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Estrada [6]. A windmill graph W (η, k) consists of η copies 
of the complete graph Kk, with every node connected to 
a common node. Estrada [6] showed that the clustering 
coefficient and the transitivity index of windmill graphs 
diverge, when the graph size tends to infinity. In addition 
[6] studied the spectra of the adjacency and the Laplacian 
matrices of these graphs. In this paper we will generalize 
the family of windmill graphs in three ways. We will study 
properties for all three types of generalized windmill graphs. 
In particular we will focus on the behavior of the two 
clustering metrics. We will quantify the difference between 
the two metrics, under various conditions. In addition, we 
give the spectra of the adjacency and the Laplacian matrices 
of these graphs. We will also derive analytic expressions for 
several other graph metrics, such as average path length, 
heterogeneity index and a variety of robustness metrics. 
We also show how the generalized windmill graphs can be 
used to construct pairs of non-isomorphic graphs with the 
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generalized windmill graphs occur quite naturally in the study 
of public transportation networks.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we will consider generalizations of the class of so-called windmill graphs, 
which were recently introduced by Estrada [6]. A windmill graph W (η, k) consists of η
copies of the complete graph Kk, with every node connected to a common node, see 
Fig. 1.

Estrada [6] showed that the clustering coefficient and the transitivity index of windmill 
graphs diverge, when the graph size tends to infinity. In addition [6] studied the spectra 
of the adjacency and the Laplacian matrices of these graphs.

In this paper we will generalize the family of windmill graphs in three ways. For 
the first two generalizations we will replace the central node, connecting all η copies 
of the complete graph Kk, by l central nodes. For the first generalization, we assume 
the l central nodes are all connected, i.e. they form a complete graph Kl. We will de-
note the generalized windmill graph of Type I by W ′(η, k, l). Obviously, it holds that 
W ′(η, k, 1) = W (η, k). Also, the so-called agave graphs, defined in [8], are special cases 
of the generalized windmill graphs of Type I. For instance, the agave graphs depicted in 
Fig. 2, can be represented as W ′(4, 1, 2) and W ′(5, 1, 2), respectively.

For the second generalization, we assume the l central nodes have no connections 
among each other. We will denote this generalized windmill graph by W ′′(η, k, l). 
Figs. 3–4 depict examples of the generalized windmill graphs of Type I and II, respec-
tively.

For the third generalization, we assume that there are η central nodes, such that 
for each of the η copies of the complete graph Kk, each node connects to a different 
central node. The η central nodes also form a clique. We will denote this generalized 
windmill graph by W ′′′(η, k). Fig. 5 shows an example of the generalized windmill graph 
of Type III.

In this paper we will study properties for all three types of generalized windmill 
graphs. In particular we will focus on the behavior of the two clustering metrics. We will 
quantify the difference between the two metrics, under various conditions. In addition, 
we give the spectra of the adjacency and the Laplacian matrices of these graphs. We 
will also derive analytic expressions for several other graph metrics, such as average 
path length, heterogeneity index and a variety of robustness metrics. We also show how 
the generalized windmill graphs can be used to construct pairs of non-isomorphic graphs 
with the same number of nodes and links. Finally, we will show how generalized windmill 
graphs occur quite naturally in the study of public transportation networks.
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Fig. 1. Some small windmill graphs W (η, k).

Fig. 2. Illustration of agave graphs with 6 nodes and 7 nodes.

Fig. 3. Some generalized windmill graphs W ′(η, k, l).

Fig. 4. Some generalized windmill graphs W ′′(η, k, l).

Fig. 5. Example of a generalized windmill graph of Type III: W ′′′(3, 3).
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2. Generalized windmill graphs of Type I

2.1. Clustering metrics

In this section we will study the clustering coefficient and the transitivity index for 
generalized windmill graphs of Type I. The clustering coefficient C̄ is defined as the local 
clustering Ci, averaged over all nodes, see [18]. Here

Ci = 2ti
di(di − 1) , (1)

where ti is the number of triangles containing the node i and di is the degree of node i. 
Denoting the number of nodes by N , the clustering coefficient is thus given by

C̄ = 1
N

N∑
i=1

Ci. (2)

The transitivity index C, see [13], is defined as

C = 3T
P2

, (3)

where T denotes the total number of triangles and P2 the total number of two-paths, i.e. 
P2 =

∑N
i=1

di(di−1)
2 . The clustering coefficient reflects local clustering properties while 

the transitivity index captures global clustering.
We will prove that the clustering coefficient and the transitivity index diverge when 

the number of nodes increases in a generalized windmill graph of Type I.

Theorem 1. Let W ′(η, k, l) be a generalized windmill graph op Type I, with k > 1 or 
l > 1. Then, for given values of k and l, the clustering coefficient C̄ and the transitivity 
index C diverge when the number of cliques tends to infinity:

lim
η→∞

C̄ = 1, (4)

lim
η→∞

C = 0. (5)

Proof. First, we obtain an expression for the clustering coefficient of generalized windmill 
graphs of Type I. The clustering coefficient of each node in one of the η copies of the 
complete graph Kk, satisfies Cj = 1, because we excluded the case k = 1 ∧ l = 1. Next 
we determine the clustering coefficient for each of the l central nodes. The number of 
neighbors for each of these nodes is ηk + l − 1. Therefore, the maximum number of 
connections between these neighbors is 

(
ηk+l−1

2
)
. Because in W ′(η, k, l) the connections 

of nodes belonging to different pairs of the η cliques Kk, equals 
(
η
2
)
k2, the total number of 

connections between the neighbors of each central node satisfies 
(
ηk+l−1)− (

η
)
k2. Thus, 
2 2
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the clustering coefficient Ci for each of the l central nodes is given by Ci =
(ηk+l−1

2
)
−
(η
2
)
k2(ηk+l−1

2
) . 

Thus, C̄ = ηk+lCi

ηk+l , which gives

C̄ = 1 − lk2η(η − 1)
(ηk + l)(ηk + l − 1)(ηk + l − 2) . (6)

Now we consider the transitivity index of a generalized windmill graph of Type I 
W ′(η, k, l). The total number of triangles T in W ′(η, k, l) satisfies

T = η

(
k + l

3

)
− (η − 1)

(
l

3

)
. (7)

This can be shown as follows. First consider one of the η cliques Kk. This clique forms 
a larger clique with the l central nodes, of size k+ l. Therefore the number of triangles in 
this larger clique equals 

(
k+l
3
)
. To get all the triangles we have to multiply this number 

with η but subtract η − 1 times the number of triangles in the clique formed by the l
central nodes, given by 

(
l
3
)
. This leads to Eq. (7).

Next we determine P2, the number of two-paths, for generalized windmill graph of 
Type I W ′(η, k, l). For each node in one of the η copies of the complete graph Kk, it holds 
that dj = k+ l−1. Similarly for the l central nodes the degree is given by di = ηk+ l−1. 
It follows that P2 = ηk

dj(dj−1)
2 + l di(di−1)

2 , therefore

P2 = ηk

(
k + l − 1

2

)
+ l

(
ηk + l − 1

2

)
. (8)

Combining Eqs. (7) and (8) gives

C =
3η

(
k+l
3
)
− 3(η − 1)

(
l
3
)

ηk
(
k+l−1

2
)

+ l
(
ηk+l−1

2
) . (9)

Obviously, for given values of k and l, limη→∞C̄ = 1 and limη→∞C = 0, which proves 
the theorem. For the excluded case k = 1 ∧ l = 1, both C̄ and C are zero.

Theorem 1 holds under the condition that k and l are fixed, while η becomes un-
bounded. We will now show that the behavior of the metrics C̄ and C is different when 
the number of central nodes l scales linearly with η.

Theorem 2. Let W ′(η, k, l) be a generalized windmill graph op Type I. Assume l scales 
linearly with η, i.e. l = aη. Then, for given values of k and a, the clustering coefficient 
C̄ and the transitivity index C diverge when the number of cliques tends to infinity:

lim C̄ = 1 − μ
3 = C̄∞(μ), (10)
η→∞ (μ + 1)
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lim
η→∞

C = 1 − 1
(μ + 1)2 + μ

= C∞(μ), (11)

where μ = a
k .

Proof. Upon substitution of l = aη, we see that the leading term in the numerator of 
the second term in the right hand side of Eq. (6) becomes ak2η3. Similarly, the leading 
term in the denominator of the second term in the right hand side of Eq. (6) becomes 
(a + k)3η3. Putting a = μk, and taking the limit for η → ∞ we obtain Eq. (10).

Next, putting l = aη, in Eq. (7) and writing out the whole expression, we get

T = (3k + a)a2

6 η3 + O(η2). (12)

Similarly, we can show that for the number of two-paths P2, see Eq. (8), it holds

P2 = (a2k + a(a + k)2)
2 η3 + O(η2). (13)

Substitution of Eqs. (12) and (13) into C = 3T
P2

, putting a = μk and taking the limit 
for η → ∞, we obtain Eq. (11).

It can be shown that for any value b > 1, there exists a unique value μ > 0 such 
that C̄∞(μ) = bC∞(μ). To see this, we use Eqs. (10) and (11) and substitute them into 
C̄∞(μ) = bC∞(μ), yielding:

(b− 1)μ5 + 6(b− 1)μ4 + 12(b− 1)μ3 + 10(b− 1)μ2 + (3b− 5)μ− 1 = 0. (14)

Applying Descartes’ rule of signs, we see that for b > 1 Eq. (14) has exactly one positive 
root.

As an example, consider the case b = 2. Then Eq. (14) becomes

μ5 + 6μ4 + 12μ3 + 10μ2 + μ− 1 = 0. (15)

Let us denote the unique positive root of Eq. (15) by μ2. Then indeed, it holds that 
C̄∞(μ2) = 2C∞(μ2). To find the corresponding generalized windmill graph, we need to 
approximate μ2 by an appropriate quotient a/k, where both a and k are integers. Solving 
Eq. (15) numerically we find μ2 ≈ 0.2396.

Table 1 shows the results for the actual values of C̄ and C, for k = 10 and η = 10000, 
when we take an increasing number of digits into account from μ2, i.e. we consider the 
following values for μ2 : {0.2, 0.23, 0.239, 0.2396}. Note that because μ = a/k and l = aη

we have l = kμη.

2.2. Other metrics

Apart from the clustering metrics discussed above, the special structure of the wind-
mill graphs also allows explicit expressions for a variety of other graph metrics. In 
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Table 1
Generalized windmill graphs of Type I with ratio of C̄ and 
C approaching 2.
η k l C̄ C C̄/C

10000 10 20000 0.88427 0.39035 2.26529
10000 10 23000 0.87641 0.42634 2.05564
10000 10 23900 0.87435 0.43644 2.00338
10000 10 23960 0.87422 0.43710 2.00004

particular we will derive expressions for the number of nodes and edges, the degree 
heterogeneity and the average path length.

The number of nodes N is the sum of all nodes in the η cliques and the l central 
nodes, leading to

N = ηk + l. (16)

The number of links L is determined by the links in each of the η cliques (
(
k
2
)

per clique), 
the links connecting central nodes to the cliques (k links per central node for each clique) 
and the links within the core clique (

(
l
2
)

per clique). This leads to

L = η

((
k

2

)
+ kl

)
+

(
l

2

)
. (17)

From Eqs. (16) and (17) we can also determine the average degree D, satisfying 
D = 2L/N .

Next we derive an expression for the heterogeneity index H, see [3] defined as

H = 1
N

N∑
j=1

(di −D)2. (18)

Theorem 3. Let W ′(η, k, l) be a generalized windmill graph op Type I. Then, the hetero-
geneity index H is given by

H = η(η − 1)2k3l

(ηk + l)2 . (19)

Proof. For each node nj in one of the η copies of the complete graph Kk it holds that 
dj = k + l − 1. For each central node ni it holds that di = ηk + l − 1. Writing out 
H = ηk(dj−D)2+l(di−D)2

ηk+l leads to Eq. (19).

Theorem 4. Let W ′(η, k, l) be a generalized windmill graph op Type I. Then, the average 
path length l̄ is given by

l̄ = ηk(2ηk − k − 1) + l(2ηk + l − 1)
(ηk + l)(ηk + l − 1) . (20)
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Proof. For each node nj in one of the η copies of the complete graph Kk it holds that it 
is part of a clique of size k+ l, therefore, the node contributes k+ l− 1 shortest paths of 
length 1. The remaining (η − 1)k nodes outside this clique are at distance 2. Therefore 
the total shortest path lengths from node nj equals lj = k + l − 1 + 2(η − 1)k. Each 
central node ni is connected to all other ηκ + l − 1 nodes. Therefore the total shortest 
path lengths from node ni equals li = ηκ + l− 1. It follows that the total shortest paths 
lengths from all nodes equal

(ηk(k + l − 1 + 2(η − 1)k) + l(ηk + l − 1))/2 (21)

Note that we divided by a factor 2 because in our construction, every shortest path is 
counted twice. Finally, dividing Eq. (21) by the total number of node pairs, i.e. 

(
ηk+l

2
)
, 

we obtain Eq. (20).
The next two theorems are similar to Theorems 1 and 2, but now for the behavior 

of the average path length l̄, as the number of cliques tends to infinity. The proofs are 
similar as for the aforementioned theorems and are omitted here.

Theorem 5. Let W ′(η, k, l) be a generalized windmill graph op Type I. Then, for given 
values of k and l, then the average path length l̄ tends to 2 when the number of cliques 
tends to infinity.

Theorem 6. Let W ′(η, k, l) be a generalized windmill graph op Type I. Assume l scales 
linearly with η, i.e. l = aη. Then, for given values of k and a, when the number of cliques 
tends to infinity, then the average path length l̄ tends to a value smaller than 2:

lim
η→∞

l̄ = 1 + 1
(μ + 1)2 , (22)

where μ = a
k .

With the help of Eq. (22) we can construct generalized windmill graphs of Type I 
with a given average path length, arbitrary close to any number between 1 and 2. As an 
example, we consider, limη→∞ l̄ = 5

4 . Obviously, this case corresponds with μ = 1, i.e. 
a = k. For example, the graph W ′(10000, 3, 30000) has average path length l̄ = 1.249979.

2.3. Spectral metrics

In this section we determine the spectrum of both the adjacency matrix and the 
Laplacian matrix of the generalized windmill graph of Type I.

As a starting point we will give the adjacency matrix for W ′(η, k, l) and denote it by 
A(W ′(η, k, l)).
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A(W ′(η, k, l)) =

⎡
⎢⎢⎢⎢⎣

(J − I)l×l Jl×k Jl×k . . . Jl×k

Jk×1 (J − I)k×k 0k×k . . . 0k×k

Jk×1 0k×k (J − I)k×k . . . . . .
. . . . . . . . . . . . . . .

Jk×1 0k×k . . . . . . (J − I)k×k

⎤
⎥⎥⎥⎥⎦ , (23)

where J denotes the all-ones matrix. The degree distribution for W ′(η, k, l) is bi-modal: 
the l core nodes all have degree dcore = ηk + l − 1, while the ηk nodes in the η cliques 
have degree dclique = k − 1 + l.

From this it follows that the degree matrix Δ satisfies

Δ =
[
dcoreIl×l 0l×ηk

0ηk×l dcliqueIηk×ηk

]
. (24)

Combining this with Eq. (23), we obtain the expression for the Laplacian matrix 
Q(W ′(η, k, l)):

Q(W ′(η, k, l)) =

⎡
⎢⎢⎢⎢⎢⎣

(rI − J)l×l −Jl×k −Jl×k . . . −Jl×k

−Jk×1 (tI − J)k×k 0k×k . . . 0k×k

−Jk×1 0k×k (tI − J)k×k . . . . . .
. . . . . . . . . . . . . . .

−Jk×1 0k×k . . . . . . (tI − J)k×k

⎤
⎥⎥⎥⎥⎥⎦
, (25)

with r = dcore + 1 = ηk + l and t = dclique = k + l.

Theorem 7. The spectrum of the adjacency matrix of the generalized windmill graph of 
Type I W ′(η, k, l) is

{(−1)η(k−1)+l−1
, (k − 1)η−1

, λ1
1, λ2

1}, (26)

where λ1 and λ2 satisfy λ2 − (k + l − 2)λ + (k − 1)(l − 1) − ηkl = 0.

Proof. We first consider the ηk + l-dimensional vector v1 = [1, . . . , 1, x, . . . , x]T , where 
the first l entries are one and x will be determined later. Then it follows that

Av1 = [l − 1 + ηkx, . . . , l − 1 + ηkx, l + (k − 1)x, . . . , l + (k − 1)x]T . (27)

Assuming that the right hand side of Eq. (27) equals λv1, we obtain

l − 1 + ηkx = λ, (28)
l + (k − 1)x = λx, (29)

which leads to

λ2 − (k + l − 2)λ + (k − 1)(l − 1) − ηkl = 0, (30)
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which leads to two eigenvalues λ1 and λ2, each with multiplicity one. The constant x
satisfies x = λ−l+1

ηk .
Next, let v2 = [β1, . . . , βl, 0, . . . , 0]T , be a ηk + l-dimensional vector such that ∑l
j=1 βj = 0 and βj �= 0 for some j. Then, as a result Av2 = −v2. Similarly, let 

v3 = [0, . . . , 0, α11, . . . , α1k, α21, . . . , α2k, . . . , αη1, . . . , αηk]T , be a ηk+ l-dimensional vec-
tor where the first l entries are zero, such that 

∑k
j=1 αmj = 0 for all m ∈ {1, . . . , η} and 

αmj �= 0 for some m and j. It also holds that Av3 = −v3. Therefore, there exists a set 
of η(k− 1) + l− 1 orthogonal eigenvectors {v2, v3}, implying that −1 is an eigenvalue of 
A(W ′(η, k, l)) with multiplicity η(k − 1) + l − 1.

Finally, let v4 = [0, . . . , 0, α11, . . . , α1k, α21, . . . , α2k, . . . , αη1, . . . , αηk]T , where the first 
l entries are zero, such that for all m ∈ {1, . . . , η} it holds αmj = αm, 

∑η
j=1 αj = 0 and 

αj �= 0 for some j. Then Av4 = (k−1)v4. Therefore, there exists a set of η−1 orthogonal 
eigenvectors {v4}, implying that k−1 is an eigenvalue of A(W ′(η, k, l)) with multiplicity 
η − 1.

Because the sum of the multiplicities of the found eigenvalues equals the number of 
nodes ηk + l, we have found all eigenvalues. This finishes the proof.

Remark. Theorem 7 can be used as an alternative way to derive an expression for the 
number of triangles T , see Eq. (7), through the identity T = 1

6
∑N

j=1 λ
3
i , see [15].

Theorem 8. The spectrum of the Laplacian matrix of the generalized windmill graph of 
Type I W ′(η, k, l) is

{01, lη−1, (k + l)η(k−1)
, (ηk + l)l}. (31)

Proof. It is a well-known fact that the Laplacian matrix has a zero eigenvalue, with 
the all-ones vector as eigenvector. Because the generalized windmill graph is connected, 
its multiplicity is one. Next we let v5 = [0, . . . , 0, α11, . . . , α1k, α21, . . . , α2k, . . . , αη1, . . . ,
αηk]T , be a ηk+ l-dimensional vector such that 

∑k
j=1 αmj = 0 for all m ∈ {1, . . . , η} and 

αmj �= 0 for some m and j. Then, as a result, Qv5 = (k + l)v5. Therefore, there exists 
a set of η(k − 1) orthogonal eigenvectors {v5}, implying that k + l is an eigenvalue of 
Q(W ′(η, k, l)) with multiplicity η(k − 1).

As in the proof of Theorem 7 we again consider the vector v4. Then it follows that 
Qv4 = lv4. Therefore, there exists a set of η − 1 orthogonal eigenvectors {v4}, implying 
that l is an eigenvalue of Q(W ′(η, k, l)) with multiplicity η − 1.

Next, consider v6 = [1, . . . , 1, − l
ηk , . . . , −

l
ηk ]T . Then it can be shown that Qv6 = (ηk+

l)v6. Finally, let v7 = [β1, . . . , βl, 0, . . . , 0]T , with 
∑l

j=1 βj = 0 and βj �= 0 for some j. It 
also holds that Qv7 = (ηk+l)v7. Therefore, there exists a set of l orthogonal eigenvectors 
{v6, v7}, implying that ηk + l is an eigenvalue of Q(W ′(η, k, l)) with multiplicity l.

Because the sum of the multiplicities of the found Laplacian eigenvalues equals the 
number of nodes ηk+ l, we have found all Laplacian eigenvalues. This finishes the proof.
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Remark. Theorem 8 can be used as an alternative way to derive an expression for the 
number of two-paths P2, see Eq. (8), through the identity 

∑N
j=1 μ

2
i = 2P2 − 4L, see [15].

We end this section with an example, the generalized windmill graph of Type I: 
W ′(2, 3, 2), which is also depicted in Fig. 3.

According to Theorem 7, the adjacency eigenvalues are 5, 2, −1 and −2. Using 
the proof of Theorem 7 it is easy to derive a set of orthogonal eigenvectors: λ = 5: 
[1, 1, 23 , 

2
3 , 

2
3 , 

2
3 , 

2
3 , 

2
3 ]T , λ = −2: [1, 1, −1

2 , −
1
2 , −

1
2 , −

1
2 , −

1
2 , −

1
2 ]T , λ = −1 : {[1, −1, 0, 0,

0, 0, 0, 0]T , [0, 0, 1, −1, 0, 0, 0, 0]T , [0, 0, 1, 1, −2, 0, 0, 0]T , [0, 0, 0, 0, 0, 1, −1, 0]T , [0, 0, 0, 0, 0,
1, 1, −2]T }, λ = 2 : [0, 0, 1, 1, 1, −1, −1, −1]T .

The Laplacian eigenvalues are 8, 5, 2 and 0, applying Theorem 8. A set of or-
thogonal eigenvectors is as follows: μ = 8 : {[1, 1, −1

3 , −
1
3 , −

1
3 , −

1
3 , −

1
3 , −

1
3 ]T , [1, −1,

0, 0, 0, 0, 0, 0]T }, μ = 5 : {[0, 0, 1, −1, 0, 0, 0, 0]T , [0, 0, 1, 1, −2, 0, 0, 0]T , [0, 0, 0, 0, 0, 1,
−1, 0]T , [0, 0, 0, 0, 0, 1, 1, −2]T }, μ = 2 : [0, 0, 1, 1, 1, −1, −1, −1]T , μ = 0 : [1, 1, 1, 1, 1, 1,
1, 1]T .

3. Generalized windmill graphs of Type II

In this section we consider generalized windmill graphs of Type II. Here we will just 
state the results. The proofs are similar to the ones in the previous section and are 
therefore omitted.

3.1. Clustering metrics

Theorem 9. Let W ′′(η, k, l) be a generalized windmill graph of Type II, with η > 1 or 
k > 1. Then, the clustering coefficient C̄ and the transitivity index C satisfy:

C̄ = 1 − l

ηk + l
− ηkl(l − 1)

(ηk + l)(k + l − 1)(k + l − 2) + l(k − 1)
(ηk + l)(ηk − 1) , (32)

C = (k − 1)(3l + k − 2)
ηkl + l2 + 2kl − 4l + k2 − 3k + 2 . (33)

For given values of k and l, the clustering coefficient C̄ and the transitivity index C
diverge, when the number of cliques tends to infinity:

lim
η→∞

C̄ = 1 − l(l − 1)
(k + l − 1)(k + l − 2) , (34)

lim
η→∞

C = 0. (35)

For the excluded case η = 1 ∧ k = 1 both C̄ and C equal zero.

Remark. In the derivation of Theorem 9 we have established that the number of triangles 
T in W ′′(η, k, l) satisfies T = η

((
k
3
)

+ l
(
k
2
))

, while P2 = ηk
(
k+l−1

2
)

+ l
(
ηk
2
)
.
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3.2. Other metrics

The number of nodes N and number of links L for the generalized windmill graph of 
Type II W ′′(η, k, l), are given by

N = ηk + l, (36)

L = η

((
k

2

)
+ kl

)
. (37)

Theorem 10. Let W ′′(η, k, l) be a generalized windmill graph op Type II. Then, the het-
erogeneity index H is given by

H = ηkl(ηk − k − l + 1)2

(ηk + l)2 . (38)

Theorem 11. Let W ′′(η, k, l) be a generalized windmill graph op Type II. Then, the av-
erage path length l̄ is given by

l̄ = ηk(2ηk − k − 1) + 2l(ηk + l − 1)
(ηk + l)(ηk + l − 1) . (39)

3.3. Spectral metrics

Theorem 12. The spectrum of the adjacency matrix of the generalized windmill graph of 
Type II W ′′(η, k, l) is

{0l−1, (−1)η(k−1)
, (k − 1)η−1

, λ1
1, λ2

1}, (40)

where λ1 and λ2 satisfy λ2 − (k − 1)λ − ηkl = 0.

Remark. The corresponding eigenvectors are as follows: for λ = 0: [β1, . . . , βl, 0, . . . , 0]T , 
with 

∑l
j=1 βj = 0 and βj �= 0 for some j; for λ = −1: [0, . . . , 0, α11, . . . , α1k, α21, . . . , α2k,

. . . , αη1, . . . , αηk]T , where the first l entries are zero and 
∑k

j=1 αmj = 0 for all m ∈
{1, . . . , η} and αmj �= 0 for some m and j; for λ = k − 1: [0, . . . , 0, α11, . . . , α1k, α21, . . . ,
α2k, . . . , αη1, . . . , αηk]T , where the first l entries are zero, such that for all m ∈ {1, . . . , η}
it holds αmj = αm, 

∑η
j=1 αj = 0 and αj �= 0 for some j, for λ = λ1 and λ2: 

[1, . . . , 1, x, . . . , x]T , where the first l entries are one and x = λ
ηk .

Theorem 13. The spectrum of the Laplacian matrix of the generalized windmill graph of 
Type II W ′′(η, k, l) is

{01, lη−1, (k + l)η(k−1)
, (ηk)l−1

, (ηk + l)1}. (41)
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Remark. The corresponding eigenvectors are as follows: for μ = 0: [1, . . . , 1]T , the all-ones 
vector; for μ = l: [0, . . . , 0, α11, . . . , α1k, α21, . . . , α2k, . . . , αη1, . . . , αηk]T , where the first 
l entries are zero, such that for all m ∈ {1, . . . , η} it holds αmj = αm, 

∑η
j=1 αj = 0 and 

αj �= 0 for some j, for μ = k + l: [0, . . . , 0, α11, . . . , α1k, α21, . . . , α2k, . . . , αη1, . . . , αηk]T , 
where the first l entries are zero and 

∑k
j=1 αmj = 0 for all m ∈ {1, . . . , η} and αmj �= 0

for some m and j; for μ = ηk: [β1, . . . , βl, 0, . . . , 0]T , with 
∑l

j=1 βj = 0 and βj �= 0 for 
some j; for μ = ηk + l: [1, . . . , 1, − l

ηk , . . . , −
l
ηk ]T .

4. Generalized windmill graphs of Type III

In this section we consider generalized windmill graphs of Type III. Again, we will 
only state the results, without proofs.

4.1. Clustering metrics

Theorem 14. Let W ′′′(η, k) be a generalized windmill graph of Type III, with k > 1. 
Then, the clustering coefficient C̄ and the transitivity index C satisfy:

C̄ = 1 − 2k(η − 1)
(k + 1)(η + k − 1)(η + k − 2) . (42)

C = η2 − 3η + k3 − k + 2
η2 − 3η + k3 − k + 2 + 2k(η − 1) (43)

For a given value of k > 1 the clustering coefficient C̄ and the transitivity index C
converge to 1 when the number of cliques tends to infinity. For k = 1 the clustering 
coefficient satisfies C̄ = η−2

2η , while Eq. (43) still holds for k = 1.

Remark. In the derivation of Theorem 14 we have established that the number of trian-
gles T in W ′′′(η, k) satisfies T = η

(
k+1
3
)

+
(
η
3
)
, while P2 = ηk2(k−1)

2 + η(η+k−1)(η+k−2)
2 .

4.2. Other metrics

The number of nodes N and number of links L for the generalized windmill graph of 
Type III W ′′′(η, k), are given by

N = ηk + η (44)

L = η

(
k + 1

2

)
+
(
η

2

)
. (45)

Theorem 15. Let W ′′′(η, k) be a generalized windmill graph op Type III. Then, the het-
erogeneity index H is given by
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H = k(η − 1)2

k + 12 . (46)

Theorem 16. Let W ′′′(η, k) be a generalized windmill graph op Type III. Then, the average 
path length l̄ is given by

l̄ = η(k + 1)(3ηk + η − 2k − 1)
(ηk + η)(ηk + η − 1) . (47)

4.3. Spectral metrics

Theorem 17. The spectrum of the adjacency matrix of the generalized windmill graph of 
Type III W ′′′(η, k) is

{(−1)η(k−1)
, λ1

1, λ2
1, λ3

η−1, λ4
η−1}, (48)

where λ1 and λ2 satisfy λ2 − (η + k − 2)λ + 1 − 2k − η + ηk and λ3 and λ4 satisfy 
λ2 − (k − 2)λ + 1 − 2k.

Remark. The corresponding eigenvectors are as follows: for λ = −1: [0, . . . , 0, α11, . . . ,
α1k, α21, . . . , α2k, . . . , αη1, . . . , αηk]T , where the first η entries are zero and 

∑k
j=1 αmj = 0

for all m ∈ {1, . . . , η} and αmj �= 0 for some m and j; for λ = λ1 and λ2: 
[1, . . . , 1, x, . . . , x]T , where the first η entries are one and x = λ−η+1

k ; for λ = λ3 and λ4; 
[β1, . . . , βη, xβ1, . . . , xβ1, xβ2, . . . , xβ2, . . . , xβη, . . . , xβη]T , with 

∑l
j=1 βj = 0 and βj �= 0

for some j and x = λ+1
k .

Theorem 18. The spectrum of the Laplacian matrix of the generalized windmill graph of 
Type III W ′′′(η, k) is

{01, (k + l)η(k−1)+1
, μ1

η−1, μ2
η−1}, (49)

where μ1 and μ2 satisfy μ2 − (η + k + 1)μ + η = 0.

Remark. The corresponding eigenvectors are as follows: for μ = 0: [1, . . . , 1]T , the all-ones 
vector; for μ = k + 1: [0, . . . , 0, α11, . . . , α1k, α21, . . . , α2k, . . . , αη1, . . . , αηk]T , where the 
first l entries are zero and 

∑k
j=1 αmj = 0 for all m ∈ {1, . . . , η} and αmj �= 0 for 

some m and j and [1, . . . , 1, 0, . . . , −1, 0, . . . , −1, . . . , 0, . . . , −1]T ; for μ = μ1 and μ2; 
[β1, . . . , βη, xβ1, . . . , xβ1, xβ2, . . . , xβ2, . . . , xβη, . . . , xβη]T , with 

∑l
j=1 βj = 0 and βj �= 0

for some j and x = η+k−μ
k .

5. Generalized windmill graphs of the same order and size

In this section we will show that within the classes of generalized windmill graphs we 
have defined in this paper, it is possible to find pairs of non-isomorphic graphs of the 
same order and size, i.e. with the same number of nodes and links.
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Theorem 19. There exists an infinite number of graph pairs, with one graph a generalized 
windmill graph of Type I, and the other of Type II, such that the graphs are of the same 
order and size.

Proof. We will consider G1 = W ′(η1, k1, l1) and G2 = W ′′(η2, k2, l2). Let N1, L1 and 
N2, L2, denote the number of nodes and links of G1 and G2, respectively.

Then, in order to make G1 and G2 of the same order and size, according to Sections 2
and 3, we have

N1 = η1k1 + l1 = η2k2 + l2 = N2, (50)

L1 = η1

((
k1

2

)
+ k1l1

)
+

(
l1
2

)
= η2

((
k2

2

)
+ k2l2

)
= L2. (51)

Under the assumption l1 = l2 = l, Eqs. (50)–(51) become

η1k1 = η2k2, (52)

l(l − 1) = η1k1(k2 − k1). (53)

Next we assume k2 = ak1, with a an integer. Then Eqs. (52)–(53) give

η2 = η1

a
, (54)

l(l − 1) = (a− 1)η1k
2
1. (55)

We now have to find solutions of the Diophantine equation (55). One possible solution 
is given by

l = k2
1, (56)

l − 1 = (a− 1)η1. (57)

As a result, we get

η1 = k2
1 − 1
a− 1 , (58)

η2 = k2
1 − 1

a(a− 1) . (59)

Finally, in order to make η1 and η2 integers, we choose

k1 = a(a− 1)m + 1, (60)

with m also an integer. Hence, for the following parameterization
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Fig. 6. The graphs W ′(8, 3, 9) and W ′′(4, 6, 9) with the same order and size.

η1 = a2(a− 1)m2 + 2am, k1 = a(a− 1)m + 1, l1 = a2(a− 1)2m2 + 2a(a− 1)m + 1,

η2 = a(a− 1)m2 + 2m, k2 = a2(a− 1)m + a, l2 = a2(a− 1)2m2 + 2a(a− 1)m + 1,
(61)

the graphs W ′(η1, k1, l1) and W ′′(η2, k2, l2) are of the same order and size. This finishes 
the proof.

As an example we consider the case a = 2, m = 1. Then the above parameterization 
leads to the pair of graphs W ′(8, 3, 9) and W ′′(4, 6, 9), which both have N = 33 and 
L = 276. A visualization of both graphs is given in Fig. 6.

Other families of examples can be found by further exploring Eq. (55). For instance, 
the assumption l = η1, leads to the parameterization

η1 = am, k = (a− 1)b, l1 = am, η2 = m, k2 = a(a + 1)b, l2 = am, (62)

where m = 1+(a−1)(a+1)2b
a , with b an integer.

For example, the case a = 2, b = 2 gives the pair of graphs W ′(82, 9, 82) and 
W ′′(41, 18, 82), which both have N = 820 and L = 66789.

For the examples given above, it holds that l1 = l2. However, there are also examples 
with l1 �= l2. For instance, W ′(37, 4, 26) and W ′′(5, 6, 144) both have N = 174 and 
L = 4395.

We end this section with the pair of graphs W ′(6, 4, 1) and W ′′′(5, 4). It is easy to 
verify that this constitutes an example of a windmill graph and a generalized windmill 
graph of Type III, of the same order and size, namely N = 25 and L = 60.

In the next section we will use the obtained results to construct so-called robustness 
inconsistencies.

6. Robustness metrics for generalized windmill graphs

In this section we will give analytic expressions for a number of metrics, that are based 
upon the adjacency and Laplacian spectrum, that are frequently used in literature to 
quantify the robustness of graphs [9], [17]. We will consider three metrics based upon 
the adjacency spectrum and three metrics based upon the Laplacian spectrum.
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6.1. Robustness metrics

The spectral radius (SR) refers to the largest eigenvalue λ1 of the adjacency matrix of 
a graph: SR = λ1. According to the Perron–Frobenius theorem, λ1 of a graph is always 
positive. The smaller the spectral radius is, the higher the robustness of a network with 
respect to the spread of a virus over the network [16].

The spectral gap (SG) is expressed as SG = λ1 − λ2, where λ2 denotes the second 
largest eigenvalue of the adjacency matrix. The higher the spectral gap is, the higher the 
robustness of a network against link/node removals [19].

Natural connectivity (NC) is defined as NC = ln 
(
1/N

∑N
k=1 e

λk

)
, where λk is the 

kth eigenvalue of the adjacency matrix, see [10]. This metric was first proposed as a 
robustness metric in [7], where it is shown that natural connectivity can be interpreted 
as the Helmholtz free energy of a network. The higher the natural connectivity, the 
higher the robustness of a network.

The algebraic connectivity (AC), refers to the second smallest eigenvalue of the Lapla-
cian matrix Q: AC = μN−1. The larger the algebraic connectivity, the more difficult it 
is to cut the network into components, hence the higher the robustness of the network 
[11].

The effective graph resistance (EGR) is determined by EGR = N
∑N

k=2
1
μk

, where μk

is the kth eigenvalue of the Laplacian matrix of a graph. The smaller the effective graph 
resistance, the higher the robustness of a network [5].

The synchronization ratio refers to the ratio of the second smallest eigenvalue μN−1
to the largest eigenvalue μ1 of the Laplacian matrix Q of a graph: SR = μN−1

μ1
. The 

synchronization ratio is used to characterize the synchronizability of networks. The larger 
the ratio, the better synchronizability the network exhibits [2].

6.2. Generalized windmill graphs

In this section we will give analytic expressions for the robustness metrics introduced 
in the previous section, for generalized windmill graphs.

Theorem 20. The generalized windmill graph of Type I W ′(η, k, l) has the follow-
ing spectral robustness metrics: SR = λ1, SG = λ1 + 1 − k(1 − δη,1), NC =
ln

( 1
N

(
(η(k − 1) + l − 1)e−1 + (η − 1)ek−1 + eλ1 + eλ2

))
, AC = l, EGR = N

(
η−1
l +

η(k−1)
k+l + l

N

)
and SR = 1

N , where N = ηk + l and λ1 and λ2 satisfy λ2 − (k + l− 2)λ −
(k − 1)(l − 1) − ηkl = 0, with λ1 the larger root.

Proof. Using Theorems 7–8, it is straightforward to derive expressions for NC and EGR. 
Also, it is easy to see that the largest Laplacian eigenvalue is N , while the second smallest 
Laplacian eigenvalue is l. For η > 1, the adjacency eigenvalues are −1, k− 1 and λ1 and 
λ2, the roots of f(λ) = λ2 − (k + l − 2)λ − (k − 1)(l − 1) − ηkl = 0, with λ1 the larger 
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root. It is easy to see that f(−1) = −kl(η − 1) < 0 and f(k − 1) = −ηkl < 0, for η > 1. 
Because f(|x|) > 0 for sufficiently large |x|, it follows that λ2 ≤ −1 < k − 1 < λ1, hence 
SG = λ1 − k + 1 for η > 1. For η = 1 the second largest eigenvalue is −1. With δη,1
denoting the Kronecker delta function, this finishes the proof.

Theorem 21. The generalized windmill graph of Type II W ′′(η, k, l) has the follow-
ing spectral robustness metrics: SR = λ1, SG = λ1 − k + 1 + δη,1(k − δk,1), NC =
ln

( 1
N

(
η(k − 1)e−1 + (l − 1) + (η − 1)ek−1 + eλ1 + eλ2

))
, AC = min{ηk, l}, EGR =

N
(

η−1
l + l−1

ηk + η(k−1)
k+l + 1

N

)
and SR = min{ηk,l}

N , where N = ηk + l and λ1 and λ2

satisfy λ2 − (k − 1)λ − ηkl = 0, with λ1 the larger root.

The proof of the theorem is similar as the proof of Theorem 20 and is therefore 
omitted.

Theorem 22. The generalized windmill graph of Type III W ′′′(η, k) has the follow-
ing spectral robustness metrics: SR = λ1, SG = λ1 − λ3 + δη,1(λ3 + 1), NC =
ln 1

N

(
η(k − 1)e−1 + eλ1 + eλ2 + (η − 1)(eλ3 + eλ4)

)
, AC = μ2, EGR = N

(
η(k−1)+1

k+1 +
η−1
μ1

+ η−1
μ2

)
and SR = μ1

μ2
, where N = ηk + l and λ1 and λ2 satisfy λ2 − (k + η − 2)λ +

1 −2k−η+ηk = 0, with λ1 the larger root, λ3 and λ4 satisfy λ2 − (k−2)λ +1 −2k = 0, 
with λ3 the larger root, μ1 and μ2 satisfy μ2 − (η + k + 1)λ + η = 0, with μ1 the larger 
root.

The proof of Theorem 22 is similar to the previous proofs. Only the proof concerning 
SG is a bit more elaborate. We only show the case η > 1. According to Theorem 17 the 
adjacency eigenvalues are −1, λ1 and λ2 satisfying g(λ) = λ2−(η+k−2)λ +1 −2k−η+ηk

and λ3 and λ4 satisfying h(λ) = λ2− (k−2)λ +1 −2k. We assume λ1 > λ2 and λ3 > λ4. 
Because h(k − 1) = −k < 0 it follows that

k − 1 − λ3 < 0. (63)

On the other hand g(λ3) = η(k−1 −λ3), hence applying Eq. (63), we find that g(λ3) < 0
which implies that λ3 < λ1. This concludes the sketch of the proof.

6.3. Inconsistencies among robustness metrics

In this section we will show the occurrence of inconsistencies among the spectral 
metrics that quantify robustness. The inconsistencies mean that for a pair of graphs, say 
G and H, the robustness metrics point in opposite direction, i.e. according to one metric 
G is more robust, but according to the other metric H is more robust. We will give three 
examples of such inconsistencies for pairs of graphs with the same number of nodes and 
links.
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Table 2
Robustness inconsistency for the robustness 
metrics NC and EGR.

Graph N L NC EGR

W ′(8, 3, 9) 33 276 16.50 78.67
W ′′(4, 6, 9) 33 276 13.91 67.00

Table 3
Robustness inconsistency for the robustness met-
rics SG and AC.

Graph N L SG AC

W ′(37, 4, 26) 174 4395 74.00 26
W ′′(5, 6, 144) 174 4395 63.27 30

Table 4
Robustness inconsistency for the robust-
ness metrics NC and AC.

Graph N L NC AC

W ′(6, 4, 1) 25 60 3.54 1
W ′′′(5, 4) 25 60 3.78 0.53

Non-isomorphic pairs of graphs with the same number of nodes and links were found 
in Section 5.

Using the results of the previous subsection we can easily construct inconsistencies.
For example, in Table 2 we compare the robustness of the graphs W ′(8, 3, 9)

and W ′′(4, 6, 9). According to NC W ′(8, 3, 9) is more robust but according to EGR

W ′′(4, 6, 9) is more robust.
Similar inconsistencies are given in Tables 3 and 4.

7. Real-life networks exhibiting a generalized windmill-like structure

It was already shown in [6] that windmill-like structures arise naturally in certain 
real-world networks. An explicit example is the case of citation networks. It is argued 
in [6] that seminal papers are often cited by many different groups working in related 
but different fields. As an example [6] mentions three seminal papers ([12], [18], [1]) and 
states that these papers are frequently cited by researchers working in mathematics, 
physics, social sciences, computer sciences and neurosciences. This is illustrated by a 
citation network of papers citing Milgram’s 1967 Psychology Today paper [12] or use 
“Small World” in the title. This gives rise to a windmill-like structure, with obviously 
one core node, namely Milgram’s paper. Constructing a similar citation network taking 
more than one, say l, seminal paper into account, would naturally lead to a generalized 
windmill-like structure, with l core nodes.

We will now move our attention to another type of network where also generalized 
windmill-like structures can be encountered.
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Fig. 7. Metro network of Marseille. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

An important aspect of the planning of public transport networks (PTNs), is the 
assessment of the robustness of such networks. In particular one wants to quantify the 
impact of small disruptions on the network to the overall system performance, expressed 
for instance as overall travel time reliability, see [14].

According to [4] a PTN can be represented in two different ways. The first way, referred 
to as L-space, represents each station or stop as a node, where two nodes are connected 
if they represent consecutive stops on at least one service line. In contrast, in so-called 
P -space, nodes still represent stops but now nodes are connected if there is at least one 
line serving both stops. Cats et al. [4] use P -space to model travel time reliability for 
PTN’s and apply this to the urban rail-bound network of Amsterdam.

We will now show how generalized windmill-like structures naturally appear when 
considering PTN’s in P -space. As a first example we study the metro network of Mar-
seille, see Fig. 7a. Clearly, this PTN consists of two service lines, Metro1 (blue) and 
Metro2 (red).

Furthermore, the network has two transit stations, servicing both lines, namely St. 
Charles and Castellane. It is clear that the representation of this metro network in 
P -space gives rise to a structure that resembles a generalized windmill of Type I, with 
two central nodes, see Fig. 7b.

Note that the network represented in Fig. 7b is not an actual generalized windmill of 
Type I because the number of nodes in the two cliques representing Metro1 and Metro2 
are not equal.

Finally, we look at the metro network of Lisbon, see Fig. 8a. This metro network has 
4 service lines, with 6 transit stations.

Again, the representation of this metro network in P -space gives rise to a structure 
that resembles a generalized windmill of Type I, with 6 central nodes, see Fig. 8b.
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Fig. 8. Metro network of Lisbon.

8. Conclusion

In this paper we have considered generalizations of the class of windmill graphs. Wind-
mill graphs consist of several copies of the complete graph, with every node connected 
to one central node. Our three generalizations of the windmill graphs all assume that 
the central node is replaced by several central nodes. The main result of this paper is 
the fact that it is possible to compute for all three generalized windmill graphs, a vari-
ety of graph metrics, such as clustering coefficient and transitivity index, heterogeneity 
index and average path length, and the spectrum of both the adjacency and Laplacian 
matrices representing the graphs. As such, this paper generalizes and enhances the re-
sults of Estrada [6], who partially studied similar properties in windmill graphs. We have 
also shown that the generalized windmill graphs can be used to construct pairs of non-
isomorphic graphs with the same number of nodes and links. Such pairs can be used to 
construct so-called robustness inconsistencies. Finally, we have shown how generalized 
windmill-like structures occur naturally in the study of public transportation networks.
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