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Abstract The interplay between disease spreading
and personal risk perception is of key importance for
modelling the spread of infectious diseases. We pro-
pose a planar system of ordinary differential equations
(ODEs) to describe the co-evolution of a spreading phe-
nomenon and the average link density in the personal
contact network. Contrary to standard epidemic mod-
els, we assume that the contact network changes based
on the current prevalence of the disease in the popu-
lation, i.e. the network adapts to the current state of
the epidemic. We assume that personal risk perception
is described using two functional responses: one for
link-breaking and one for link-creation. The focus is
on applying the model to epidemics, but we also high-
light other possible fields of application. We derive an
explicit form for the basic reproduction number and
guarantee the existence of at least one endemic equilib-
rium, for all possible functional responses. Moreover,
we show that for all functional responses, limit cycles
do not exist. This means that our minimal model is not
able to reproduce consequent waves of an epidemic,
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and more complex disease or behavioural dynamics
are required to reproduce epidemic waves.
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Risk perception · SIS epidemics · Adaptive networks

1 Introduction

Classical compartmental models in epidemiology rely
on the widely accepted assumption of homogeneous
mixing. Homogeneous mixing implies that any indi-
vidual in a population has the same probability ofmeet-
ing every other individual, regardless of their location,
activities or age. While this assumption greatly sim-
plifies the analysis of such models, its interpretation
clashes with the reality of human interaction, which is
known to be heterogeneous and exhibits community
structure [1]. Network models have been proposed and
studied to include a more realistic pattern of connec-
tions between individuals [2].

Most network-based research focuses on contact
patterns that remain fixed over time. However, real-
world contacts vary over time, especially during epi-
demic outbreaks, because of individual decisions of
people to avoid contact with other people. Such net-
works are called adaptive networks, because the net-
work adapts itself to the spread of the disease [3].

The excellent review by Verelst et al. [4] provides
an overview of various practical approaches for the
mathematical modelling of the interplay between dis-
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ease and human behavior. A multi-layer approach was
adopted by Sahneh et al. [5], where one layer describes
the disease transmission and another layer the aware-
ness of individuals about the disease. Gross et al. [6]
proposed a rewiring mechanism, which rewires the
link between two connected susceptible-infected nodes
to two susceptible nodes. Kiss et al. [7] (and inde-
pendently Achterberg et al. [8]) introduced a Link
Activation-Deactivation model, in which links can be
broken or created between any two nodes, where the
rate to break or create a link depends on the health
state of the two nodes attached to that link. Jolad et al.
[9] assumes that all individuals have a preferred num-
ber of neighbours, subject to random link addition and
removals. The preferred degree is taken to be a function
of the current number of infected nodes in the network.
Brauer [10] discusses an SIR model in which a certain
percentage of the links is removed. The removal per-
centage is larger if the link is connected to infected
nodes rather than susceptible nodes. All abovemen-
tioned models capture a particular aspect of human
behavior on disease dynamics, but most are so com-
plicated that an exact analysis is completely infeasi-
ble. The reason is that the models often involve a large
amount of individuals or equations, or the infection
probabilities involve the computation of many depen-
dent random variables.

In this work, we propose a minimal model consist-
ing of two ODEs, one for the viral prevalence (i.e. the
fraction of individuals currently carrying the disease)
in the population using the NIMFA equations [11], and
one for the link density of the contact network. Our
model is minimal in terms of the number of equations
and parameters, while still capturing key aspects of
behavioural disease dynamics. We model the creation
and removal of edges as an overall increase or decrease
of the link density of the contact network. We call the
model adaptive NIMFA (aNIMFA), in line with earlier
work [12]. The core aspect of aNIMFA are the func-
tional responses of individuals to create or break links
in the network, based on the current number of infected
people. In predator–prey systems like Volterra-Lotka
dynamics, Holling introduced functional responses to
describe the food intake by predators as a function of
the number of available prey [13]. A preliminary analy-
sis of the aNIMFAmodelwas performed byAchterberg
and VanMieghem [12], but only for specific functional
responses. We extend the results from [12] by consid-

ering general functional responses and by providing a
more detailed analysis.

The aNIMFAmodel is not limited to modelling epi-
demic spread, but can be utilised for describing general
spreading phenomena, including opinion dynamics,
Maki-Thompson rumour spread, innovation spread and
epileptic seizures in the human brain. If the dynamics
evolve over a network structure and the link density can
bemodelled by link-breaking and link-creation dynam-
ics, the aNIMFAmodel can be generalised to suchmod-
els. In the context of epidemics, one would expect the
removal (resp. creation) of links to be directly (resp.
inversely) proportional to the prevalence. For other
spreading phenomena, such as rumor spreading, this
might not be the case, and other choices for the func-
tional responses can be made. The simplicity of the
aNIMFA model makes it a promising tool for future
generalizations and for the integration of more com-
plex mechanisms.

Lastly, we consider the situation where the network
changes slowly compared to the spread of the disease,
and we study the qualitative behaviour of the result-
ing model using Geometric Singular Perturbation The-
ory (GSPT) [14,15]. Techniques fromGSPT have been
applied to epidemiological models in which the loss
of immunity and demography are slow compared to
infection and recovery from a disease in [16,17]. Addi-
tionally, similar techniques were applied to epidemics
modelling e.g. in [18–22].

The paper is structured as follows. We introduce
the aNIMFA model in Sect. 2 and provide a thorough
analysis in Sect. 3. Then we consider several examples
of functional responses in Sect. 4. We study a slowly
evolving network in Sect. 5 using Geometric Singular
PerturbationTheory andpresent a conclusion inSect. 6.

2 The aNIMFA model

Consider a well-mixed population of N individuals,
subject to the spread of a disease. Of primary impor-
tance is the prevalence y(t), which is the average frac-
tion of infected individuals at time t . The governing
equation for the prevalence y of the SIS process for a
well-mixed population is given by

dy

dt
= −δy + βy(1 − y)z, (1)

where the curing process is denoted by its rate δ, the
infection process by the corresponding rate β and z is
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the link density of the contact network, i.e. the average
fraction of connections between all individuals com-
pared to the total amount of possible connections. In
the classical model, the link density z is not varying
over time. In the first term on the right-hand side of Eq.
(1), the prevalence decreases proportional to the current
number of infected cases. The second term on the right-
hand side in Eq. (1) increases the prevalence because
of contact between infected y and susceptible 1 − y
nodes. Because of the homogeneous mixing, we multi-
ply with the link density z to obtain the average number
of contacts. Equation (1) is also equivalent to the N-
Intertwined Mean-Field Approximation (NIMFA) of a
Markovian SIS process on a complete static graph with
link weights z, equal initial conditions for all nodes and
homogeneous infection and curing rates [11].

Contrary to the static SIS process, we assume that
the link density z(t) is varying over time and its dynam-
ics is governed by a link-breaking and a link-creation
process. Then the link density z(t) changes over time
as

dz

dt
= −ζ z fbr(y) + ξ(1 − z) fcr(y), (2)

where ζ is the link-breaking rate, ξ the link-creation
rate and fbr(y) and fcr(y) are the functional responses
to the link-breaking and link-creation process, respec-
tively. The breaking (resp. creation) of links translates
into decreasing (increasing) the link density z in Eq.
(2), implying that fbr and fcr must be non-negative.
We assume the parameters δ, β, ζ , ξ to be O(1) and
positive. The link density z has been normalised, such
that z = 1 is the maximum link density (correspond-
ing to a complete graph) and z = 0 corresponds to
an empty graph (no connections, so the link density is
zero).

Equations (1) and (2) can be simplified by introduc-
ing the scaled time t̃ = δt . We additionally introduce
the effective infection rate τ = β/δ. Using the transfor-
mations ζ̃ = ζ/δ and ξ̃ = ξ/δ, thewell-mixed adaptive
NIMFA (aNIMFA) equations are obtained (after drop-
ping the tildes, for ease of notation)

dy

dt
= −y + τ y(1 − y)z, (3a)

dz

dt
= −ζ z fbr(y) + ξ(1 − z) fcr(y), (3b)

feasible region 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

We introduce, for ease of notation, the effective link-
breaking rate ω = ζ/ξ ; this will be useful in Sect. 3.2.
The initial conditions y(0) ∈ [0, 1] and z(0) ∈ [0, 1]
describe the initial prevalence and link-density, respec-
tively. We assume that the functional responses fbr(y)
and fcr(y) are non-negative, sufficiently regular func-
tions on the interval 0 ≤ y ≤ 1. We exclude the pos-
sibility that fbr(y) = 0 and fcr(y) = 0 for all y, as in
this case, the link density z is not affected by fbr and
fcr and remains constant over time.

3 Analysis of the model

Prior to confining ourselves to specific link-breaking
and link-creation functions fbr and fcr, we first derive
general results for the aNIMFA model.

Lemma 1 Consider a solution of system (3) starting at
(y(0), z(0)) ∈ [0, 1]2. Recall that fbr(y), fcr(y) ≥ 0
for all y ∈ [0, 1]. Then, (y(t), z(t)) ∈ [0, 1]2 for all
t ≥ 0, meaning [0, 1]2 is forward invariant for system
(3).

Proof We calculate

dy

dt

∣
∣
∣
∣
y=0

= 0,
dy

dt

∣
∣
∣
∣
y=1

= −1 < 0,

dz

dt

∣
∣
∣
∣
z=0

= ξ fcr(y) ≥ 0,
dz

dt

∣
∣
∣
∣
z=1

= −ζ fbr(y) ≤ 0,

which proves the forward invariance of [0, 1]2. ��

3.1 Disease-free equilibrium

The aNIMFA model always has one steady state y0 =
0, which corresponds to the situation in which no
infected individuals are present in the population. In
line with the literature, we call this steady state the
disease-free equilibrium (DFE). The DFE of the mean-
field equations (3) equals

y0 = 0,

z0 =
{

fcr(0)
ω fbr(0)+ fcr(0)

if fbr(0) �= 0 or fcr(0) �= 0,

c if fbr(0) = fcr(0) = 0,

for any c ∈ [0, 1].
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3.2 Endemic equilibria

Depending on the choice of the functional responses
fbr and fcr, multiple additional steady states may exist,
which are called the endemic equilibria (EE). Recall
that ω = ζ/ξ is the effective link-breaking rate of sys-
tem (3). The endemic equilibria are the solutions of the
generally non-linear equation

ω fbr(yE) = (τ − 1) fcr(yE) − τ yE fcr(yE), (4)

and the corresponding steady-state link density zE fol-
lows as

zE = 1

τ(1 − yE)
. (5)

We remark that the solution yE = 1 is never a valid EE
for any functional responses fbr and fcr, which follows
immediately from substituting yE = 1 into Eq. (4).
Hence, if an EE exist, the steady-state prevalence yE
must be in the open interval (0, 1). We further investi-
gate the existence of endemic equilibria in Sect. 3.4.

3.3 Linear stability analysis

We analyse the linear stability of the steady states by
computing the Jacobian of Eq. (3) as

J =
( −1 + τ(1 − 2yE)zE τ yE(1 − yE)

−ζ zE f ′
br(yE) + ξ(1 − zE) f ′

cr(yE) −ζ fbr(yE) − ξ fcr(yE)

)

.

(6)

Evaluating (6) in the disease-free equilibrium yE =
0, zE = z0, we find

J (0, z0) =
( −1 + τ z0 0

−ζ z0 f ′
br(0) + ξ(1 − z0) f ′

cr(0) −ζ fbr(0) − ξ fcr(0)

)

.

(7)

Since the Jacobian for the disease-free equilibrium is
lower-triangular, the eigenvalues are λ1 = −1 + τ z0
and λ2 = −ζ fbr(0) − ξ fcr(0). The eigenvalues are
always real, so (un)stable spirals cannot be observed.
We now consider several cases.

1. Case fbr(0) = 0 and fcr(0) = 0
The eigenvalues are λ1 = −1 + τ z0 and λ2 =
0, which makes the stability undeterminable using
linear stability analysis.

2. Case fbr(0) = 0 and fcr(0) > 0
The eigenvalues are λ1 = −1 + τ and λ2 =

−ξ fcr(0). Thus the disease-free equilibrium is a sta-
ble node if τ < 1 and an unstable node if τ > 1.
For τ = 1, the stability is undetermined. In this
case, z0 = 1.

3. Case fbr(0) > 0 and fcr(0) = 0
The eigenvalues are λ1 = −1 and λ2 = −ζ fbr(0),
thus the DFE is a stable node. In this case, z0 = 0.

4. Case fbr(0) > 0 and fcr(0) > 0
The eigenvalues are λ1 = −1+ τ

fcr(0)
ω fbr(0)+ fcr(0)

and
λ2 = −ζ fbr(0) − ξ fcr(0). Eigenvalue λ2 < 0, thus
the stability solely depends on λ1. The disease-free
equilibrium is a stable node if τ <

ω fbr(0)+ fcr(0)
fcr(0)

,

an unstable node if τ >
ω fbr(0)+ fcr(0)

fcr(0)
and is unde-

termined otherwise.

We remark that, in cases 2 and 4, the linear stability
or instability of the DFE coincides with R0 derived in
Sect. 3.4 being smaller or bigger than 1.

Unfortunately, we cannot directly analyse the sta-
bility of the endemic equilibria, because (i) we do not
know yE nor zE and (ii) we require the functions fbr
and fcr and its derivatives f ′

br and f ′
cr to determine the

stability. Moreover, the existence of multiple endemic
equilibria rules out the possibility of finding a Lya-
punov function to prove the global stability of system
(3). Nevertheless, for specific functional responses fbr
and fcr that have only a single EE, one could attempt
to construct a Lyapunov function, which is outside the
scope of this paper.

3.4 Basic reproduction number

In this section, we provide an expression for the basic
reproduction number R0, also known as the epidemic
threshold, which is the number of secondary infections
produced by one average infected individual in an oth-
erwise susceptible population. At the point R0 = 1, the
disease-free equilibrium loses stability and an endemic
equilibrium emerges. We compute the basic repro-
duction number R0 using the next generation matrix
method, which was first introduced in [23], then gener-
alized in [24] (see also [25]). Even though the compart-
mental component of system (3) is one-dimensional
(the equation for the link density z does not count) and
the analysis could also be done by local stability anal-
ysis, we have chosen for the next generation matrix
method due to its widely spread use.

We rewrite the first entry of (7) as J11 = M11−V11,
with M11, V11 > 0. The only such splitting possible,
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assuming fcr(0) > 0, is

M11 = τ z0, V11 = 1.

Then, the basic reproduction number R0 is M11V
−1
11 ,

i.e.

R0 = τ
fcr(0)

ω fbr(0) + fcr(0)
. (8)

For the case fcr(0) = 0, the method does not apply:
this models a particularly degenerate situation in our
model, as absence of the disease does not increase the
connectivity strength. We use this definition of R0 to
prove the following theorem.

Theorem 2 If R0 > 1, system (3) admits at least one
endemic equilibrium.

Proof It follows from the second equation of system
(3) that, at equilibrium,

zE = fcr(yE)

ω fbr(yE) + fcr(yE)
.

Moreover,

dy

dt

∣
∣
∣
∣
y=1

= −1 < 0.

Hence, if we prove that there exists a ε > 0 such that

dy

dt

∣
∣
∣
∣
y=ε

> 0,

the intermediate value theorem ensures the existence of
at least one positive (i.e., endemic) equilibrium value
for y. This coincides with requiring

−ε + τε(1 − ε)
fcr(ε)

ω fbr(ε) + fcr(ε)
> 0.

Simplifying by ε on both sides and rearranging the
terms, we obtain

τ
fcr(ε)

ω fbr(ε) + fcr(ε)
>

1

1 − ε
.

This inequality coincides with the assumption R0 > 1
for ε = 0; hence, by continuity, there exists an ε > 0
such that the desired inequality is satisfied.

This concludes the proof. ��

3.5 Global stability

Before proving global stability, we first consider limit
cycles of the aNIMFA model, for which we invoke the
Bendixson-Dulac theorem.

Theorem 3 (Bendixson-Dulac) If there exists a C1-
function φ(y, z) such that the expression

F(y, z) = ∂(φ f )

∂y
+ ∂(φg)

∂z
(9)

has the same sign ( �= 0) almost everywhere in a sim-
ply connected region R, then the planar autonomous
system

dy

dt
= f (y, z),

dz

dt
= g(y, z),

has no non-constant periodic solutions lying entirely
within the region R.

A proof of Theorem 3 can be found in [26], or in [27]
for the n-dimensional case. We now apply Theorem 3
to prove that system (3) admits no periodic solutions.

Theorem 4 System (3) admits no non-trivial periodic
solutions.

Proof We verify the Bendixson-Dulac criterion using
φ(y, z) = 1

yz for our system (3) in the region R =
(0, 1)2. We find

φ f = −1

z
+ τ(1 − y),

φg = −ζ
fbr(y)

y
+ ξ

fcr(y)

yz
− ξ

fcr(y)

y
.

Filling in Eq. (9) gives

F(y, z) = −τ − ξ
fcr(y)

yz2
.

Since y, z > 0 and fcr(y) is a non-negative function,
we conclude that F < 0 in the whole region R =
(0, 1)2 and there cannot exist any limit cycles. ��

Recall that the DFE is locally (hence, globally)
unstable when R0 > 1.Wemake the following remark:

Corollary 5 Assume that R0 > 1, and that the DFE
is on the repelling part of the z-axis {y = 0, z > 1

τ
}.

Then, the endemic equilibrium, if it is unique, is glob-
ally asymptotically stable. If multiple endemic equilib-
ria exist, or the DFE is in the attracting part of the
z-axis, i.e. {y = 0, z < 1

τ
}, no general conclusions can

be drawn.
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Proof We can exclude the possibility of homoclinic
orbits to the DFE, whose stable manifold is the z-axis.
Under our assumptions, the corollary is an immediate
consequence of Theorem 4. ��

4 Examples

In the previous section, we derived several general
results for the aNIMFA model. However, certain prop-
erties, like the number and stability of the endemic
states, could not be determined for general functional
responses. In this section, we investigate several exam-
ples of functional responses fbr and fcr, whereby we
primarily focus on epidemiological applications. Then,
by assumption, the link-breaking rule fbr(y) is likely
to be increasing with the prevalence y and the link-
creation rule fcr(y) is exactly opposite. The aNIMFA
model is, however, more versatile and can be applied to
other spreading phenomena, including opinion dynam-
ics, cascading failures and information transport in the
human brain. These spreading phenomena are often
more complex than SIS epidemic spread, thus requiring
more complex (maybe even non-monotone) functional
responses fbr and fcr.

4.1 Example 1: Random link-activation deactivation

Presumably the easiest functional responses are those
that are totally unaffected by the current number of
infected cases. Then the network density evolves inde-
pendently of the epidemic prevalence. This model is
known as the Random Link-Activation Deactivation
(RLAD) model [7]. In this model, each link in the
underlying network can be randomly created or bro-
ken, with rates ξ and ζ respectively. Mathematically,
we require that the functional responses fbr and fcr
are constant and for simplicity, we consider fbr(y) =
fcr(y) = 1, and hence system (3) becomes

dy

dt
= −y + τ y(1 − y)z, (10a)

dz

dt
= −ζ z + ξ(1 − z). (10b)

Then, the basic reproduction number as defined in Eq.
(8) is R0 = τ

1+ω
. In this simple example, the govern-

ing equation (3b) for the link-density z(t) is decoupled

from the prevalence y(t) and can be solved directly;

z(t) = 1

1 + ω
+

(

z0 − 1

1 + ω

)

e−(ξ+ζ )t ,

where the effective link-breaking rate ω = ζ/ξ . If
the exponential decays sufficiently fast (i.e. ξ + ζ

is large), the network density quickly converges to
z = 1/(1+ω). Substituting z = 1/(1+ω) into Eq. (3a)
and solving yields the famous logistic equation [28] for
the prevalence;

y(t) = yE
1 + e−K (t−t0)

, (11)

where yE = 1 − 1+ω
τ

is the steady-state prevalence,

K = τ −1 is the growth rate and t0 = 1
K ln

(
yE
y0

− 1
)

is

the inflection point, better known as the epidemic peak.
Formula (11) only holds if y0 �= yE and the solution
equals y(t) = y0 if y0 = yE.

The time-varying prevalence y(t), given byEq. (11),
converges to a unique, non-zero, steady-state preva-
lence yE > 0 if τ > 1+ω. Otherwise, for τ < 1+ω, the
prevalence decreases exponentially to zero. The same
result follows from linear stability analysis. The DFE,
given by (yE, zE) = (0, 1

1+ω
), is asymptotically stable

for τ < 1 + ω, unstable for τ > 1 + ω and undeter-
mined for τ = 1+ω. The unique endemic equilibrium

is given by (yE, zE) =
(

1 − 1+ω
τ

, 1
1+ω

)

, which is in

the biologically feasible region only if R0 > 1, and
coincides with the DFE when R0 = 1. The Jacobian is

J =
(

1 − τ
1+ω

(1 + ω)
(

1 − 1+ω
τ

)

0 −ζ − ξ

)

.

The eigenvalues are λ1 = 1− τ
1+ω

and λ2 = −ζ −ξ <

0. Thus the EE is a stable node if R0 > 1, unstable
node if R0 < 1 and undetermined for τ = 1 + ω. As
we remarked above, the case R0 < 1 leads to yE < 0
which is biologically infeasible. The steady states and
their behavior of the RLADmodel is shown in Table 1.

Since the link-dynamics is decoupled from the dis-
ease dynamics in theRLADmodel, the behaviour of the
RLADmodel is very similar to the static SISmodel and
undergoes the usual transcritical bifurcation, except
that the basic reproduction number R0 is a function of
the effective link-breaking rate ω. For other functional
responses fbr and fcr, we expect different behaviour,
which will be investigated in the upcoming examples.
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Table 1 The equilibria of Example 1 and their local stability

Example 1:
fbr (y) = 1,
fcr (y) = 1

R0 ≤ 1 R0 > 1

Disease-free state(

0, 1
1+ω

) Stable
node

Unstable
node

Endemic equilibrium
(

1 − 1+ω
τ

, 1
1+ω

)
Unstable
node

Stable
node

4.2 Example 2: Epidemics: fbr(y) = y, fcr(y) = 1

Contrary to the randomly evolving links in Example 1,
we expect that genuine epidemic outbreaks affect the
number of contacts of people. We consider the simple
case where the link-breaking process fbr(y) = y is a
linear function of the prevalence, but the link-creation
process remains independent from the total number of
infections [ fcr(y) = 1]. Then, the governing equations
become

dy

dt
= −y + τ y(1 − y)z, (12a)

dz

dt
= −ζ zy + ξ(1 − z). (12b)

The basic reproduction number as defined in Eq. (8) is
R0 = τ . The disease-free equilibrium (yE, zE) = (0, 1)
is a stable node if τ < 1, an unstable node if τ > 1
and is otherwise undetermined. The unique EE follows

from Eq. (4) as (yE, zE) =
(

τ−1
τ+ω

, τ+ω
τ(1+ω)

)

and exists in

the biologically feasible region for τ > 1.
We now show that the unique EE is locally stable for

this specific choice of fbr and fcr. The Jacobian around
the EE equals

J =
(−1 + τ(1 − 2yE)zE τ yE(1 − yE)

−ζ zE −ζ yE − ξ

)

=
( − τ−1

1+ω
τ(τ−1)(ω+1)

(τ+ω)2

−ζ τ+ω
τ(1+ω)

−ζ
τ(ω+1)
ω(τ+ω)

)

.

Clearly, for τ > 1 and ζ, ω > 0, we have J1,1, J2,1,
J2,2 < 0 and J1,2 > 0; hence, tr(J ) < 0 and
det(J ) > 0, which implies that the real parts of its
eigenvalues are negative. Hence, the EE is locally sta-
ble. Following Corollary 5, the EE is also globally
asymptotically stable for R0 > 1, which is a conse-

Table 2 The equilibria of Example 2 and their local stability

Example 2:
fbr(y) = y,
fcr(y) = 1

R0 ≤ 1 R0 > 1

Disease-free state
(0, 1)

Stable
node

Unstable
node

Endemic equilibrium
(

1− 1
τ

1+ ω
τ
,
1+ ω

τ

1+ω

)
Unstable
spiral

Stable
spiral

quence of the absence of limit cycles guaranteed by
Bendixson-Dulac and the fact that the DFE is unstable
for R0 > 1.

We summarize the stability of the two equilibria in
Table 2 and present simulations of the two possible
behaviours of system (12) in Fig. 1.

Comparing this example toExample1, the behaviour
is different in two ways. First, the basic reproduc-
tion number R0 = τ does not depend on the link-
breaking rate ζ and link-creation rate ξ . Second, the
endemic equilibrium remains a globally stable equilib-
rium, but in this case, the endemic equilibrium shows
spiral behaviour around the equilibrium.

4.3 Example 3: The Adaptive SIS model

The adaptive SIS (ASIS)model was introduced byGuo
et al. [29] to describe the response of individuals to
an on-going pandemic. In particular, it was assumed
that links are broken between susceptible and infected
nodes and (re)created between susceptible nodes. The
aNIMFAapproximationof theASISmodelwas already
analysed in [12] and the functional responses were
derived as fbr(y) = 2y(1− y) and fcr(y) = (1− y)2.
The link-breaking response is similar to Example 2,
but the term 1 − y was added to account for the
fact that for large epidemic outbreaks, the suscepti-
ble population may be depleted and the possibility to
break links between susceptible and infected individu-
als decreases, simply because of the lack of susceptible
individuals. The factor 2 is a conversion factor from the
original Markovian model; we keep this factor for con-
sistency with [12]. The link-creation response is more
intuitive; we expect many links to be created if the dis-
ease is almost nonexistent. Hence, we are considering
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Fig. 1 Dynamics for Example 2. Starting point: asterisk; sta-
ble equilibrium: black dot; unstable equilibrium: red dot. a If
R0 < 1, any initial condition converges to the DFE. b If R0 > 1,

the unique EE is globally stable. The other parameters are, for
simplicity, ζ = ξ = 1. (Color figure online)

the system of ODEs

dy

dt
= −y + τ y(1 − y)z, (13a)

dz

dt
= −2ζ zy(1 − y) + ξ(1 − z)(1 − y)2. (13b)

The basic reproduction number as defined in Eq. (8)
is, once again, R0 = τ . The disease-free equilib-
rium (0, 1) is a stable node for R0 < 1, unstable
node for R0 > 1 and is undetermined otherwise. The
unique endemic equilibrium follows from (4) and has
y-coordinate [12]

yE = 1 − 1 − 2ω

2τ
−

√
(
1 − 2ω

2τ

)2

+ 2ω

τ
,

and the EE becomes
(

yE,
1

τ(1−yE)

)

. Using basic arith-

metic, it can be verified that τ > 1 implies 0 < yE ≤
1 − 1

τ
, which ensures that the EE is contained in the

physical region (0, 1)2. Thus, the EE exists for R0 > 1.
The calculations needed for the stability of the

EE become extremely cumbersome; however, the
Bendixson-Dulac theorem, the uniqueness of the EE,
the boundedness of solutions (see Lemma 1) and the
instability of the DFE ensure that the EE is globally
asymptotically stable when R0 > 1 (recall Corollary
5).

Table 3 The equilibria of Example 3 and their local stability

Example 3:
fbr(y) = 2y(1 − y),
fcr(y) = (1 − y)2

R0 ≤ 1 R0 > 1

Disease-free state
(0, 1)

Stable
node

Unstable
node

Endemic equilibrium
(

yE,
1

τ(1−yE)

)
Unstable
spiral

Stable
spiral

We summarize the stability of the two equilibria in
Table 3 and present simulations of the two possible
behaviours of system (14) in Fig. 2.

4.4 Example 4: Information spread

In this section we consider an example from opinion
dynamics, where a rumour is spreading in a popula-
tion. The rumour is assumed to be attractive; hence,
links are created to enhance the rumour spread. We use
here the Adaptive Information Diffusion (AID) model,
introduced by Trajanovski et al. [30] to describe the
spread of information.

The prevalence can be interpreted as the fraction
of the population that knows the rumour. Infection is
equivalent to hearing the news and curing corresponds
to forgetting the news. As a link-breaking response,
we consider fbr(y) = (1 − y)2, which reduces the
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Fig. 2 Dynamics for Example 3. Starting point: asterisk; sta-
ble equilibrium: black dot; unstable equilibrium: red dot. a If
R0 < 1, any initial condition appears to converge to the DFE. b

If R0 > 1, the unique EE is globally stable. The other parameters
are, for simplicity, ζ = ξ = 1. (Color figure online)

link density when the prevalence is low. On the other
hand, the link-creation response fcr(y) = 2y(1− y) is
based on the fact that the gossip is worth knowing, and
thus the link density increases for larger prevalence
y. However, when the news is only slightly present,
little people may transmit the news to their neighbours,
thereby we multiplied by the factor (1− y). The factor
2 is again a conversion factor from [12]. To summarise,
the system of ODEs is given by:

dy

dt
= −y + τ y(1 − y)z, (14a)

dz

dt
= −ζ z(1 − y)2 + 2ξ y(1 − z)(1 − y). (14b)

The basic reproduction number R0 cannot be deter-
mined in the traditional way using (8), as the disease-
free equilibrium does not lose stability. Instead, we
define the basic reproduction number as the pointwhere
the two endemic equilibria are born (i.e. where (16) has
non-complex solutions). Then the basic reproduction
number follows as [12]

R0 = 2τ

ω + 2 + √
8ω

. (15)

The disease-free equilibrium (0, 0) is stable for all
τ > 0. The y-coordinates of the two endemic equi-
libria follow from (4) and are equal to [12]

(yE)1,2 = 2τ + ω − 2 ± √

(2τ + ω − 2)2 − 8τω

4τ
(16)

Table 4 The equilibria of Example 4 and their local stability

Example 4:
fbr(y) = (1 − y)2,
fcr(y) = 2y(1 − y)

R0 < 1 R0 ≥ 1

Disease-free state
(0, 0)

Stable node Stable node

Endemic equilibrium
(

(yE)1,
1

τ(1−(yE)1)

)
Non-existent Unstable node

Endemic equilibrium
(

(yE)2,
1

τ(1−(yE)2)

)
Non-existent Stable node

and the EE become
(

yE,
1

τ(1−yE)

)

. The dynamics of

the AID model is plotted in Fig. 3. For R0 < 1, the
solution converges to (0, 0). For R0 > 1, the solution
may converge to the disease-free state (0, 0), but also
to the endemic equilibrium, depending on the initial
condition. The dependence of the basic reproduction
number R0 on the effective link-breaking rateω is non-
linear, which contrasts all earlier examples, that were
either independent or linearly dependent on the effec-
tive link-breaking rateω. Lastly, since the DFE is in the
attracting part of the z-axis, we can not in general rule
out the existence of a homoclinic orbit from the DFE.

We summarize the stability of the two equilibria in
Table 4 and present simulations of the two possible
behaviours of system (14) in Fig. 3.
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Fig. 3 Dynamics for Example 4. Starting points: asterisks; sta-
ble equilibrium: black dot; unstable equilibrium: red dot. (a) If
R0 < 1, any initial condition converges to theDFE. (b) If R0 > 1,

solutions may converge to the stable endemic equilibrium or the
disease-free state, depending on the initial condition. The other
parameters are, for simplicity, ζ = ξ = 1. (Color figure online)

The basin of attraction of each stable equilibrium
can be determined using a Lyapunov function. Such
Lyapunov functions distinguish for which initial con-
ditions the systemwill converge to either theDFEor the
stable EE.However, up to the best of the authors knowl-
edge, no exact Lyapunov function can be constructed
for system (3) nor for most choices of the link-breaking
and link-creation mechanisms.

However, the Lyapunov function can be approxi-
mated by considering a linearisation around a fixed
point. For example, for the DFE (0, 0), its Jacobian
equals

J(0,0) =
(−1 0
2ξ −ζ

)

.

According to Khalil [31, p. 73–80], we can obtain an
approximate Lyapunov function V̂ by solving for the
matrix P in the following matrix equation

P J + J T P = −I,

and the Lyapunov function follows as

V̂ (y, z) =
(

y
z

)T

P

(

y
z

)

.

The estimated Region of Attraction � is then deter-
mined by the largest c > 0 for which

�c := {(y, z) ∈ [0, 1]2 | V̂ (y, z) ≤ c},
is such that

� := max
c>0

{
d

dt
V̂ (�c) < 0

}

.

For Example 4, the estimated Lyapunov function
around (0, 0) becomes

V̂ (y, z) = 1

2ζ
z2 + 1

2
y2 + 2ξ

ζ(1 + ζ )
yz + 2ξ2

ζ(1 + ζ )
y2

which is a tedious formula, but it is clear that V̂ > 0 in
the biologically relevant region [0, 1]2. Unfortunately,
the derivative d

dt V̂ is extremely complicated, even in
such a simple case. Hence, we derive the largest possi-
ble approximate regionof attractionnumerically,which
is shown in Fig. 4. The approximate regions of attrac-
tion for the disease-free equilibrium (0, 0) and the sta-
ble endemic equilibrium are shown in orange, whereas
the exact boundary separating the two regions, and thus
the actual basins of attraction of the two equilibria, is
shown as a light-blue curve. The estimated regions of
attraction often poorly match with the true regions of
attraction [31], which is especially true for the stable
EE in Fig. 4. On the other hand, the region of attraction
for the DFE is reasonably accurate.

5 Slow network dynamics

Suppose now that the network dynamics in system (3)
is slow compared to the disease spreading, that is to say,
the disease is transmitted almost instantaneously when
compared to the creation and removal of links in the
network. A good example is seasonal influenza, whose
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Fig. 4 Regions of attraction for Example 4. The two attrac-
tion regions are separated by the numerically determined light-
blue curve, which is the stable manifold of the unstable equi-
librium. The approximate regions of attraction for the disease-
free equilibrium and the stable endemic equilibrium are shown
in orange. Black dots denote the stable equilibria and the red
dot the unstable equilibrium. The parameters are, for simplicity,
τ = 3, ζ = ξ = 1. (Color figure online)

infection process is fast, whereas the contact network
only responds very slowly to the prevalence of the dis-
ease. Analytically, this translates in the introduction of
a small parameter 0 < ε 
 1 in the system. We per-
form the substitutions ζ �→ ζε and ξ �→ ε such that

dy

dt
= −y + τ y(1 − y)z,

dz

dt
= −ζεz fbr(y) + ε(1 − z) fcr(y).

(17)

As before, the initial conditions are y(0) ∈ [0, 1] and
z(0) ∈ [0, 1].We assume that all parameters (including
initial conditions) are O(1)-terms.

We intend to analyse Eq. (17) using Geometric Sin-
gular Perturbation Theory. System (17) is in standard
GSPT form, and expressed in terms of the fast time
variable t . In the limit ε → 0, we obtain the so-called
layer equation, or fast subsystem:

dy

dt
= −y + τ y(1 − y)z,

dz

dt
= 0.

(18)

Fig. 5 Stability of the branches of the critical manifold C0 of
(17).Blue: stable; red: unstable.Green dot: non-hyperbolic point;
black dots: equilibria. Double arrows: fast flow; single arrows:
slow flow. (Color figure online)

The corresponding critical manifold C0 is given by the
union of the sets

C0 = {(y, z) ∈ [0, 1]2 | y = 0}
∪

{

(y, z) ∈ [0, 1]2
∣
∣
∣
∣
y = τ z − 1

τ z

}

.

Notice that the second branch lies in the biologically
relevant quadrant of R2 only for z ≥ 1/τ , and for this
branch to have a non-empty intersection with [0, 1]2,
we necessarily need τ > 1.

Linearising the first equation of (18) and evaluating
it on y = 0, we observe that the corresponding eigen-
value is

λ = τ z − 1,

whereas the linearisation on the second branch of C0
gives

λ = 1 − τ z.

The two branches of the critical manifold exchange
stability at (y, z) = (0, 1

τ
), which is a non-hyperbolic

point since the linear part of system (18) is 0 here. A
visualisation of the stability of the two branches of C0
is shown in Fig. 5.

We now rescale time, introducing the slow time vari-
able s = εt . System (17) becomes

ε
dy

ds
= −y + τ y(1 − y)z,

dz

ds
= −ζ z fbr(y) + (1 − z) fcr(y).

(19)
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Taking the limit ε → 0,weobtain the so-called reduced
subsystem. The first equation defines once again the
critical manifold C0: substituting y in the second equa-
tion, we obtain one equation for the slow dynamics on
the first branch of C0
dz

ds
= −ζ z fbr(0) + ξ(1 − z) fcr(0), (20)

and one for the second

dz

ds
= −ζ z fbr

(
τ z − 1

τ z

)

+ ξ(1 − z) fcr

(
τ z − 1

τ z

)

.

(21)

Without further specification for the functional responses
fbr and fcr, we can hardly deduce information on the
asymptotic behaviour of the system. Hence, we return
to Example 2 and consider fbr(y) = y and fcr(y) = 1
such that Eqs. (20) and (21) become, respectively,

dz

ds
= ξ(1 − z),

and

dz

ds
= −ζ

τ z − 1

τ
+ ξ(1 − z). (22)

The corresponding steady-states are z0 = 1, repre-
senting the DFE, which the system tends towards if
y(0) = 0, and

zE = ω + τ

τω + τ
∈

(
1

τ
, 1

)

, if τ > 1, (23)

representing the EE, which is globally asymptotically
stable for orbits on the second branch of C0. Given
that τ > 1 and further assuming that y(0) > 0, two
difference kinds of behaviour exist.

If z(0) < 1/τ , the system quickly approaches the
line y = 0, where z starts to increase. We observe
a delayed loss of stability, and we can approximate
the dynamics in a neighbourhood of y = 0 with the
so-called entry-exit function [32–34]. We remark that
an orbit may not “follow” the stable branches directly,
but can instead remain in the vicinity of the unstable
manifold [35]. An orbit entering a neighbourhood of
y = 0 at a point with z-coordinate z = zin will exit
the same neighbourhood at a point with z-coordinate
z = zout > 1/τ > zin. The value zout is given implicitly
as the unique solution of
∫ zout

zin

τ z − 1

1 − z
dz = 0.

Fig. 6 The entry-exit behaviour of the fast-slow system (17) for
Example 2. Parameters are R0 = τ = 3, ξ = ζ = 1, ε = 0.01.
The blue trajectory starts at the asterisk, exhibits a slow passage
close to y = 0 and then converges to the stable EE, indicated
by the black dot. The red dot is the unstable equilibrium and the
green dot is the non-hyperbolic fixed point. The solid black line
represents the branch of the critical manifold characterized by
y > 0. (Color figure online)

Since the integrand function diverges at+∞ as z → 1,
it follows that the exit point zout will be strictly smaller
than 1 for any z(0) ∈ [0, 1/τ). We refer to [17, Sec. 3]
for a detailed analysis of a similar entry-exit function,
derived from a different epidemiological model.

If z(0) > 1/τ , the fast dynamics brings the system
close to the second branch of C0; once an orbit reaches
anO(ε) neighbourhood of this curve, the slow dynam-
ics tends asymptotically towards zE.

To summarize, if y(0) = 0, the system tends towards
the equilibrium (y, z) = (0, 1). If instead y(0) ∈
(0, 1], the system converges, possibly after a slow pas-
sage near y = 0 which represents a “dormant” phase
for the infection, towards the endemic equilibrium

(yE, zE) =
(

τ − 1

ω + τ
,

ω + τ

τω + τ

)

∈ (0, 1]2.

We emphasise that this holds true only for R0 = τ > 1.
Figure6 provides a numerical simulation that shows the
entry-exit phenomenon.

6 Conclusion

In this paper, we developed a minimal model for
modelling an SIS disease spread with personal con-
tact avoidance, called adaptive NIMFA (aNIMFA). We
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investigated local and global stability of the model
and showed that limit cycles cannot exist. The non-
existence of limit cycles implies that epidemic waves
cannot occur in this SIS model based on disease and
behaviour dynamics alone and time-varying parame-
ters are required to exhibit epidemic waves. Further-
more, we analysed various examples in detail, from
epidemic contagion to information spread.

In this work, we assumed an homogeneous mixing
of the population. In reality, this homogeneity is often
unrealistic; some people have frequent contacts while
other people never meet.We expect that one can extend
the current results for a community of subpopulations,
on a network with N nodes, as it was done in [36]
in order to generalize the results obtained in [37] for
SAIRS compartmentalmodels.While considering sub-
populations, onemust decidewhether the link-breaking
and link-creation functional responses act on the local
prevalence of the node or on the global prevalence of
the whole network. From a modelling perspective, we
see possibilities for both approaches, or a mix of these
[38].

We see several other interesting directions for future
research. For example, is it possible to provide, besides
continuity, conditions on fbr and fcr such that we can
limit/bound the number of endemic equilibria from
Eq. (4)? Can we determine for which fbr and fcr the
endemic equilibrium is unique?

Moreover, for other types of infectious diseases,
it could be beneficial to consider the opposite slow-
fast decomposition, compared to the one we analysed
in Sect. 5. Namely, one could consider the network
dynamics to be much faster than the spread of the dis-
ease, possibly including an Exposed or Asymptomatic
compartment through which Susceptible individuals
need to pass before becoming Infected and infectious.
As a final comment, we mention the possibility to
include delays into the knowledge about the current
prevalence. As the COVID-19 pandemic exemplified,
testing an individual typically takes several hours or
days before the result is communicated. Moreover, the
daily reported cases by governmental agencies typi-
cally run a few days behind. Onemodelling approach is
to convert the aNIMFA model into a delay-differential
equation, which typically complicates the analysis sig-
nificantly.We leave these possibilities as an outlook for
future works.
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