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Abstract—As the edge computing era matures, it encompasses
a broader range of applications that will be able to opportunisti-
cally use both the edge and the cloud mainly determined by the
location constraints or the mission-critical reasons. Moreover,
the convergence of verticals with the next generation mobile
network will lead to an imminent edge-cloud collaboration that
needs to be carefully addressed by Mobile Network Operators
(MNOs). This paper proposes a novel approach to orchestrate
the next-generation 5G core running as Cloud-Native Network
Functions (CNFs) closer to the edge network while offloading the
computation power required to ensure on-demand processing to a
central cloud infrastructure. In this manner, full service isolation
and network segmentation can be achieved independently from
the geographical region with a high degree of scalability. Our
main objective is to automate the CNFs provisioning in a
declarative API-style in order to easily manage the deployment of
applications and services across multiple clusters. Therefore, in
our setup we considered crucial to assess the benefits of running
the 5G Service-Based Architecture (SBA) in the cloud with multi-
tenancy capabilities and evaluate the performance in terms of
latency, while keeping the network control at the edge.

Index Terms—edge computing, CNF, SBA, multi-tenancy, net-
work slicing

I. INTRODUCTION

The cellular network architecture is evolving today at a

high pace towards a distributed, decoupled and infrastructure

agnostic ecosystem mostly due to the rapid growth of verti-

cal industries (automotive, media and entertainment, gaming,

healthcare, sensors, augmented reality etc.) that fully rely

on the mobile network operators (MNOs) infrastructure to

aggregate massive amounts of data and increased computation

power as well as storage in the end-user proximity. The

mobile communications ecosystem defined by 5GPPP [1]

and ETSI [2] strives to accommodate the coexistence and

isolation of all different tenants starting with the network

slicing provisioning to the level of service quality by ensuring

a NFV (Network Functions Virtualization) Management and

Orchestration (MANO) [3] system that can be deployed and

owned by each tenant.

In recent years, virtualization and network programmability

of the Evolved Packet Core (EPC) became the de facto

standard, together with the emergence of Network Func-

tions Virtualization (NFV) and Software Defined Networking

(SDN), thus numerous organizations tried to standardize the

implementations of the MANO framework [4]. Among them

are large open-source projects like ONAP [5], SONATA [6],

OPNFV [7], Cloudify [8], Open Baton [9], Open Source

MANO (OSM) [10] or OpenStack Tracker [11]. Papers [12]

and [13] recall most of the projects that include the software

components for the 4G and 5G mobile core network that can

be run as Virtual Network Functions (VNFs).

The emergence of Cloud Native Computing Foundation

(CNCF) [14] fostered the NFV evolution to a new paradigm,

Cloud-native Network Function (CNF) and shifted the MNOs

interest to run VNFs as cloud native applications in the public

cloud. A successful migration path from a legacy monolithic

architecture towards a cloud-native one does not address only

the hardware decoupling of VNFs, but also a modular design

through APIs and a new distributed architecture based at its

core on automation and self-management. Since none of the

aforementioned MANO frameworks [5]–[11] addresses the

management of CNFs, a rightful candidate for the container

orchestration is Kubernetes [15] to help MNOs modernize

their costly infrastructure and transform it to a modular

platform designed for multiple integrations with Operational

Support Systems (OSS) for better performance and resiliency.

Nevertheless, Kubernetes was initially designed for cloud data

centers and many of the edge computing scenarios are not

solved by native Kubernetes as they require a lightweight

management plane at the edge.

The concept of network segmentation or network slicing,

recently introduced a particular component to the 5G ar-

chitecture called Multi-access Edge Computing (MEC) that

was proposed by ETSI in 2014 [16] and can be deployed

at the edge network closer to the end-users with the aim

to address verticals and especially IoTs demands in terms

of Ultra Low Latency Communications (URLLC), Enhanced

Mobile Broadband (eMBB) and a higher computation power

for massive Machine Type Communications (mMTC) [17].

Although most literature focuses on the containerization of

the MEC [18]–[20], from the architectural point of view, the

work is divided between hosting the 5G workloads either

in the edge or central cloud. Even though a central cloud

offers the availability of powerful computation and storage

resources, it can generate significant delay when it comes to

intensive processing operations. On the other hand, the edge

cloud is very often in the proximity of the Radio Access

Network (RAN) which leads to a decrease in delay and jitter,
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but with limited computation and storage capacity [21]. Cisco

introduced in 2012 a new paradigm called ”fog computing”

in order to reduce the burden of transferring data from the

central cloud to the edge network [22]. Nevertheless, the main

challenge remains to trace the border for the edge cloud and

define the intersection of 5G with the public cloud. MNOs

already have well-established business models as Internet

Service Providers (ISPs) and they are attractive channels

due to their existing network infrastructure. Nonetheless, the

three main public cloud providers current initiatives mostly

cover IoT scenarios, i.e., Amazon via AWS Wavelength [23],

Microsoft via Azure for IoT [24] and Google Cloud via Global

Mobile Edge Cloud [25], although none of them have yet

offerings on their marketplaces for managed 5G-as-a-Service

(5GaaS). Nevertheless, their interest recently shifted towards

hosting the 5G SBA since AWS already announced integration

support for the Open5GS project [26].

This paper presents a synergy between cloud and edge as

it encompasses a flexible and programmable architecture of

the 5G SBA running in the cloud that can be easily scaled

out and each service managed independently at the edge

where the business logic resides. According to the literature

a complete implementation of an orchestration model for

both MEC and the 5G packet core running in microservices,

is currently lacking. On the other hand, a limited number

of initiatives [27], [28] deal with the federation challenges

encountered in multi-cluster and multi-cloud deployments. Our

contributions are three-fold. First, we propose a declarative

container orchestrator that uses APIs for the creation, con-

figuration and management of the 5G SBA at the edge with

computation and processing power offloaded to the public

cloud. Secondly, our approach presents a collaborative cloud-

edge model that ensures an isolation layer for the different

verticals’ needs with a granular monitoring and orchestration

of the Network Functions (NFs). Consequently, we evaluate

the proposed model in terms of response time latency for the

inter-services communication and memory utilization of the

control plane applications. In this paper, we also investigate

the geo-distribution capabilities of edge computing, whether

the existing container orchestration frameworks offer support

for such deployments and equally succeed to provide full

lifecycle management regardless of the location or even the

infrastructure provider.

In Section II, we present the relevant open-source projects

with various implementations of the MANO framework as

well as the 5G virtualized mobile core and different MEC

orchestrators. We also reference the papers that cover the main

use cases for IoT and mobile devices. Section III describes the

available Kubernetes orchestrators dedicated to the edge where

we highlight the limitations of these tools in satisfying the

multi-cluster/multi-cloud and federation scenarios. In Section

IV, we compare two deployment models in terms of response

time and memory utilization for the most intensive control

plane applications. For both our setups we assess the control

management deployed at the edge as well as from the 5G

service mesh provisioning perspective. Section V presents

our final conclusions regarding the proposed model and open

topics for future research.

II. RELATED WORK

The body of literature on tracking offers of a plethora of

open-source projects that have as objective either the devel-

opment of the MANO framework or the virtualized mobile

packet core. For instance, a popular open-source project is

ONAP (Open Network Automation Platform) [5] initiated by

the Linux Foundation to simplify the orchestration of the

VNFs and to integrate the SDN module while concentrating

on specific use cases for vCPE (virtual Customer Premises

Equipment) and VoLTE (Voice over LTE). Linux Foundation

also launched in 2014 another open-source project called Open

Platform for Network Function Virtualization (OPNFV) [7]

dedicated to the integration and implementation of VNF as

well as the virtualization of 5G core. Another project that ad-

dresses an implementation of the NFV-MANO architecture in

5G is SONATA [6]. The applications and use cases considered

are in the area of monitoring IoT devices, traffic optimization,

virtual Content Delivery Network (vCDN) to increase the

scalability and automate the virtualized Evolved Packet Core

(vEPC) configuration.

Cloudify [8] is an orchestration project for the NFV de-

veloped in TOSCA language (Topology and Orchestration

Specification for Cloud Applications) that describes how to

orchestrate cloud based applications and employs an orchestra-

tion engine based on different topologies. A similar approach

to Cloudify is employed by OpenStack Tacker [11], a project

developed under OpenStack [34] umbrella. OpenStack Tacker

is based on MANO architecture defined by the ETSI group

and aims to build an orchestrator with VNF Manager role to

create and manage NFs. In a joined effort to standardize the

specifications on the NFV-MANO architecture, the Fraunhofer

Fokus Institute and the Technical University Berlin contributed

with the project OpenBaton [9]. Most of the developed com-

ponents are designed as cloud-native applications. The Open

Source MANO (OSM) [10] was initially introduced in 2016

under ETSI umbrella and has as contributors many companies,

telecom operators as well as equipment providers and focuses

on developing programmable interfaces to integrate different

modules and components. Some of these scenarios are around

“service chaining”, ”network segmentation” and orchestration

of the MEC component. In paper [35] the authors propose

a setup based on OpenAirInterface [29] virtualized EPC that

uses OSM as a VNF orchestrator running on a private cloud.

The transition of MEC towards a cloud architecture is

discussed in papers [36] and [37] due to the multitude of

advantages such as storage power, backup, on-demand pro-

visioning, scalability or multi-tenancy. Therefore, the cost

of storing and processing could be shared between mobile

operators and cloud providers. Paper [38] addresses a synthesis

of the different scenarios that serve the MEC architecture,

especially in the IoT industry where billions of devices are

connected to the Internet. Among the benefits in adopting
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TABLE I: Open-source projects for virtualized 4G and 5G mobile packet core

OSS Project Language License 4G 5G CNF Active Contributors
OpenAirInterface [29] C Apache v2.0 yes yes wip∗ OpenAir Software Alliance EUROCOM

NextEPC C GNU AGPLv3 yes wip∗ wip ∗ NextEPC
corenet [30] Python GPL-2.0 License yes no no Corenet

openLTE [31] C++ GNU AGPLv3 yes no no openLTE
open5GS C GNU AGPLv3 yes yes yes Open5GS

OMEC C++ Apache v2.0 yes yes no ONF, Intel, Deutsche Telekom, Sprint, AT&T
free5GC [32] Go, C Apache v2.0 no yes wip∗ Free5C
srsLTE [33] C++ GNU AGPLv3 yes no no srsLTE
OpenNESS Go Apache-2.0 yes yes yes Intel

∗ work in progress.

MEC for the IoT use cases is the high scalability, the offload-

ing for computation processing, resource allocations as well

as security. The authors of [39] present a study tracing the

principal directions in IoT by analyzing the key technologies

and the current challenges.

A considerable amount of work is mainly divided between

different solutions to orchestrate NFVs in a dedicated cloud

architecture presented in papers [12], [21] and virtualized

functions developed for 4G and 5G mobile core. Table I

summarizes the existing OSS projects mainly dedicated to

the virtualization of mobile packet core according to the 4G

specifications and shows few initiatives for the development

of NFs for 5G SBA. The most common tool used for the

virtualized 4G core is NextEPC [40] and its integration with

SDN and MEC is thoroughly addressed in both [13] and

[41]. The authors of [41] also propose an implementation

of the MEC orchestrator based on Kubernetes that integrates

the open-source project NextEPC. In a situation where an

application requires to be moved from one MEC server

to another, containers play a fundamental role in reducing

the migration duration and decreasing the overall downtime.

A similar approach for deploying MEC in a microservices

architecture orchestrated by Kubernetes and integrated with

NextEPC is proposed by authors of paper [13]. The main

advantages for adopting this architecture are discussed from a

DevOps perspective.

Among the projects that support both 4G and 5G VNFs as

well as CNFs are Open5GS [42] that we will further consider

in our setup presented in Section IV and OpenNess [43].

Open Network Edge Services Software (OpenNESS) is a tool

to simulate the MEC architecture with the aim to provision

CNFs. This project was developed in collaboration with Intel

and it runs entirely on a microservices based architecture as

it provides APIs for the community. The Edge Multi-Cluster

Orchestration (EMCO) is a geo-distributed application orches-

trator for Kubernetes also developed under OpenNESS project.

The EMCO aims to automate the deployment of applications

and services across clusters. It acts as a central orchestrator

that can manage edge services and network functions across

geographically distributed edge clusters.

From a container orchestrator perspective, several ap-

proaches exist in the literature and yet even few of them

address the federation and multi-cluster challenges. The au-

thors of [20] implement a testbed built on a different container

orchestrator i.e., Docker Swarm [44] focusing on the vehicular

communication scenario. Despite the fact that it does not

address any of the IoT or mobile use cases, paper [27] presents

a special lightweight resource container orchestrator, named

Fledge that connects to a Kubernetes cluster in the cloud

through a Virtual Kubelet [45] using OpenVPN [46]. In this

manner multiple nodes with Fledge agents installed can be

scaled and instantiated at the edge even though the orches-

tration relies on its own container networking implementation

and no kube-proxy is deployed. Looking at the multi-cluster

approach, paper [28] presents a federated approach for the

edge computing container orchestration by analyzing the be-

havior and limitations of Kubernetes centralized control plane,

whereas the edge sites are deployed in multiple micro data

centers across different locations.

III. EDGE COMPUTING IN THE CLOUD LANDSCAPE

The crossway between ”fog computing” and ”edge comput-

ing” is properly highlighted in the Ph.D. dissertation [47] since

both concepts pledge for bringing the processing power closer

to the end-user device. However, edge computing focuses more

on the use cases defined by the MNO’s whereas fog computing

extends the applicability to broader areas such as smart cities

or remote surveillance cameras. Both concepts integrate the

SDN technology for traffic optimization and policy-based to

improve the service quality. This section discusses some of

the available solutions for Kubernetes at the edge in terms of

low resources, geo-distribution and edge device management

highlighting the pros and cons for each of the projects. We

also evaluate and propose a multi-cluster and multi-cloud

architecture that accommodates the deployment of 5G SBA

in the public cloud.

A. Container orchestrators for the edge computing

Kubernetes is already a standard for cloud-native applica-

tions, therefore we will consider the Kubernetes orchestrator

as a reference in our research. In a Kubernetes orchestrator

architecture the smallest entity in a cluster is called a pod as

it can host an application or a process. One micro-service can

be seen as a collection of pods and policies. A job can run

multiple tasks to create one or more pods. At control plane

level there is an API server responsible with updating the pods’

state, a controller-manager that monitors the cluster state and

a scheduler that dictates to which computation nodes the pods
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are allocated. A kubelet agent runs on each node and a kube-
proxy is responsible with the traffic policies [48].

Although Kubernetes was natively designed for cloud data

centers, when it comes to Kubernetes at the edge several

open-source projects exists to spin up clusters. For instance,

Kind [49] is a tool to run a Kubernetes cluster into Docker

containers developed by Kubernetes Special Interest Groups

(SIGs). It supports multi-node and multi-cluster deployments

and can be easily integrated with other Kubernetes-style APIs

declarative tools, i.e., ClusterAPI (CAPI) [50]. Kubedge [51] is

an open-source project under CNCF (Cloud Native Computing

Foundation) built on Kubernetes with the aim to orchestrate

IoT applications as it incorporates the business logic running

at the edge. The KubeEdge architecture has two main compo-

nents: cloud and edge with the corresponding modules hub and

edge. The EdgeHub represents a web socket client responsible

to communicate with the CloudHub component hosted in the

cloud. The EdgeController is deployed in the cloud to control

the state synchronization of the Kubernetes API Server with

the nodes, applications and configurations of the edge.

Another tool dedicated to run Kubernetes at the edge is

K3s [52] which comes with a lightweight version of Ku-

bernetes. This tool was developed by Rancher Labs and it

is mainly suitable for IoT use cases and edge technologies.

The deployment is split into K3s servers and multiple agents

that can run at the edge and unlike KubeEdge it does not

require cloud-side communication. A production environment

normally requires a cluster management solution on top of K3s
for the application management, monitoring, alarming, logging

and security across the cluster, but for the time being Rancher

does not support this capability [53].

In Figure 1 we compare the K3s and KubeEdge architectural

models for multi-cluster deployment. Both tools allow the

event bus subscribe to a device data using an Message Queuing

Telemetry Transport (MQTT) broker that collects messages

from the clients. Mosquitto [54], the supported MQTT broker

in KubeEdge, is a centralized message broker and serves as a

gateway for the sensors. Figure 1 (a) illustrates the K3s main

components, the K3s server agent that runs in different clusters

at the edge and sends data to the cloud for monitoring and

application management (i.e., Grafana [55]). In comparison

to the KubeEdge deployment from Figure 1 (b), K3s only

allows to run a full Kubernetes cluster on the edge and

presents a decentralized model since each edge node requires

additional deployment of the Kubernetes management cluster.

On the other hand, the CloudEdge component specific to

KubeEdge can provide centralized management only for one

Kubernetes cluster at the edge. In order to ensure isolation

and a centralized management of different Kubernetes cluster

at the edge, we need to look at a multi-cluster management

approach.

Kubernetes Federation v2 also named “KubeFed” [56] was

one of the first projects developed under a SIG within CNCF

organization. Despite the fact it cannot accommodate all sce-

narios, ”KubeFed” shares some capabilities for multi-cluster

scenarios. The main difference when compared to multi-cluster

(a) K3s deployment model for multi-cluster

(b) KubeEdge deployment model

Fig. 1: Overview of K3s and KubeEdge multi-cluster archi-

tecture

is that federated clusters share parts of the configuration man-

aged by a main entity represented by the host cluster in charge

to propagate the configuration to the member clusters. The

federated configuration along with the cluster specifications

can be defined as a series of templates and policies.

B. Multi-Cluster vs. Multi-cloud vs. Kubernetes Federation

The microservices architecture is implemented using con-

tainers. Compared to a monolithic design model where the

entire system runs on a dedicated hardware, in a microservice-

based architecture, different processes of an application can

run in one or multiple containers. One of the primary ad-

vantages of cloud-native applications is their capability to be

configured declaratively in an API-style in order to ensure a

modular system. The methods in which they are implemented

are indubitably dictated by the multiple integrated technolo-
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gies i.e., orchestrator, operators, Custom Resource Definitions

(CRDs), etc.

C. Multi-Cluster vs. Multi-cloud vs. Kubernetes Federation

One particular tool that follows these practices is the Clus-
terAPI (CAPI) [50] framework developed by the Kubernetes

Special Interest Group (SIG) Cluster Lifecycle under CNCF.

The CRDs are defined in CAPI though templates in order to

extend the APIs exposed by Kubernetes API server and allow

users to create new resources such as Kubernetes clusters and

virtual machines (VMs) that host the nodes on which the clus-

ter is running. Moreover, the CAPI controller is responsible to

adjust the user application requirements. CAPI also supports

the integration with multiple cloud providers either in a public

cloud or in a private cloud. In order to scale an application

across multiple data centers, cluster federation is required to

replicate workloads in all member clusters. From a multi-

cluster perspective, we identified several reasons to employ

a CAPI approach. We summarize below the main benefits

for running the next mobile generation containerized core in

multiple clusters deployed across multiple clouds:

a) Full isolation: simultaneous network slicing to ensure

on-demand resources that translate into QoS and latency for

both IoT and mobile dedicated services. Different tenants in

the cloud run separate slices of the mobile core corresponding

to different clusters for each type of application. For example,

an URLLC application can run in slice 1, eMBB application in

slice 2 and mMTC application in slice 3. To follow software

development compliance rules (i.e., DevOps), it is possible

to separate development and staging environments by running

them in different clusters isolated from production.

b) Multi-region: a best practice when running any type

of application in the cloud is to provision it in different regions.

This covers the availability and failover concerns as well as

latency or geographical location in case of data protection and

GDPR compliance.

c) Multi-cloud: adopting a multi-cloud infrastructure

ensures disaster recovery capabilities and avoids the lock-in

with a certain cloud provider.

d) Scalability: is no longer a concern across cloud

deployments, even though the service limits of the Kubernetes

can be a constraint and it can vary from one cloud provider

to another (e.g. a maximum number of pods in a cluster).

In Figure 2 we illustrated the CAPI capabilities for multi-

cluster and multi-cloud deployments. The ClusterAPI provider

is designed to operate different third-party infrastructure ven-

dors as well as the management of the clusters and its ma-

chines. In order to integrate with multiple cloud architectures,

these controllers interrogate a component called actuator for

the communication with the cloud provider. The main role

of an actuator is to update the cluster state. Each cloud and

on-premises environment has its own dedicated ClusterAPI

providers that ensure cluster provisioning, i.e., CAPI provider

for AWS (CAPA) whereas CAPI for vSphere (CAPV) is

dedicated to the VMware provider [50]. The CAPI provider for

AWS (CAPA) covers both Elastic Compute (EC2) deployment

Fig. 2: Multi-cluster and multi-cloud architecture using CAPI

as well as the Elastic Kubernetes Service (EKS), i.e., CAPA-
EKS. Hence, the mobile packet core can run in different

tenants in the cloud or in the same tenant but in different

virtual private clouds (VPC) corresponding to a different slice.

The main role of a VPC is to provide network segmentation

and security throughout policy configuration.

The CAPI framework consists of three concepts: the man-
agement cluster that stores the information of all cloud

providers, the bootstrap providers used to install the Ku-

bernetes control plane nodes and the workload or tenant
clusters created as cluster resource objects associated with

the cloud providers [57]. A user can define different types

of resources in a declarative manner using Custom Resource

Definitions (CRDs) that slightly differ based on the cloud

provider infrastructure. Since the workload cluster is created in

a declarative manner, we used the template shown in Figure 3

to display the provisioned CAPI resources for an EKS cluster.

In comparison to AWS EC2 where the workload clusters

are deployed directly on EC2 compute machines, EKS is a

Kubernetes managed cluster service in AWS that introduces

another layer of management in the containers operations. For

this reason the resource definitions, i.e., CRDs differ from the

AWS EC2 and vSphere configuration. The following resources

are required for the provisioning of the EKS clusters [58]:

• AWSManagedControlPlane is the equivalent of

KubeadmControlPlane used to declare the properties of

the EKS control plane and its related AWS networking

and Identity Access Management (IAM) roles.

• AWSManagedCluster represents a mechanism to in-

tegrate with CAPI, provides information about the
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Fig. 3: Template used to provision the EKS workload cluster

AWSManagedControlplane state, any changes in the API

server endpoints or failure domains.

• EKSConfigTemplate specifies the user data required

when creating the EC2 instances for the worker nodes.

The ClusterAPI Provider for AWS (CAPA) recently added

support for the EKS Cluster API Bootstrap Provider (CAPA-
EKS) [59]. Nevertheless, this functionality is available only

for experimental purposes and it is not recommended to use

in production environments. The resources listed below are

common to all three environments (AWS EKS, AWS EC2 and

vSphere) :

• Cluster contains the specifications required by the in-

frastructure provider to create a Kubernetes cluster i.e.,

Classless Inter-Domain Routing (CIDR) blocks for pods

and services (e.g. AWSManagedCluster for AWS Elas-

tic Kubernetes Service (EKS), AWSCluster common for

AWS EC2 and VMware vSphere.

• Machine is responsible for the minimal configuration of

a Kubernetes node (e.g. kubelet version).

• MachineSet ensures the desired number of Machine
resources are up and running at all times, similar to

ReplicaSet from Kubernetes definition.

• MachineDeployment acknowledges changes to the Ma-
chine resources, by providing a rolling-out strategy be-

tween MachineSets configurations. A MachineDeploy-

ment orchestrates deployments over a pool of Machine-
Sets.

• MachineTemplate corresponds to worker nodes that

can be controlled and configured separately using the

AWSMachineTemplate that follows the same in Ma-
chineDeployment specification.

A particularity encountered in AWS EC2 and vSphere envi-

ronments is the KubeadmControlPlane, the equivalent of the

AWSManagedControlPlane in AWS EKS which is accountable

for the initialization of the control plane in the workload

clusters.

IV. ARCHITECTURE AND SETUP EVALUATION

In this Section, we compare the orchestration of the 5G

packet containerized core by employing two of the Kubernetes

orchestrators at the edge tools we discussed in the previous

sections: K3s and CAPI based on the main cluster provisioning

with kind. Both of our setups include the full stack of

Open5GS deployed using Helm [60] which is a packet man-

ager for Kubernetes. Moreover, we assess the two deployments

in terms of response time and memory consumption based on

the underlying infrastructure, on-premises vs public cloud.

A. Experimental setup - deploying the 5G NextGen core in
Kubernetes clusters

In the first testbed (see Figure 4(a)), we deploy the manage-

ment cluster and install CAPI in an on-premises environment

running on VMware vCenter in a VM with 8 GB RAM and 4
CPUs. We use the AWS bootstrap provider CAPA for EKS, i.e.,
CAPA-EKS, thus the workload cluster was created on AWS

public cloud and running in an EKS cluster, as well as the

functions applications corresponding to the 5G packet core.

In this scenario there are two different Kubernetes cluster-

specific configurations: the kind SIG kubeconfig generated with

kind that corresponds to the management cluster and a second

configuration, the kube-config for the EKS cluster where the

workload cluster resides. The CRDs and templates specific to

the CAPA-EKS including the properties of the EKS control

plane, the IAM roles and networking resourses are defined

using an AWS provisioning template, i.e., CloudFormation
stack. The communication between the management cluster

and the workload cluster is ensured via API AWS access keys.

The second testbed (see Figure 4(b)) is running in an on-

premises VMware environment that consists of a K3s cluster

composed of a K3s server acting as a master node and a K3s
agent as a worker node. The K3s server is running on a VM

with 8 GB RAM and 4 CPUs, whereas we allocated 4 GB

RAM and 4 CPUs for the VM’s hardware specifications on

which the K3s agent is running. In the K3s deployment, the

worker node joins the K3s server through a K3s token created

on the master node. The 5G network functions deployed

using Open5GS are running on the K3s agent node. We
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(a) Open5GS deployment in EKS clusters using kind and

CAPI

(b) Open5GS deployment using K3S

Fig. 4: Testbed for 5G Core SBA deployed with Kubernetes

orchestrators at the edge

deployed the Open5GS in a separate namespace to provide

isolation from the rest of the workloads and additionally we

run Calico [61], an SDN solution for containers, to enable

strong isolation through declarative policies. Regarding the

networking overlay, K3s comes by default with flannel [62],

an open-source Container Networking Interface (CNI) and

VXLAN as the default backend. Thus, we replaced the default

CNI with Calico and installed the calico kube-controller on

the K3s server, while the calico node is running on the K3s
agent.

In Figure 4, both setups have in common a component called

linkerd-injector. This is part of Linkerd [63], a popular service
mesh tool deployed on Kubernetes cluster that allows and

monitors communication between services and routes the traf-

fic and the API calls between services/endpoints. The service

mesh layer deployed on top of Kubernetes infrastructure role

is to provide abstraction of the application business logic and

mainly ensure service monitoring and observability. Another

advantage is that it integrates with several monitoring and

tracing tools (i.e., Prometheus [64] and Grafana) to allow

network discovery, tracing and visualization between services,

traffic flow or API latencies.

The Open5GS components mostly rely on HTTP/2 protocol

to communicate, hence we used the ”inject” capability to

add the Linkerd data plane proxy to the 5G application

corresponding pods. Since the User Plane Function (UPF) is

the only network function that uses GPRS Tunnelling Protocol

(GTP-U), it will not have a corresponding linkerd proxy [65].

The UPF is responsible for the user plane packet routing

and forwarding and interconnection with the Data Networking

(DN).

B. Setup evaluation

Linkerd comes with a series of observability features for

telemetry and monitoring. One metric specific to HTTP is

the response time latency. This refers to the time it takes

an application to perform an operation (e.g., processing a

request, populating data, etc.) In service mesh terms, this is

determined at the response level by measuring the amount of

time the server takes to process each HTTP request. Latency

is characterized by the percentiles of a distribution, commonly

including the p50 (or median), the p95 (or 95th percentile),

the p99 (or 99th percentile) and it is expressed in milliseconds

[63]. For example, a request latency p95 value of 50 ms

indicates that 95 out of 100 requests took 50 ms or less to

process. The optimal values for end-to-end latency approved

by 3GPP Release 16 [66] in the case of mMTC applications

are under 50 ms (e.g. industrial IoT), whereas for critical

URLLC applications (augmented/virtual reality, autonomous

driving, etc.) can be in the range of 5-10 ms ( [67]–[69]).

Figure 5 shows the latency, i.e., the p95 response time

for each of the deployed Open5GS network functions in the

CAPI and K3s setups. In the CAPI deployments, the Open5GS

applications are running in an EKS workload cluster hosted

on AWS public cloud, whereas in the K3s deployment the K3s
agent is hosted in an on-premises environment (see Figure 4).

Nevertheless, to determine the end-to-end latency as defined

by 3GPP Release 16 it is necessary to connect to the end-

user through the RAN using a gNB and UE simulator (e.g

UERANSIM [70]). This is currently not in the scope of this

paper as we plan to address it in a later study. The main

objective of this research is to evaluate the performance of the

Open5GS containerized application inter process communica-

tion using application programming interfaces (APIs) for both

our CAPI and K3s proposed deployments. Our results show

better response time values for the CAPI setup compared to

K3s which validates our assumption in regards to the benefit

of running Open5GS in the public cloud since employing on-

demand resources not only increases scalability but also leads

to a faster inter-services communication.

In Figure 5 (a), we compare the latency values for three net-

work functions: Access and Mobility Management Function

(AMF), Authentication Server Function (AUSF) and the Ses-

sion Management Function (SMF). The AMF is the function

responsible for the authentication, connection and mobility

management between the network and mobile device, whereas

the AUSF performs the user authentication. The SMF handles

the session management, IP address allocation, and control of

policy enforcement. As a matter of fact, the latency for all
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(a) Authentication, Mobility and Session Management Func-

tions

(b) Network Resource Management Functions

(c) Policy Control and Data Management Functions

Fig. 5: Latency comparison of the Open5GS deployment using

CAPI vs K3s

three network functions where Open5GS was deployed using

K3s is ∼ 4-5 ms that translates into almost twice the response

time obtained in the CAPI setup.
In Figure 5 (b), we display the values for the Network

Resource Management Functions i.e., Network Repository

Function (NRF) and the Network Slice Selection Function

(NSSF). According to 3GPP Release 16, the NSSF’s role is

to select the Network Slice Instance (NSI) dedicated to the

user. NSI is responsible for providing the hardware resources

(e.g. computation, storage and networking resources) and the

network functions for a network slice. The NRF performs

network discovery and maintains a list with the available NFs

along with the associated profiles. In terms of values, the NSSF

deployed in the CAPI environment reports half the latency ≤
2 ms in comparison to the K3s deployment while the response

time for NRF in the case of CAPI slightly exceeds for a short

interval the corresponding response time for K3s deployment.

Nonetheless, this burst of latency does not affect the overall

latency obtained for the NRF as AWS guarantees 99% service

availability according to the SLA [71].
The latency values for the Policy Control and Data Man-

agement Functions are illustrated in Figure 5 (c). The Policy

Control Function (PCF) objective is to ensure policy rules

to the control plane functions while providing access to the

subscription policies required to take decisions in in a Unified

Data Repository (UDR). The latter stores the subscription

information and is responsible to retrieve the structured data

that can be exposed to a network function. The Unified Data

Management (UDM) can also use the UDR to store and extract

subscription information while its primary role is to generate

authentication credentials and handle the user identification.

We observe in our experiment that the latency values for PCF,

UDR and UDM are significantly smaller (≤ 2 ms) in the case

of the Open5GS provisioned with CAPI in comparison to the

K3s setup.

Fig. 6: Memory consumption for K3s server and CAPI Man-

agement Cluster deployed with kind

From a control plane resource consumption perspective, we

evaluate the two setups in terms of memory utilized in the

container runtime for both the management cluster in CAPI

and the K3s server. Figure 6 shows the amount of RAM

used per application instead of calculated per process and it is
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Index K3s applications kind applications
1 docker-containerd docker-proxy
2 local-path-provisoner containerd
3 dockerd-current kindnetd
4 kube-controllers local-path-provisoner
5 metrics-server kube-proxy
6 coredns linkerd-controller
7 linkerd-controller capi-controller
8 calico-controller kube-scheduler
9 traefik coredns

10 metrics-api cainjector
11 grafana-server kubelet
12 linkerd-proxy kube-controller-manager
13 containerd dockerd
14 prometheus etcd
15 K3s-server kube-apiserver

TABLE II: Application index corresponding to top most 15

intensive resource consumption control plane applications in

both deployments - K3s vs kind

considered as the sum of private RAM and the shared RAM

program processes. Table II illustrates the corresponding index

of the top 15 most intensive control plane applications for

both the K3s deployment and kind, respectively. For instance,

the total amount of RAM required by kindnetd which is the

default CNI plugin for kind (application number 3) is 11.5 MB,

whereas in the case of K3s calico kube-controller it consumes

35.8 MB RAM. Nevertheless, for the coredns service which is

the Kubernetes cluster DNS, memory consumption is similar,

i.e., 30 MB. The two setups use containerd as the Kubernetes

Container Runtime Interface (CRI). We can see in Figure 6

(application 11) that the containerd memory utilization in the

case of K3s reaches 158 MB, almost twice the needed memory

for kind, around 84 MB. The highest memory consumption

value corresponds to the kube-apiserver 712.5 MB (in Kind
deployment), whereas for K3s, the memory used for the k3s-
server is 747.7 MB. An application required only by the Kind
setup and specific to Kubernetes is kubelet which consumes

77.8 MB, whereas in the K3s deployment we installed linkerd
that requires 150 MB. Even though the machines that host

the two workloads have similar hardware specifications, our

evaluation shows higher memory consumption rate for the

K3s control plane deployment. These results indicate that even

though K3s is considered a lightweight container orchestrator,

it utilizes more memory in comparison to kind. On the other

hand, the latency values are higher in the scenario where

Open5GS is deployed using K3s. Hence, we can draw the

conclusion that running 5G network functions on the edge is

limited by the hardware requirements which are utilized on-

demand in a cloud infrastructure.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a practical use case imple-

mentation of the 5G SBA in the context of edge computing

for multi-cluster deployments and integration with third-party

cloud providers. This paper aimed to provide an insight into

the CNF open-source projects as we conducted a survey of

the most relevant frameworks for the MANO ochestrator as

well as a summary of the existing OSS projects for virtualized

5G packet core. We also evaluated the different container

orchestration models designed for edge computing.

One of our main objectives was to compare two of the

deployment models from a latency perspective when running

the 5G CNFs and the memory resource consumption for the

control plane. In this manner we were able to validate that

the CAPI deployment using kind is a lighter edge container

orchestrator than the other candidate. Moreover, the cloud-

side deployment with centralized management on the edge

shows better response time in comparison to the K3s edge

deployment of the Open5GS. Another benefit of employing

the CAPI solution is that it allows multiple geographically

distributed clusters running on third-party cloud providers

infrastructure. This translates into deploying edge services and

network functions on different clusters spread across multiple

clouds in order to ensure full isolation between the tenants.

As future work we are planning to test the communication

between the 5G RAN and the 5G Core for the proposed

deployment as well as the publish and subscribe capabilities

for the IoT sensors. We would like to ensure that the proposed

solution accommodates all scenarios for both telcos and IoT

edge. Another item we want to assess in our future research

is the security of our proposed setup from a cloud compliance

management posture. In this paper, we deployed a service
mesh within the cluster and analyzed the inter-service commu-

nications for the Open5GS deployment, thus we would like to

further extend our work and evaluate the external traffic for

multi-cluster and multi-cloud intensive operations according

to our proposed multi-cloud architecture.
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