
Using Machine Learning to Quantify
the Robustness of Network Controllability

Ashish Dhiman, Peng Sun(B), and Robert Kooij

Delft University of Technology, Delft, The Netherlands
ashish06.dhiman@gmail.com, P.Sun-1@tudelft.nl

Abstract. This paper presents machine learning based approximations
for the minimum number of driver nodes needed for structural control-
lability of networks under link-based random and targeted attacks. We
compare our approximations with existing analytical approximations and
show that our machine learning based approximations significantly out-
perform the existing closed-form analytical approximations in case of
both synthetic and real-world networks. Apart from targeted attacks
based upon the removal of so-called critical links, we also propose ana-
lytical approximations for out-in degree-based attacks.
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1 Introduction

In the modern world, we see networks everywhere such as the Internet, trans-
portation networks, and communication networks [18]. It is important that these
networks perform their desired functions properly. Naturally, we need to control
these networks to ensure their proper functioning and maintenance. Network sci-
ence offers a way to study and analyze these networks using graph theory. The
entities in a network are represented by the nodes and interconnections between
the nodes are represented by links. For example, in an air-transportation net-
work, the nodes represent different airports and the links represent the flight
paths that connect these airports. Network controllability is the ability to drive
a system from an initial state to any other state in a finite time by application of
external inputs on certain nodes [3]. For directed networks, Liu et al. [2] showed
that the minimum number of nodes required to control a network can be iden-
tified through the maximum matching of the network. However, Cowan et al.
[5] pointed out that the results of Liu et al. [2] are based on the assumption
of no self-links. In other words, a state of a node can only be changed through
interacting with its adjacent nodes. Recently, Sun et al. [1] derived closed-form
analytical approximations for the minimum number of driver nodes as a function
of the fraction of removed links for both random and targeted attacks. However,
the approximations sometimes do not fit well with the simulations, especially
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when the fraction of removed links is not small. Figure 1 shows the performance
of Sun’s approximation as compared to simulation for a Erdős-Rényi network
under targeted attack. We will discuss the analytical approximations by Sun
et al. [1] for both random and targeted attacks in Sect. 3 of this paper.

The objective of this work is to improve the analytical approximations for
both random and targeted attacks using machine learning methods. We will
compare our machine learning based approximations with the existing analytical
approximations and simulations. Furthermore, we will also derive an analytical
approximation for out-in degree-based attacks and evaluate its performance on
both synthetic and real-world networks.

Fig. 1. Performance comparison of Sun’s approximation for the normalized minimum
number of driver nodes as a function of the fraction of removed links in a Erdős-Rényi
network under targeted attack.

In the remainder of this paper, in Sect. 2 we describe the concept of network
robustness. In Sect. 3, network controllability is discussed. In Sect. 4, we discuss
the closed-form analytical approximations for the minimum number of driver
nodes given by Sun et al. [1]. Machine learning methods and information related
to training and testing data are discussed in Sect. 5. Machine learning based
approximations for both random and targeted attacks are presented in Sect. 6.
An analytical approximation for out-in degree-based attacks is also derived in
this section. Additionally, we also analyze and compare our machine learning
based approximations with Sun’s approximations and simulations. Finally, in
Sect. 7 we conclude this paper.

2 Network Robustness

Network robustness is the ability of a network to deal with failures and errors.
In real-world networks, we encounter various failures such as power transmis-
sion line failures in an electrical network and network disruption due to natural
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disasters. It is important to make networks robust to deal with such failures. A
generic quantitative definition of network robustness does not exist but there are
various metrics to assess network robustness depending on the type of network
and its purpose. In this work, we assess network robustness in terms of control-
lability. Network robustness under perturbations has been studied extensively.
Socievole et al. [6] studied network robustness in case of epidemic spreads. They
investigated Susceptible-Infected-Susceptible (SIS) spreads with N-Intertwined
Mean-Field Approximation (NIMFA) epidemic threshold as the robustness met-
ric. Trajanovski et al. [7] considered node removals in both random and targeted
attacks to study network robustness. They used two metrics to evaluate the
network robustness, the size of the giant component and efficiency. Wang et al.
[8] considered effective graph resistance as the robustness metric to investigate
network robustness in case of both synthetic and real-world networks. Koç et al.
[9] studied the robustness of networks in terms of cascading failures that lead to
blackouts in electrical power grids.

Real-world networks are often challenged by perturbations in the form of
random and targeted attacks [29]. In this work, we simulate these attacks by
removing links. We do not consider node removals. Random attacks are the
unintentional failures such as disruption of networks due to natural disasters and
failures due to exhausted mechanical parts [24]. Targeted attacks are carried out
by people with malicious intent to maximize the damage [25–28]. In targeted
attacks, it is assumed that the attacker has the information related to network
topology, functions and vulnerabilities.

3 Network Controllability

Network controllability is the ability to drive a system from an initial state to
any other state in a finite time by application of external inputs on certain nodes
[3]. It is classified as state controllability and structural controllability.

3.1 State Controllability

State controllability, also known as complete controllability, was introduced by
Kalman in the 1960s [3]. Even though non-linear processes govern most of the
real-world systems, a linearized counterpart offers a way to study the controlla-
bility of non-linear systems [2]. In this work, we consider directed networks with
linear time-invariant (LTI) dynamics which are described by:

dx(t)
dt

= Ax(t) + Bu(t), (1)

where x(t) = [x1(t), x2(t), ..., xN (t)]T indicates the state vector of the sys-
tem at time t. xi(t) represents the state that could be the amount of traffic
that passes through node i in a communication network. The N ×N adja-
cency matrix A represents the interconnections of a network [19]. The input
N ×M (M ≤N) matrix B represents the nodes that are directly controlled.
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u(t) = [u1(t), u2(t), ..., uM (t)]T is the input vector. According to Kalman’s con-
trollability condition, the system described in Eq. (1) is said to be controllable if
the controllability matrix C = (B,AB,A2B, ..., AN−1B) has full rank. In other
words, Rank(C) = N . However, Kalman’s rank condition for network controlla-
bility has some limitations. It is computationally expensive to check Kalman’s
rank condition for larger networks that consist of thousands of nodes. The rank
condition also requires exact weights of the parameters of A and B but in real-
ity, often the link weights are not known. To account for such limitations, the
concept of structural controllability was introduced.

3.2 Structural Controllability

Structural controllability was introduced by Lin in 1974 [10]. The system
described in Eq. (1) is said to be structurally controllable if we can fix some
weights to the non-zero parameters in A and B so that the system becomes con-
trollable in Kalman’s controllability condition. To ensure full rank condition, we
have to appropriately choose B which consists of a minimum number of driver
nodes. A structurally controllable system is also controllable for different pos-
sible parametric realizations except for some pathological cases [2]. One of the
advantages of studying structural controllability is that the controllability of a
network can still be determined even if we lack information about some or all
the link weights.

Liu et al. [2] developed the minimum input theory to achieve structural con-
trollability of directed networks. According to Liu et al. [2], the minimum number
of driver nodes to which external inputs needs to be applied to achieve struc-
tural controllability is determined by the maximum matching of the network.
They found that the minimum number of driver nodes required to fully control
a network depends on the degree distribution. Furthermore, they observed that
sparse and homogeneous networks are difficult to control as compared to dense
and heterogeneous networks. Liu’s work is based on the assumption that there
are no self-links in the networks. In this work, we also follow this assumption.
Next, we discuss the concept of maximum matching to determine the minimum
number of driver nodes required to fully control a network. Next, we find the
matching links i.e. the links that do not have common start or end nodes. The
nodes at which these links terminate are the matched nodes. The remaining
nodes are the unmatched nodes or driver nodes. We will apply external input to
these unmatched or driver nodes to fully control the network. In a network, a
matching of maximum size is known as maximum matching. There could be mul-
tiple maximum matchings in a network but the number of driver nodes remains
the same [1]. The Hopcroft-Karp algorithm [11] provides a method to find the
maximum matching of a network from its bipartite equivalent.

Now we discuss the robustness of network controllability under perturba-
tions. On removal of a critical link, the number of driver nodes increases by
one [2]. In other words, we need more driver nodes to fully control the network
when a critical link is removed. It means that there is a decrease in network
controllability or the network becomes less robust. Nie et al. [12] studied the



Using Machine Learning to Quantify the Robustness 23

robustness of network controllability of Erdős-Rényi and Barabási-Albert net-
works and observed that a Barabási-Albert network with a modest power-law
exponent is more robust than an Erdős-Rényi network with a modest average
degree. Pu et al. [13] studied network controllability and found that degree based
attacks are more efficient than random attacks in affecting network controllabil-
ity. Sun et al. [1] quantified the robustness of network controllability for two types
of attacks based on the removal of links, random attacks and targeted attacks.
They derived closed-form analytical approximations for the minimum number
of driver nodes for both random and targeted attacks. While the results of Sun
et al. [1] fit well with the simulations for small fractions of remove links, there
is still room for improvement. In the next section, we will use machine learning
to construct more accurate approximations and analyze their performance.

4 Analytical Approximations

The analytical approximations for random and targeted link removals by Sun
et al. [1] are based on the concept of critical links. If the number of driver
nodes required to control a network increases when removing a specific link, then
that link is called a critical link. A link that does not belong to any maximum
matching is dubbed a redundant link. A link that is neither critical nor redundant
is an ordinary link. The initial number of driver nodes NDO i.e. the number of
driver nodes before any attack, is calculated using the Hopcroft-Karp algorithm
[11]. To find the number of critical links, each link in a network is removed one
by one and the Hopcroft-Karp algorithm [11] is applied simultaneously. If the
current number of driver nodes ND exceeds the initial number of driver nodes
NDO, then the removed link is a critical link. In a network with N nodes and
L links, the Hopcroft-Karp algorithm [11] is applied L times to identify all the
critical links.

4.1 Number of Driver Nodes Under Random Attacks

According to Sun et al. [1], for random attacks, the normalized minimum number
of driver nodes is expressed as,

nD,rand =

{
NDO+lLC

N , l ≤ lC

al2 + bl + c, l ≥ lC
(2)

where nD,rand represents the normalized value of the minimum number of driver
nodes required to fully control a network, LC represents the number of critical
links, l represents the fraction of removed links and lC = LC

L represents the
fraction of critical links. The values of a, b and c are derived from the boundary
conditions described in [1] such that a = N−NDO−LC

N(lC−1)2 , b = LC

N − 2alC and
c = 1 − LC

N + a(2lC − 1).
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4.2 Number of Driver Nodes Under Targeted Attacks

In targeted attacks, first we randomly remove all the critical links and then the
remaining links. Sun et al. [1] derived the following analytical approximation for
targeted attacks.

nD,crit =

{
NDO+lL

N , l ≤ lC

dl2 + el + f, l ≥ lC
(3)

where d, e and f are derived from the boundary conditions described in [1] such
that d = N−NDO−lCL

N(lC−1)2 , e = −2dlC and f = 1 + d(2lC − 1).

5 Machine Learning

Machine learning is a technique to predict the outcome of a certain event by
learning from data. The data could already be available from experiments, data
centers or it can be generated through proper simulations. There are numerous
applications of machine learning such as predicting customer’s buying habits
based on historical data in e-Commerce, weather forecasts and Virtual Per-
sonal Assistants such as Siri and Alexa. In broader terms, machine learning is
classified as supervised learning, unsupervised learning and reinforcement learn-
ing. Furthermore, supervised machine learning is divided into classification and
regression problems. In this work, we use various supervised learning methods
for regression problems to predict the number of driver nodes under various
attacks. Specifically, we use Linear Regression, Random Forest and Artificial
Neural Networks. Recently, Lou et al. [30] also investigated the use of neural
networks for network controllability. However, they used another type of neural
networks, Convolution Neural Networks.

To develop our machine learning models, various hyper-parameters are
used. Table 1 and Table 2 shows the number of hidden layers and other hyper-
parameters that are used to develop our ANN models. For our linear regression
model, we use the least-squares to minimize the errors. Additionally, we also use
k-fold cross-validation with k = 10 to check for over-fitting. In our Random-
Forest model, we select the number of trees as 50. Moreover, we also use feature
importance scores to determine the features that contribute more to the output.
A detailed explanation of the choice of hyper-parameters is presented in the
master thesis report [4].

Table 1. Selection of ANN size for different networks under targeted, random and
out-in degree-based attacks.

Attack Number of hidden layers

Real-world Erdős-Rényi Barabási-Albert

Targeted critical link attack 512/512/512 128 512/512/512

Random attack 512/512/512 128/512/512/512 128/512/512/512

Out-in degree based attack 512/512/512 128 512/512/512
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Table 2. ANN hyper-parameters selection.

Hyper-

parameters

Activation

function

Loss

function

Dropout

rate

Early

stopping

Patience Epochs Batch size

Selection ReLU MSE 0.2 Yes 50 300 32

Table 3. Properties of 10 real-world networks used for testing our models.

Network N L LC NDO

Colt 153 177 38 81

Surfnet 50 68 23 15

EliBackbone 20 30 12 5

Garr200912 54 68 9 30

GtsPoland 33 37 12 14

Ibm 18 24 6 6

Arpanet19706 9 10 6 2

GtsHungary 30 31 8 18

BellCanada 48 64 17 16

Uninet 69 96 19 4

5.1 Dataset for Real-World Networks

Now we discuss the real-world dataset that we consider to construct our mod-
els. For synthetic networks, we generate data through simulations. We use the
dataset available at The Internet Topology Zoo [14] for real-world networks. It is
a collection of a publicly accessible dataset provided by different network opera-
tors. As the networks evolve and change, the dataset is updated and in this sense,
it is not fixed. Network operators provide maps of their networks and this dataset
is interpreted from those maps. However, there are various ambiguities in the
dataset as the interpretations are not accurate for some networks. The dataset
is available in Graph Markup Language (GML) [15] and GraphML [16] formats.
In this work, we consider the dataset that is available in GraphML format as it
is easy to parse using python’s NetworkX library [17]. We pre-process the data
to remove any disconnected networks and multigraphs. After pre-processing of
the dataset, we have 232 networks out of which we use 192 networks for train-
ing and the remaining 40 networks for testing. The networks in the dataset are
not directed, however, we use the information available in two attributes of the
GraphML format, edge source and target, to make these networks directed.

The networks in the dataset have small average degrees. The smallest network
is the Arpanet196912 network with 4 nodes and 4 links. Cogentco network is
the largest network with 197 nodes and 243 links. Additionally, there are some
networks that have zero critical links. We conclude that the networks in this
dataset vary a lot and machine learning models might have difficulties in learning
from such a varying dataset. Table 3 lists the properties of some of the real-world
networks we use for testing.
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5.2 Datasets for Synthetic Networks

We generate data for synthetic networks using simulations. We consider two
types of synthetic networks, Erdős-Rényi and Barabási-Albert networks. These
networks come under the class of random graphs [20]. In Erdős-Rényi (ER)
random graphs G(N, p) [21], N denotes the number of nodes and p denotes the
probability of an outbound link from a node to another node. For Erdős-Rényi
networks, we generate networks with different values of N and p. For each such
network, we generate 100 corresponding networks and determine the average
values of network characteristics such as the average degree, the average number
of links, the number of critical links and graph metrics such as diameter and
clustering coefficient.

In the Barabási-Albert (BA) scale-free model G(N,M) [22,23], N indicates
the number of nodes and M indicates the number of links of a new node that
attaches itself to the original network. To generate a BA network, we assume a
complete digraph of MO nodes where MO equals M . Then we add new nodes
one by one with a probability proportional to the number of links of the existing
nodes. We generate BA networks with different values of N and M using simula-
tions. For each BA network, we also generate 100 corresponding networks to get
the average values of the network characteristics such as the average degree, the
average number of links, the average number of critical links and graph metrics
such as diameter and clustering coefficient. Moreover, it is to be noted that in
a targeted critical link attack, first, the critical links are removed randomly and
then the remaining links. For such random removal of links, we use 10,000 sim-
ulations. Furthermore, in random attacks, all the links are removed uniformly
at random and we also use 10,000 simulations to get the average values of the
minimum number of driver nodes.

6 Measuring the Robustness of Network Controllability
Using Machine Learning

6.1 Targeted Critical Link Attack

To develop a machine learning based approximation for targeted critical link
attack, we predict the difference in the normalized minimum number of driver
nodes between the simulation value and the analytical approximation Eq. (3) at
l = lC . We use various input features such as the number of nodes N , number
of links L, number of critical links LC , clustering coefficient, average degree and
diameter. We choose to estimate the difference at lC as the original approxi-
mation fits well with the simulation for l � lC [1], while the difference can be
significant at l = lC , see also Fig. 1 , where lc = 0.2. We subtract this predicted
difference to get a new value nDX that is closer to the simulation. We assume
a linear relationship similar to the analytical approximation Eq. (3) for l ≤ lC .
The value of the normalized minimum number of driver nodes at l = 0 is nDO

where, nDO = NDO

N and at l = lC , the value is assumed to be nDX . From these
two conditions we get,
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nD,crit,ML = nDO +
nDX − nDO

lC
l, (4)

where nD,crit,ML gives us the new machine learning based normalized min-
imum number of driver nodes for l ≤ lC . When the fraction of removed links
l is greater than or equal to the fraction of critical links lC i.e. for l ≥ lC , we
estimate the normalized minimum number of driver nodes using a parabolic
approximation of the form,

nD,crit,ML = dMLl
2 + eMLl + fML, (5)

where dML, eML and fML are derived from the boundary conditions. For
the first boundary condition, nD,crit,ML equals nDX at l = lC . When all the
links are removed, we need to control all the nodes. Hence, at l = 1, nD,crit,ML

equals one. Finally, for the third boundary condition, we assume the derivative
of the parabola is zero at l = lC . Using these boundary conditions, we get
dML = 1−nDX

l2C−2lC+1
, eML = −2dMLlC and fML = 1 + dML(2lC − 1). Finally, the

machine learning based approximation for targeted attacks can be expressed as,

nD,crit ML =

{
nDO + nDX−nDO

lC
l, l ≤ lC

dMLl
2 + eMLl + fML, l ≥ lC

(6)

Fig. 2. Comparison of different methods to get the normalized values of minimum
number of driver nodes nD needed to control the network as a function of the fraction
of removed links in synthetic networks under targeted attacks. Simulations are based
on 10,000 realizations of attacks.

In Fig. 2, we compare the performance of linear regression, random forest
and artificial neural network models with simulation and analytical approxima-
tion Eq. (3) for synthetic networks under targeted attacks. We notice that the
machine learning based approximation fits better with the simulations than the
analytical approximation Eq. (3). To further quantify the performance, we use
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mean absolute errors and mean relative errors to compare the performance of
different approximations. Table 4 compares the performance of ANN with the
analytical approximation Eq. (3) for a few synthetic networks. We observe that
the mean relative error decreases from 19.07% to 2.13% using the ANN-based
approximation for ER network with N = 100 and p = 0.019. For BA network
with N = 100 and M = 2, we see an improvement from 7.04% to 4.67%. Fur-
thermore, the mean relative errors are larger for Barabási-Albert networks as
compared to Erdős-Rényi networks. This is because, in BA networks, there are
a few nodes with high degrees, so even after removal of some links, the minimum
number of driver nodes does not change significantly and hence, the curve is less
steep in BA networks as compared to ER networks as also evident from Fig. 2.

Table 4. Performance indicators for synthetic networks under targeted attacks.

Network Mean absolute error Mean relative error

Approximation ANN Approximation ANN

ER (100, 0.019) 0.1000 0.0124 0.1907 0.0213

ER (200, 0.0063) 0.0663 0.0115 0.1008 0.0175

ER (400, 0.0026) 0.0472 0.0046 0.0659 0.0071

BA (50, 2) 0.0590 0.426 0.0821 0.0582

BA (100, 2) 0.051 0.0351 0.0704 0.0467

Next, we evaluate the performance of machine learning based approximation
for real-world networks under targeted attacks. The model is trained on 192 real-
world networks and tested on 40 networks. Figure 3 shows that machine learning
based curves fit better with the simulations than the analytical approximation
Eq. (3) for Colt and Surfnet network. We also compare the performance of dif-
ferent machine learning models based on the root mean squared errors (RMSE).
The RMSE values are found to be 0.0723, 0.0550 and 0.0430 for linear regres-
sion, random forest and artificial neural network model respectively. We observe
that the ANN model performs slightly better than the random forest model. The
linear regression model performs the least amongst the three machine learning
models. This can be explained based on the non-linear relationship between the
input features and the difference that we predict.

In Table 5, we compare the performance of the ANN-based approximation
and the analytical approximation Eq. (3) for 10 real-world networks. We notice
that machine learning based approximation performs the best in the case of
the Colt network with a mean relative error of 1.46% and the worse in Ibm
network with a mean relative error of 8.3%. Furthermore, we observe that 9 out
of 10 networks have mean relative errors of less than 5%. Among the 40 test
networks, the machine learning based approximation performs better than the
analytical approximation Eq. (3) in 30 networks. For the remaining 10 networks,
the analytical approximation performs only slightly better with a difference of
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less than 2%. The results of the remaining test networks are available in the
master thesis report [4].

6.2 Random Attack

In this section, we develop a machine learning based approximation for the nor-
malized minimum number of driver nodes as a function of the fraction of removed
links for random attacks. Furthermore, we compare our approximation with the
analytical approximation Eq. (2) and simulations. We also evaluate the perfor-
mance of different machine learning algorithms. For real-world networks, the
RMSE comes out to be 0.0165 for the ANN model and 0.0192 for the random
forest model. Again, the ANN model performs slightly better in terms of RMSE.

Fig. 3. Comparison of different methods to get the normalized values of minimum
number of driver nodes nD needed to control the network as a function of the fraction
of removed links in real-world under targeted attacks. Simulations are based on 10,000
realizations of attacks.

Table 5. Performance indicators for real-world networks under targeted attacks.

Network Mean absolute error Mean relative error

Approximation ANN Approximation ANN

Colt 0.0393 0.0116 0.0512 0.0146

Surfnet 0.0597 0.0095 0.0866 0.0151

EliBackbone 0.1468 0.0201 0.2471 0.0376

Garr200912 0.0223 0.0202 0.0277 0.0251

GtsPoland 0.0266 0.0171 0.0335 0.0235

Ibm 0.0595 0.0519 0.0956 0.0832

Arpanet19706 0.0440 0.0255 0.0588 0.0434

GtsHungary 0.0269 0.0321 0.0311 0.0373

BellCanada 0.0502 0.0135 0.0757 0.0230

Uninet 0.1195 0.0309 0.184 0.0485
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Table 6. Performance indicators for synthetic networks under random attacks.

Network Mean absolute error Mean relative error

Approximation ANN Approximation ANN

ER (50, 0.082) 0.0712 0.0105 0.3080 0.0675

ER (100, 0.016) 0.0085 0.0024 0.0137 0.0044

BA (50, 2) 0.035 0.0032 0.0517 0.0051

BA (100, 2) 0.032 0.0030 0.0455 0.0049

In the remainder of this section, we will only consider ANN. For random attacks,
we predict the normalized minimum number of driver nodes for different values
of the fraction of removed links starting with l = 0 to l = 1 in steps of 0.05.
In other words, for each value of N and p in ER networks, 21 data points are
generated for training. The same approach is followed for BA networks for each
N and M value. The reason for such an approach is that at lC , the difference
between the approximation value and the simulation value is not significant as
the approximation fits well for l ≤ lC [1].

Next, we compare our machine learning based approximation for random
attacks with the analytical approximation Eq. (2) and simulation. Figure 4 shows
that the ANN curves fit better with the simulations for both Erdős-Rényi and
Barabási-Albert networks. To quantify this improvement, Table 6 compares the
performance of ANN and analytical approximation Eq. (2) based on the mean
absolute errors and mean relative errors. We notice a significant improvement
in mean relative error from 30.80% to 6.75% for ER network with N = 50
and p = 0.082 using ANN. Similarly, we see an improvement from 13.70% to
0.44% in the mean relative error in ER network with N = 100 and p = 0.016.
Furthermore, for BA network with N = 100 and M = 2, the mean relative error
improves from 4.55% to 0.49%.

Specifically for ER networks under random attacks, Liu et al. [2] also derived
an approximation based on generating functions. According to Liu et al. [2], the
normalized minimum number of driver nodes is given by,

nD = w1 − w2 + k(1 − l)w1(1 − w2), (7)

Table 7. Performance indicators for all three approximations for ER networks under
random attacks.

Network Mean relative error

Approximation by
Sun et al. Eq. (2)

ANN Approximation by
Liu et al. Eq. (7)

ER (100, 0.015) 0.0162 0.0084 0.0045

ER (100, 0.017) 0.0156 0.0097 0.0020

ER (200, 0.006) 0.0117 0.0059 0.0018
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Fig. 4. Comparison of different methods to get the normalized values of minimum
number of driver nodes nD needed to control the network as a function of the fraction
of removed links in synthetic networks under random attacks. Simulations are based
on 10,000 realizations of attacks.

where k is the average out-degree of an ER network expressed as k = p(N−1).
The solution of the implicit equation w1 = e−k(1−l)e−k(1−l)w1 gives us the value
of w1 and w2 is given by, w2 = 1 − e−k(1−l)w1 .

Now we will compare our ANN-based approximation with Sun’s approxima-
tion Eq. (2), Liu’s approximation Eq. (7) and simulations. From Table 7, it is
evident that Liu’s approximation Eq. (7) outperforms both ANN based approx-
imation and Sun’s approximation Eq. (2). In ER (100, 0.015) network, the mean
relative error using Sun’s approximation Eq. (2) comes out to be 1.62%. Our
ANN based approximation and Liu’s approximation Eq. (7) both performs bet-
ter than Sun’s approximation Eq. (2) with mean relative errors of 0.84% and
0.45% respectively.

We note that Liu’s approximation is based upon the use of generating func-
tions for the degree and excess degree distribution, whose expressions are not
known for targeted link removals.

For real-world networks under random attacks, we follow a different app-
roach. Here we do not predict the normalized minimum number of driver nodes
for the entire range of the fraction of removed links. This is because of the avail-
ability of a limited dataset for training and hence, the model always performs
worse than the analytical approximation. Moreover, difference estimation at lC
is also not a suitable choice as the original analytical approximation is already
good for l ≤ lC [1]. For larger values of the fraction of removed links, the dif-
ference in nD values between the approximation and simulation is significant.
So, we choose a point l = 0.4 to predict the difference and subtract it from the
approximation value to get a new value nDX . Let the value at l = 0.4 be lX .
At l = 0, the normalized minimum number of driver nodes equals nDO and at
l = 0.4, nD equals nDX . From these two points we get,

nD,rand,ML = nDO +
nDX − nDO

lX
l, (8)
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where, nD,rand,ML gives the normalized minimum number of driver nodes as
a function of the fraction of removed links for l ≤ lX . For l values greater than
or equal to lX , we calculate the normalized minimum number of driver nodes
using a parabolic approximation,

nD,rand,ML = aMLl
2 + bMLl + cML, (9)

where we derive the values of aML, bML and cML from the boundary con-
ditions. At l = lX , the value and derivative of Eq. (9) equals that of Eq. (8).
Hence, we get aMLl

2
X + bMLlX + cML = nDX and 2aMLlX + bML = nDX−nDO

lX
.

At l = 1 i.e. when all the links are removed, we need to control all the nodes.
Hence, nD equals one and we get, aML + bML + cML = 1. Using these bound-

ary conditions we get, aML =
nDO−1+

nDX−nDO
lX

−l2X+2lX−1
, bML = nDX−nDO

lX
− 2aMLlX

and cML = 1 + aML(2lX − 1) − nDX−nDO

lX
. Finally, we express machine learn-

ing based normalized minimum number of driver nodes for real-world networks
under random attacks as,

nD,rand,ML =

{
nDO + nDX−nDO

lX
l, l ≤ lX

aMLl
2 + bMLl + cML, l ≥ lX

(10)

Fig. 5. Comparison of different methods to get the normalized values of minimum
number of driver nodes nD needed to control the network as a function of the fraction
of removed links in real-world networks under random attacks. Simulations are based
on 10,000 realizations of attacks.

Figure 5 compares our ANN-based approximation and Sun’s approximation
Eq. (2) with simulations for two real-world networks. We observe that ANN-
based approximation fits better with the simulations. To analyze this compari-
son, Table 8 quantifies the performance using mean absolute and mean relative
errors for 10 considered real-world networks. It can be noticed that our ANN-
based approximation performs the best in the Colt network with a mean relative
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Table 8. Performance indicators for real-world networks under random attacks.

Network Mean absolute error Mean relative error

Approximation ANN Approximation ANN

Colt 0.0079 0.0043 0.0106 0.0058

Surfnet 0.0072 0.0052 0.0128 0.0090

EliBackbone 0.0256 0.0160 0.0454 0.0274

Garr200912 0.0121 0.0094 0.0156 0.0130

GtsPoland 0.0081 0.0046 0.0127 0.0068

Ibm 0.0072 0.0086 0.012 0.015

Arpanet19706 0.0046 0.0062 0.0073 0.0123

GtsHungary 0.0082 0.0072 0.0098 0.0088

BellCanada 0.0105 0.0071 0.0197 0.0122

Uninet 0.0207 0.0166 0.0338 0.0275

error of 0.58% and the least in the Uninet network with a mean relative error
of 2.75%. Moreover, the ANN-based model does not always perform better than
the analytical approximation. For example, in Ibm and Arpanet19706, the mean
relative errors using ANN-based model are larger than the analytical approxima-
tion based mean relative errors. This can be explained based on the availability of
a limited amount of training dataset for real-world networks. Among the 40 test
real-world networks, the machine learning based approximation performs better
than the analytical approximation in 28 networks. The results of the remaining
networks are presented in the master thesis report [4].

6.3 Out-In Degree-Based Attack

In this section, we will derive an analytical approximation for the normalized
minimum number of driver nodes nD as a function of the fraction of removed
links l for out-in degree-based attacks. Out-in degree of a link is defined as the
sum of the out-degree of a source node and the in-degree of a target node. First,
we compare different out-in based-attack strategies to select the most efficient
one. In the first strategy, we remove links based on the increasing order of out-
in degrees, second, if the out-in degrees are the same then links are removed
based on the increasing order of out-degrees and finally, in the third strategy,
we remove the links based on the decreasing order of out-in degrees. Based on
simulations, we found that the first two strategies overlap and are the most
efficient ones. So, for the remainder of this section, we will use the first strategy
in which we remove links based on the increasing order of out-in degrees. It is to
be noted that after removing a link, we re-calculate the out-in degrees in order
to determine the next link to be removed.

Case 1: l ≤ lC Similar to [1], when the fraction of removed links is less than or
equal to the fraction of critical links, we assume a linear relationship between the
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minimum number of driver nodes and the fraction of removed links such that,

nD,out in =
NDO + lL

N
. (11)

Case 2: l ≥ lC When the fraction of removed links is greater than or equal
to the fraction of critical links, we approximate the minimum number of driver
nodes using a quadratic equation,

f(l) = nD = gl2 + hl + i, (12)

where g, h and i can be derived from the boundary conditions. For the first
boundary condition we assume , at l = lC , nD equals NDO+lCL

N . Second, at l = 1,
nD equals one. Third, we assume that the derivative equals zero at l = 1. Using
these boundary conditions we get, g = x−1

l2C−2lC+1
, h = −2g and i = 1 − g − h

where x = NDO+lCL
N . Finally, for out-in degree-based attacks we can write,

nD,out in =

{
NDO+lL

N , l ≤ lC

gl2 + hl + i, l ≥ lC
(13)

Fig. 6. Performance comparison of the machine learning based approximation Eq. (16)
with the analytical approximation Eq. (13) to get the normalized values of minimum
number of driver nodes nD needed to control the networks as a function of the fraction
of removed links in synthetic networks under out-in degree-based attacks.

Figure 6 shows the performance of our analytical approximation Eq. (13)
for Erdős-Rényi and Barabási-Albert networks. We notice that the analytical
approximation fits better with the simulations for Barabási-Albert networks.
The same is also evident from Table 9 in which we show the performance of
some synthetic networks. We notice that the mean relative errors are less than
3% for BA networks and greater than 10% for ER networks. We also analyze
the performance of our approximation in real-world networks. Figure 7 shows
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Fig. 7. Performance comparison of the machine learning based approximation Eq. (16)
with the analytical approximation Eq. (13) to get the normalized values of minimum
number of driver nodes nD needed to control the networks as a function of the fraction
of removed links in real-world networks under out-in degree-based attacks.

the performance of our approximation for the Colt and Surfnet networks. It can
be observed that the approximation fits fairly well with the simulations. Fur-
thermore, we analyze the performance of 10 considered real-world networks in
Table 10. We notice that the mean relative errors are less than 10% in 8 out of
10 real-world networks. Moreover, the approximation performs the best in the
GtsHungary network and the least in the Uninet network with mean relative
errors of 1.53% and 13.61% respectively.

Next, we use ANN to further improve the performance of the analytical
approximation Eq. (13). We will use ANN to predict the difference in the values
of the normalized minimum number of driver nodes between the approximation
value and the simulation value at lC . We will then subtract this difference from
the approximation value to get a new value nDX that is closer to the simulation.
At l = 0, the minimum number of driver nodes can be found from Eq. (13) and
at l = lC , the value is nDX . From these two points, we get,

nD,out in,ML = nDO +
nDX − nDO

lC
l, (14)

where nD,out in,ML gives us the machine learning based normalized minimum
number of driver nodes for l ≤ lC . For l ≥ lC , we assume a quadratic relationship
for the normalized minimum number of driver nodes such that,

fML(l) = nD,out in,ML = gMLl
2 + hMLl + iML, (15)

To get the values of gML, hML and iML, we again use three boundary condi-
tions. nD equals nDX at l = lC . At l = 1, nD equals one. The derivative f ′

ML(1)
is assumed to be equal to zero at l = 1. Using these boundary conditions we
get, gML = nDX−1

l2C−2lC+1
, hML = −2gML and iML = 1 − gML − hML. Hence, the

machine learning based approximation for the minimum number of driver nodes
can be expressed as,
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Table 9. Performance indicators for synthetic networks under out-in degree-based
attacks.

Network Mean absolute error Mean relative error

Approximation ANN Approximation ANN

ER (50, 0.048) 0.0959 0.0568 0.1786 0.0924

ER (100, 0.02) 0.0828 0.0463 0.1380 0.0680

BA (50, 4) 0.0193 0.0189 0.0278 0.0266

BA (100, 4) 0.0201 0.0308 0.0276 0.0400

nD,out in,ML =

{
nDO + nDX−nDO

lC
l, l ≤ lC

gMLl
2 + hMLl + iML, l ≥ lC

(16)

In Fig. 6, we compare the performance of ANN-based approximation Eq. (16)
with the analytical approximation Eq. (13) and simulations in case of synthetic
networks. While we notice that the ANN-based approximation improves the
performance in case of Erdős-Rényi networks, it does not always improve the
performance of Barabási-Albert networks as the original analytical approxima-
tion Eq. (13) already fits well. In terms of mean absolute errors and mean relative
errors, Table 9 compares the performance of both approximations. We observe
that for ER (100, 0.02) network, the mean relative error decreases from 13.80%
to 6.80% with ANN-based approximation. We notice similar improvements for
other ER networks as shown in Table 9. For BA networks, we do not always see
an improvement which is also evident in BA(100, 4) network in which the mean
relative error increase from 2.76% to 4.0% as the original approximation already
fits well with the simulations.

Table 10. Performance indicators for real-world networks under out-in degree-based
attacks.

Network Mean absolute error Mean relative error

Approximation ANN Approximation ANN

Colt 0.0210 0.0102 0.0267 0.0129

Surfnet 0.0469 0.0280 0.0609 0.0395

EliBackbone 0.0846 0.0373 0.1188 0.0539

Garr200912 0.0229 0.0213 0.0262 0.0242

GtsPoland 0.0256 0.0357 0.0309 0.0447

Ibm 0.0665 0.0682 0.0922 0.0951

Arpanet19706 0.0416 0.0340 0.0522 0.0519

GtsHungary 0.0140 0.0135 0.0153 0.0148

BellCanada 0.0546 0.0657 0.0742 0.0917

Uninet 0.0956 0.0586 0.1361 0.0829
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Figure 7 compares the performance of ANN based approximation Eq. (16)
with the analytical approximation Eq. (13) and simulations for real-world net-
works. The performance of all the considered 10 real-world networks is shown in
Table 10. We notice that the ANN-based approximation Eq. (16) performs better
than the analytical approximation Eq. (13) in 7 out of 10 considered real-world
networks.

All the simulations are performed on a PC with the following specifications -
8 GB RAM and Intel Core i5 processor with 2 cores. With these specifications,
for a dataset consisting of 232 networks, it costs less than 0.6 s to train the linear
regression and random forest models whereas, it costs approx. 2–3 seconds to
train the artificial neural network model. Once the models have been trained,
after getting the average values of 10,000 simulations as inputs to the models, it
costs less than 0.5 s to get the predictions.

7 Conclusion

In this work, we used various machine learning methods to quantify the mini-
mum number of driver nodes ND as a function of the fraction of removed links
l. We studied the robustness of network controllability using machine learning
based approximations on both synthetic and real-world networks under random
and targeted attacks. We also derived an analytical approximation for out-in
degree-based attacks. In case of targeted critical link attack, we first compared
the performance of ANN, RF and LR models and conclude that the LR model
performs the least due to the nonlinear relationship between the input features
and the output difference. ANN model performed slightly better than the RF
model. Our machine learning based approximation outperformed the analyti-
cal approximation in both synthetic and real-world networks. However, for real-
world networks, our approximation performed better than the original analytical
approximation in 75% of the networks. For random, attacks our approximation
performed better than the analytical approximation in 70% of the real-world
networks. We also compared our machine learning based approximation with
Liu’s approximation and Sun’s approximation for ER networks under random
attacks. Liu’s approximation performed better than both machine learning based
approximation and Sun’s approximation. We also derived analytical approxima-
tion for out-in degree-based attacks. For synthetic networks, the approximation
performed better in case of BA networks than ER networks. Furthermore, in 8
out of 10 considered real-world networks, the mean relative errors are less than
10%. We further improved our analytical approximation for out-in degree-based
attacks using ANN and the mean relative errors reduced to less than 6% in 7
out of 10 real-world networks.
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