

(x, y ) = (1 − δ) x + y − φ

2 

ln (y ) , (3.7)

t follows 

dM 

dt (3 . 4) 
= −1 

2 

(1 − δ) φ(x − 1) 2 ≤ 0 (3.8)

ecause all trajectories for the system obtained by combining

3.6) k =2 for 0 ≤ x ≤ 1 with (3.6) for x > 1 are closed, it follows from

3.8) and Lemma 2.5 (b) that all trajectories of (3.1) k =2 which start

utside � have � as their ω-limit set. The corresponding phase

ortrait is given in Fig. 14 . 

(iii) k > 2 

A study of the ∞ -isocline reveals that h 1 ( x ) is monotonically

ncreasing whereas h 2 ( x ) has a unique maximum at x = 

k 
2 , see

ig. 15 . 

It follows from Lemma 2.5 (a) that E ( x ∗, y ∗) is unstable. By

emma 2.5 (b) the Poincaré-Bendixson theorem can be applied to

educe that system (3.1) has at least one stable limit cycle. We will

rove that this limit cycle is unique. 

The standard procedure is to transform the system under con-

ideration to a (generalized) Liénard system and then apply a theo-

em by Zhang [33,34] which guarantees uniqueness of the limit cy-

le. However, we will use a modification by Coppel [4,5] and Wang

31] . 
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Fig. 15. The function h ( x ). 
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Fig. 16. The function z ( x ) in the proof of Theorem 3.2 . 

 

m  

b  

x  

z

 

s  

b

 

(  

s

T  

e

 

a

 

a  

o  

h

4

 

e  

s  

f

 

N

 

c  

p

 

t  

g

 

c  

(

emma 3.1. Let F ( x ), g ( x ) be continuously differentiable functions on

he open interval ( r 1 , r 2 ), and let 
( y ) be a continuousty differen-

iable function on R in: 

dx 

dt 
= F (x ) − 
(y ) , 

dy 

dt 
= g(x ) , (3.9)

uch that 

(i) d 
/d y > 0 , ∀ y ∈ R , 

(ii) there exists x 0 ∈ ( r 1 , r 2 ) such that (x − x 0 ) g(x ) > 0 for x � = x 0 ,

nd g(x 0 ) = 0 , 

(iii) the function f (x ) ≡ dF (x ) 
dx 

has a unique zero x f ∈ ( r 1 , r 2 ), with

 f > x 0 , 

(iv) f (x 0 ) 
d 
dx 

( f (x ) 
g(x ) 

) < 0 , for x ∈ ( r 1 , x 0 ) ∪ ( x f , r 2 ) . 

Then in the strip r 1 < x < r 2 system (3.9) has at most one limit cy-

le, which is hyperbolic if it exists. 

As indicated in (1.6) the systems we study can be trans-

ormed into this generalized Liénard form with F (x ) = φ
x (1 − 1 

k 
x ) 

p 2 (x ) 
−

(1 − 1 
k 

x ∗) 

(2 −x ∗) 
, 


(y ) = e y − φ(1 − 1 
k 

x ∗) 

(2 −x ∗) 

g(x ) = 

p 2 (x ) −δ
p 2 (x ) 

. 

For 0 ≤ x ≤ 1 we define F (x ) ≡ F 1 (x ) = φ
(1 − 1 

k 
x ) 

(2 −x ) 
− φ

(1 − 1 
k 

x ∗) 

(2 −x ∗) 
,

(x ) ≡ g 1 (x ) = 

x (2 −x ) −δ
x (2 −x ) 

; for x > 1, F (x ) ≡ F 2 (x ) = φx (1 − 1 
k 

x ) −
(1 − 1 

k 
x ∗) 

(2 −x ∗) 
and g(x ) ≡ g 2 (x ) = 1 − δ. 

We will prove that all conditions of Lemma 3.1 hold for system

3.9) using the functions defined in system (1.6) . 

Because for all x > k , dx 
dt 

≤ 0 in system (3.1) , it follows that any

ossible limit cycle of system (3.9) should be located in the strip

 < x < k . Therefore we can take r 1 = 0 , r 2 = k . 

It is easy to check that conditions (i), (ii) are satisfied with x 0 =
 

∗. Next we will verify condition (iii). Let f i (x ) ≡ d 
dx 

F i (x ) , i = 1 , 2 .

hen f 1 (x ) = φ
1 − 2 

k 

(2 −x ) 2 
and f 2 (x ) = φ(1 − 2 x 

k 
) . 

The function f (x ) = 

d 
dx 

F (x ) has a unique zero x = 

k 
2 . Obvi-

usly x f > 1 > x 0 hence condition (iii) is satisfied. Since f (x 0 ) =
f (x ∗) > 0 condition (iv) is satisfied if d 

dx 
( 

f 1 (x ) 
g 1 (x ) 

) < 0 on 0 < x < x ∗

nd 

d 
dx 

( 
f 2 (x ) 
g 2 (x ) 

) < 0 on 

k 
2 < x < k . 

The latter part is trivial since 
f 2 (x ) 
g 2 (x ) 

= φ
1 − 2 

k 
x 

1 −δ
. 

Now let us study the graph of z(x ) = 

f 1 (x ) 
g 1 (x ) 

= φ
(1 − 2 

k 
) x 

(2 −x )(x (2 −x ) −δ) 
.

he vertical asymptotes of z ( x ) are x = x ∗, 2 − x ∗ and x = 2 . Fur-

hermore, z ( x ) has the x-axis as a horizontal asymptote. Obviously

 = 0 is the only zero of z ( x ). 
Because the numerator of d 
dx 

( 
f 1 (x ) 
g 1 (x ) 

) is a third order polyno-

ial it follows that dz(x ) 
dx 

has at most three zeros. In fact, it can

e shown that there are exactly three zeros x 1 < x 2 < x 3 satisfying

 1 < 0, x ∗ < x 2 < 2 − x ∗ < x 3 < 2 , see Fig. 16 . Therefore the function

 ( x ) is monotonically decreasing for 0 < x < x ∗. 

Hence all conditions of Lemma 3.1 are satisfied and therefore

ystem (3.1) has exactly one limit cycle, which is stable and hyper-

olic. 

We will omit the degenerate case δ = 1 , for which case system

3.1) has no closed orbits. The results obtained in this section are

ummarized in the following theorem. 

heorem 3.2. (a) If system (3.1) has an asymptotically stable positive

quilibrium then it is globally stable. 

(b) If the positive equilibrium is unstable then it is surrounded by

 unique limit cycle that is stable and hyperbolic. 

(c) If for k = 2 system (3.1) has a positive equilibrium, then it is

 center. There exists an oval � such that all trajectories starting on

r inside � are closed whereas trajectories starting outside this oval

ave � as their ω-limit set. 

. A sigmoidal differentiable functional response 

In this section we study the family of systems (1.5) of the gen-

ralized Gause type, where the functional response has a sigmoidal

hape, p(x ) ≡ p 3 (x ) = x 2 (3 − 2 x ) for 0 ≤ x ≤ 1 and p(x ) ≡ p 3 (x ) = 1

or x ≥ 1, i.e. a 0 = 1 , a 1 = −2 in system (1.5) . 

The system takes the explicit form: 

dx 

dt 
= φx (1 − x 

k 
) − p 3 (x ) y, 

dy 

dt 
= −δy + p 3 (x ) y. (4.1)

ote that p 3 (x ) ∈ C 

1 but p 3 (x ) / ∈ C 

2 . 

In analysing the phase portrait of system (4.1) we will en-

ounter cases that also appeared in Section 3 . For these cases the

roofs are omitted. 

Case 1: δ > 1 

The only singularities of system (4.1) are the saddle O (0, 0) and

he stable node at ( k , 0). The corresponding phase portrait is as

iven in Fig. 10 . 

Case 2: δ < 1 

There exists a unique 0 < x ∗ < 1 such that p 3 (x ∗) − δ = 0 . The y -

oordinate of E ( x ∗, y ∗), the possible positive equilibrium of system

4.1) , satisfies y ∗ = 

φx ∗(1 − x ∗
k 

) 

δ
. 

Subcase k ≤ 1 

(i) If k ≤ x ∗ then y ∗ ≤ 0 and the phase portrait is as in Fig. 10 . 
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Fig. 17. The function h ( x ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. System (4.1) ; φ = 1 , k = 4 , δ = . 972 . 
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(ii) If k > x ∗ then E ( x ∗, y ∗) is a positive equilibrium. It can be

shown, in the same way as for the corresponding case in Section 3 ,

that E is globally stable. The phase portrait is the same as in Fig. 11 .

Subcase k > 1 

(i) k < 2 

We study the shape of the ∞ -isocline y (x ) = 

φx (1 − x 
k 
) 

p 3 (x ) 
≡ h (x ) .

Let, for 0 ≤ x ≤ 1, h (x ) ≡ h 1 (x ) = 

φ(1 − x 
k 
) 

x (3 −2 x ) 
and for x ≥ 1, h (x ) ≡

h 2 (x ) = φx (1 − x 
k 
) . For this case h ( x ) always has a negative slope,

hence by Lemma 2.5 (a) E ( x ∗, y ∗) is asymptotically stable. By using

the Dulac function B (x, y ) = 

1 
p 3 (x ) y 

it can be shown that E is glob-

ally stable. The corresponding phase portrait is like the one given

in Fig. 13 . 

(ii) k = 2 

Now the ∞ -isocline is also monotonically decreasing but for x =
k 
2 , we have dh 

dx 
= 0 , hence if x ∗ = 

k 
2 , then Lemma 2.5 (a) cannot be

applied to determine the stability of E ( x ∗, y ∗). However, we can still

use the Dulac function B (x, y ) = 

1 
p 3 (x ) y 

to show that E is globally

stable. In fact, for this case if x ∗ = 

k 
2 , then the eigenvalues of the

variational matrix at E become purely imaginary. 

(iii) k > 2 

In this case the ∞ -isocline has both a relative maximum and a

relative minimum, see Fig. 17 . Note that h ( x ) has a relative maxi-

mum at x = 

k 
2 . 

Let h ( x ) obtain its relative minimum at x = x m 

. If x m 

< x ∗ < 1

then according to Lemma 2.5 (a) E ( x ∗, y ∗) is unstable and hence

by Lemma 2.5 (b) system (4.1) has at least one limit cycle. 

We have tried to prove the uniqueness of this limit cycle by

applying a lemma similar to Lemma 3.1 but without the desired

result. We hope to be able to solve the following open problem in

the future by applying some improvement of Lemma 3.1 . 

Open Problem 4.1 If system ( 4.1 ) has an unstable positive equi-

librium, then it is surrounded by exactly one closed orbit, a stable,

hyperbolic limit cycle. 

A natural way to try to tackle Open Problem 4.1 is to transform

system (4.1) to a generalized Liénard system 

dx 

dt 
= F (x ) − 
(y ) , 

dy 

dt 
= g(x ) , (4.2)

and then apply a lemma similar to Lemma 3.1 . The main condition

to be satisfied would be the monotonicity of f (x ) 
g(x ) 

on (0, x ∗) ∪ ( x ∗, k ),

see [34] . However, for the parameter values φ = 1 , k = 4 , δ = 0 . 972 ,

we can show that x m 

< x ∗ < 1 < x m 

, while f (x ) 
g(x ) 

has both a relative

minimum and a relative maximum on (0, x m 

). 

The phase portrait of system (4.1) for this choice of parameters

is shown in Fig. 18 . 
If x ∗ = x m 

, then ( dh 
dx 

) x = x ∗ = 0 and so we cannot apply

emma 2.5 (a). For this case the variational matrix at E ( x ∗, y ∗) has

urely imaginary eigenvalues, therefore this equilibrium is either a

enter or a weak focus. 

Recall that a weak focus is a singularity which is a center for

he linearized system but not a center for the nonlinear system. If

he origin is a weak focus then the canonical form of the system

eads: 

dx 

dt 
= −y + F 2 (x, y ) , 

dy 

dt 
= x + G 2 (x, y ) , (4.3)

here F 2 ( x, y ) and G 2 ( x, y ) denote terms of at least second degree.

here exists a function V ( x, y ) defined in the neighbourhood of the

rigin such that its rate of change along orbits of system (4.3) is of

he form: 

dV 

dt 
= V 1 (x 2 + y 2 ) 2 + V 2 (x 2 + y 2 ) 3 + . . . 

he V i ’s are called focal values and the stability of the origin is de-

ermined by the first non-vanishing focal value. The order of the

eak focus is K if V 1 = V 2 = . . . = V K−1 = 0 but V K � = 0. Under per-

urbation of the coefficients of (4.3) at most K limit cycles bifur-

ate out of a weak focus of order K . Such limit cycles are said to

e of small amplitude. For an ample discussion on the computa-

ion of focal values we refer to Andronov [1] . Here we will use the

lgorithm described in [17] to compute V 1 . 

We will determine the first non-vanishing focal value for the

ystem (4.1) in case it has a weak focus at x = x ∗ < 1 . 

An elementary calculation reveals that at E ( x ∗, y ∗) the trace of

he variational matrix satisfies 

 (x ) = 

2 
k 

x 2 − 4 x + 3 

2 x − 3 

. (4.4)

herefore P (x ∗) = 0 and 0 < x ∗ < 1 imply that 

 

∗ = k − 1 

2 

√ 

2 k (2 k − 3) . (4.5)

ecause E ( x ∗, y ∗) is a singularity of system (4.1) we also have 

= x ∗
2 

(3 − 2 x ∗) , y ∗ = 

φ(1 − x ∗
k 
) 

x ∗(3 − 2 x ∗) 
, (4.6)

here x ∗ satisfies (4.5) . Note that if (4.5) and (4.6) hold then E ( x ∗,

 

∗) is a center for the linearized system. 

After the translation x = u + x ∗, y = v + y ∗, the algorithm de-

cribed in [17] , implemented in Maple, can be used to determine

he first focal value. 

The expression thus obtained is a very complicated function of

and k and it is difficult to determine its sign. 
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Fig. 19. System (4.1) ; φ = 1 , k = 4 , δ = . 86 . 
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Fig. 20. The function h ( x ). 

Fig. 21. F ( x ) and g ( x ) in system (4.9) . 
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inside. 
An alternative approach is to treat x ∗ as a parameter and solve

 (x ∗) = 0 with respect to k . Then from (4.4) we obtain 

 = 

2 x ∗
2 

4 x ∗ − 3 

. (4.7) 

his value of k should also be substituted in the second equation

f (4.6) . 

Again using the program described in [17] it follows that the

ign of the first focal value V 1 corresponds to the sign of 

(5 − 4 x ∗) 
4 x ∗(3 − 2 x ∗)(1 − x ∗) 

. (4.8) 

Because 0 < x ∗ < 1 it is easy to see that V 1 > 0. 

This means that the weak focus is of first order and unstable.

y Lemma 2.5 (b) if x ∗ = x m 

, then there is at least one stable limit

ycle �1 surrounding E ( x ∗, y ∗). 

For 0 < x m 

− x ∗ 	 1 the stability of E ( x ∗, y ∗) is changed and

ence an additional unstable limit cycle �2 is generated through

he Andronov-Hopf bifurcation. Notice that for this case system

4.1) exhibits bistable behaviour because both the positive equilib-

ium E ( x ∗, y ∗) and the outer most limit cycle are stable. We have

o theorems available to ascertain that system E ( x ∗, y ∗), or the

quivalent Liénard system (4.2) , has at most two limit cycles, al-

hough numerical experiments point in this direction, see Fig. 19 . 

This leads to another open problem for system (4.1) . 

Open Problem 4.2 If system ( 4.1 ) has an asymptotically stable

ositive equilibrium E ( x ∗, y ∗), and 0 < δ < 1, x ∗ < x m 

< 1 < 

k 
2 , then

 ( x ∗, y ∗) is surrounded by at most two limit cycles. 

We have seen that for the case x ∗ < x m 

it is possible that

4.1) has two limit cycles. Hence the asymptotic stability of E ( x ∗,

 

∗) does not imply its global stability. However, we will show that

or x ∗ sufficiently small E ( x ∗, y ∗) is globally stable. 

Again consider the function h ( x ), the ∞ -isocline of system (4.1) .

et h ( x ) obtain its relative maximum at x m 

, see Fig. 20 . 

Because lim x ↓ 0 h (x ) = ∞ and 

dh 
dx 

< 0 for x ∈ (0, x m 

), it follows

hat there exists a unique x 1 ∈ (0, x m 

) such that h (x 1 ) = h ( k 2 ) . 

heorem 4.1. If 0 < δ < 1, k > 2 and 0 < x ∗ < x 1 then system (4.1) has

o closed orbits. As a consequence E ( x ∗, y ∗) is globally stable. 

roof. First we transform system (4.1) to a generalized Liénard

ystem using (1.6) . We get: 

dx 

dt 
= F (x ) − 
(y ) , 

dy 

dt 
= g(x ) , (4.9)

ith F (x ) = φ
x (1 − 1 

k 
x ) 

p 3 (x ) 
− φ

(1 − 1 
k 

x ∗) 

x ∗(3 −2 x ∗) 
, 


(y ) = e y − φ
(1 − 1 

k 
x ∗) 

x ∗(3 −2 x ∗) 

g(x ) = 

p 3 (x ) −δ
p (x ) 

. 

3 
For 0 ≤ x ≤ 1 we define F (x ) ≡ F 1 (x ) = φ
(1 − 1 

k 
x ) 

x (3 −2 x ) 
− φ

(1 − 1 
k 

x ∗) 

x ∗(3 −2 x ∗) 
,

(x ) ≡ g 1 (x ) = 

x 2 (3 −2 x ) −δ
x 2 (3 −2 x ) 

; for x ≥ 1, F (x ) ≡ F 2 (x ) = φx (1 − 1 
k 

x ) −
(1 − 1 

k 
x ∗) 

x ∗(3 −2 x ∗) 
and g(x ) ≡ g 2 (x ) = 1 − δ. 

First notice that F (x ) = h (x ) − h (x ∗) hence F (x ∗) = 0 . It is easy

o see that if x ∗ ≤ x 1 then F ( x ) ≤ 0 for x > x ∗, see Fig. 21 . 

Furthermore F ( x ) > 0 for x < x ∗ and g ( x ) > 0 ( g ( x ) < 0) for x > x ∗

 x < x ∗), see Fig. 21 . 

Next consider the family of closed orbits given by the level

urves of 

(x, y ) = 

∫ y 

y ∗

(ξ ) d ξ + 

∫ x 

x ∗
g(τ ) d τ. (4.10)

ote that all level curves of λ contain E ( x ∗, y ∗) in their interior. 

The rate of change of λ along the trajectories of (4.9) satisfies 

dλ

dt 
= 
(y )( 

dy 

dt 
) (4 . 9) + g(x )( 

dx 

dt 
) (4 . 9) = F (x ) g(x ) , 

nd therefore dλ
dt 

≤ 0 . It follows that the trajectories of (4.9) inter-

ect the level curves of λ( x, y ) in the exterior-to-interior direction.

herefore there cannot be any closed orbits. �

emark 4.2. If x ∗ is decreased from x m 

then at least two limit cy-

les exist initially but by the time that x ∗ reaches x 1 they must

ave disappeared. This can only happen through a saddle-node bi-

urcation for limit cycles, implying the existence of a semi-stable

imit cycle for a certain value x ss ∈ ( x 1 , x m 

). In our situation the

emi-stable limit cycle is stable on the outside and unstable on the
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5. Conclusions 

In this paper we studied the generalized Gause model, with a

logistic growth rate for the prey in absence of the predator, a con-

stant death rate for the predator and for three different classes of

functional response, all non-analytical: 

dx 

dt 
= φx (1 − x 

k 
) − p(x ) y, 

dy 

dt 
= −δy + p(x ) y. (5.1)

In this section we will briefly discuss the differences between the

results obtained in the previous sections and the results known

from the literature, where p ( x ) is either of Holling type II or III. 

Case 1 . 

If p ( x ) is of Holling type I, i.e. p(x ) = p 1 (x ) = 1 for x > 1 and

p 1 (x ) = x for 0 ≤ x ≤ 1 then for certain parameter values system

(5.1) has (at least) two limit cycles. If these occur, then the positive

equilibrium is asymptotically stable. Hence for this case asymptotic

stability of the positive equilibrium does not imply global stability.

If k = ∞ , i.e. the carrying capacity of the prey is infinitely large,

then (5.1) can have a family of closed orbits. These phenomena

cannot occur when the functional response is of Holling type II,

i.e. p(x ) = 

x 
c+ x because then (5.1) has at most one closed orbit, a

stable limit cycle, see [3,16] . 

Case 2 . 

If p ( x ) satisfies p(x ) = p 2 (x ) = 1 for x > 1 and p 2 (x ) = x (2 − x )

for 0 ≤ x ≤ 1 then system (5.1) has at most one limit cycle. How-

ever, if a certain relation between the parameters in (5.1) holds

(denoting in parameter space the change of stability of the posi-

tive equilibrium) then system (5.1) has a family of closed orbits.

This is the difference with the case where the functional response

is of Holling type II because then the change of stability of the pos-

itive equilibrium happens through the Andronov-Hopf bifurcation,

see [16] . 

Case 3 . 

In this case p ( x ) satisfies p(x ) = p 3 (x ) = 1 for x > 1 and p 3 (x ) =
x 2 (3 − 2 x ) for 0 ≤ x ≤ 1. 

For this sigmoidal functional response, for a certain choice of

parameters system (5.1) has (at least) two limit cycles. If the func-

tional response is of Holling type III, i.e. p ( x ) is the sigmoidal func-

tion p(x ) = 

x 2 

c+ x 2 then (5.1) has at most one limit cycle, see [6] . 

It is clear that if we compare the generalized Gause model with

a functional response that is non-analytical (e.g. Holling type I)

with a functional response that is analytical then the behaviour

in the first case is more complicated. As examples of this more

complicated behaviour we have seen, the co-existence of a stable

equilibrium with a stable limit cycle and the existence of a family

of closed orbits. 

For future research we aim at studying the general case of sys-

tem (1.5) . This system exhibits an even richer variety of behaviour

than the special cases studied in this paper. Especially the depen-

dence on the carrying capacity is more complicated. For example,

there are cases (keeping the functional response monotonic) where

(1.5) has at least two limit cycles for the carrying capacity satis-

fying 0 < k < 2, in contrast to the cases of this paper where k > 2

was a necesssary condition for the existence of at least two limit

cycles. 
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