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Abstract—The total effective resistance, also called the Kirch-
hoff index, provides a robustness measure for a graph G. We
consider the optimization problem of adding k£ new edges to
G such that the resulting graph has minimal total effective
resistance (i. e., is most robust). The total effective resistance and
effective resistances between nodes can be computed using the
pseudoinverse of the graph Laplacian. The pseudoinverse may be
computed explicitly via pseudoinversion; yet, this takes cubic time
in practice and quadratic space. We instead exploit combinatorial
and algebraic connections to speed up gain computations in
established generic greedy heuristics. Moreover, we leverage
existing randomized techniques to boost the performance of our
approaches by introducing a sub-sampling step. Our different
graph- and matrix-based approaches are indeed significantly
faster than the state-of-the-art greedy algorithm, while their
quality remains reasonably high and is often quite close. Our
experiments show that we can now process large graphs for
which the application of the state-of-the-art greedy approach was
infeasible before. As far as we know, we are the first to be able
to process graphs with 100K+ nodes in the order of minutes.

Index Terms—graph robustness, optimization problem, effec-
tive resistance, Kirchhoff index, Laplacian pseudoinverse

I. INTRODUCTION

The analysis of network topologies has received consider-
able attention in various fields of science and engineering in
the last decades [4]. Its purpose usually is to better understand
the functionality, dynamics, and evolution of a network! and its
components [4]. One important property of a network topology
concerns its robustness, i.e., the extent to which a network is
capable to withstand failures of one or more of its compo-
nents. As an example, one may ask whether the network is
guaranteed to remain connected if an arbitrary edge is deleted.
Network robustness is a critical design issue in many areas,
including telecommunication [31], power grids [17], public
transport [6], supply chains [28] and water distribution [43].

Often a critical step in infrastructural maintenance is to im-
prove the robustness of the network by adding a small number
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of edges. The challenge here lies in the selection of a vertex
pair, among all the possible ones, such that the insertion of an
edge between the vertices increases the network’s robustness
as much as possible. Given a graph G = (V, E) and a budget
of k links to be added, our algorithmic formalization of this
task asks to find a set S C (‘2/) \ E of size k that optimizes
the robustness of G. We call this problem k-GRIP, short for
graph robustness improvement problem. Clearly, one must also
choose a measure to capture a sensible notion of robustness;
there are numerous ones proposed in the literature [4], [31].

One established measure, which was shown to be a good
robustness indicator in various scenarios [9], [11], [40], is
effective graph resistance or total effective resistance of a
graph. Effective resistance is a pairwise metric on the vertex
set of G, which results from viewing the graph as an electrical
network. It relates to uniform spanning trees [2], random
walks [20], and several centrality measures [5], [22]. For
effective graph resistance, one sums the effective resistance
over all vertex pairs in G (for technical details see Section II).
Intuitively, the effective resistance becomes small if there are
many short paths between two vertices. Removing an edge
then hardly disrupts the connectivity, since there are usually
alternative paths. Due to this favorable property, we select
effective graph resistance in this paper as robustness measure
for k-GRIP.

This resistance-based k-GRIP version was already con-
sidered by Summers er al. [36]. They suggested a greedy
algorithm for its heuristic optimization (more details in Sec-
tion III). Even without an approximation guarantee, this greedy
algorithm provides very good empirical results in reasonable
time (at least for small networks). The algorithm performs &
iterations, adding each time the edge with highest marginal
gain. To compute these gains, however, the corresponding
effective resistance values are needed. If one acquires them by
an initial (pseudo)inversion of the graph’s Laplacian matrix,
this takes O(n?) time with standard tools in practice (where
n = |V|). Overall, their approach leads to a running time of
O(kn?), which limits the applicability to large networks.

For other problems where this greedy approach works well,
a recent stochastic greedy algorithm [25] has been shown to be
potentially much faster — while usually producing solutions of
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nearly the same quality. It does so by sampling from the list of
candidates to find the one with highest gain in each iteration.
Our hypothesis for this paper is that this favorable time-quality
tradeoff of stochastic greedy holds for our k-GRIP as well.

Building upon this generic stochastic greedy approach [25],
we devise several heuristic strategies that leverage both graph-
and matrix-related properties (Section IV). Our approaches
shall accelerate the greedy algorithm by reducing the can-
didate set via careful selection of elements to be evaluated
and/or by accelerating the gain computation. Our experiments
(Section V) confirm that our approaches speed up the state-of-
the-art greedy algorithm significantly. At the same time, the
k-GRIP solution quality is more or less preserved, how well
depends on the approach. For instance, for graphs with < 57K
nodes, we produce results that are on average 2 — 15% away
from the greedy solution, while running 3.3 — 68 faster than
the state of the art (SoA). Finally, we demonstrate that we can
now process much larger graphs for which the application of
the SoA greedy approach was infeasible before.

II. PRELIMINARIES

We assume that the input of k-GRIP is a connected,
undirected, and simple graph G = (V, E)) with n vertices and
m edges and an integer k € Z~( for the number of edges to
be added to G. 2 L = D — A is the n x n Laplacian matrix of
G, where D is the diagonal matrix of vertex degrees and A
the adjacency matrix. L is symmetric, positive semi-definite
and has zero row/column sum s.%., L1 = 0 where 1 is the
all-ones vector. The m X n incidence matrix B takes fore € E
and a € V the values: Ble,a] = 1 if a is the destination of e,
Ble,a] = —1if a is the origin of e and Ble, a] = 0 otherwise.
For undirected graphs, the direction of each edge is specified
arbitrarily. Moreover, L = BTB. It is well-known that L is
not invertible, so its Moore-Penrose pseudoinverse (L") is used
instead, for which holds: LL" = LTL = I—21.117 [13]. Since
L is symmetric, it has an orthonormal basis of eigenvectors
U = [uy,...,uy]. We write the spectral decomposition
as: L = 2?22 u\;u; 7, where the eigenvectors us, ..., Uy
correspond to the ordered eigenvalues 0 < Ay <,.... < A,
(excluding the zero eigenvalue). For a graph G we use Lg
[LTGJ to refer to its Laplacian [Laplacian pseudoinverse]. If
there is no subscript in our matrix notation, the associated
graph is inferred by the context.

Let Q := (‘2/) \ E. For any X C €, we define G’ :=
GUX = (V,EU X) as the graph obtained by adding the
edges of X into G. Then, k-GRIP aims at finding X C 2 with
|X| =Fks.t,|f(G)— f(G)| is as large as possible for a given
robustness function f(-). Here, we use the effective graph
resistance R(G) as robustness function, which is the sum of
pairwise effective resistances rg (-, -) between all vertex pairs:

R(G):Zlbz rc(a,b) (1)
a=1b=a+1

2Qur methods can easily be extended to weighted graphs. However, for
simplicity of notations we only consider non weighed graphs.

Computing rg(a, b) can be done via LT:
ra(a,b) = Li[a,a] + L[b,b] — 2L [a, b] 2)
Combining Egs. (1) and (2), one gets:
R(G) = ntr(L) (3)
For a potential new edge {a,b}, we have G’ = G U {a, b}
and Lgr = Lo+ (e, —ep)(eq—ep) T, where e, is a zero vector

except for e[a] = 1. The gain in terms of {a,b} is R(G) —
R(G") and relies on LTC,, (Sherman-Morrison formula [33]):
1
IR
1+rg(a,b) a(€a
The gain evaluation gain(a,b) = R(G) — R(G’) is then:

L}, =L} —ep)(ea —e) L. (@)

LE[:, al — LTC;[:, b] ’
H

() —
gain(a,b) = n T Fraab)

o)

where Li[:, a] is the ath column of L. We rewrite Eq. (5)
as a function of squared /5 norms:

ILies —e)]” _ bala.b)
1+ |BLi(e, —&)°  1+ra(a,b)

where bg (-, -) is known as the bi-harmonic distance of G [41].
Finally, we express these distances via spectral decomposition:

gain(a,b) = n , (0)

ra(a,b) = | BL (4 — e)||” = (ea — €5)TLi(e, — ey)

~ (eu — o) TUA U (e, — e) = 3 Ll —uill)”

s
i=2 v

(7

where A is the diagonal matrix of eigenvalues. Similarly:

ba(a,b) = ||LT(eq — )||” = (ea — €5) " (L) (e — €)

(o0 — o TUAPUT(o, — oy = 3 Ll —wil)?

i=2 i
(3)
III. RELATED WORK

Robustness of networks has been an active research area
for decades [29]. Several authors have proposed the use of
specific network metrics to quantify the robustness of a given
network, see e.g., [31], [10], [32], [7]. Rueda et al. [31]
proposed a taxonomy of robustness metrics, consisting of three
classes: structural metrics, centrality metrics and functional
metrics. Examples of structural metrics include vertex and
edge connectivity. Typical centrality metrics used in the con-
text of robustness are betweenness and closeness centrality.
Finally, functional metrics take into account a specific service
that is delivered over the networks — such as throughput and
elasticity. Of specific interest is the Fiedler value, i.e., the
second smallest eigenvalue A\ of the graph’s Laplacian [10]; it
captures the overall connectivity of a graph, which is why it is
also called algebraic connectivity. This metric is also related to
synchronization of networks, including opinion dynamics [26].
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Once the robustness of a network has been established,
a natural next step is to determine how robustness can be
improved. One approach is to rewire the edges [32]. A second
approach is to add elements to the network. As an example,
[39] derives heuristics for the addition of a single edge to in-
crease the algebraic connectivity. Manghiuc et al. [21] consider
a weighted decision variant of k-GRIP w.r.t. As. They propose
an almost-linear time algorithm that augments the graph by k
edges such that A5 exceeds a specified threshold.

Effective graph resistance as a robustness measure dates
back at least to Ellens et al. [9]. It has been known much
longer, however, that effective resistance is proportional to
commute times of random walks [11]. Refs. [40] and [29]
investigate heuristics for 1-GRIP with effective graph resis-
tance (both for edge addition and removal). Besides deriving
theoretical bounds, Wang et al. [40] compare spectral strate-
gies for edge selection with much simpler heuristics. Their
experiments confirm that their spectral strategies (particularly
the one based on the highest effective resistance gain) often
yield the largest improvement, indicating a tradeoff between
running time and the robustness gain. To further improve the
solution quality in [40], Pizzuti and Socievole [29] suggest a
time-consuming genetic algorithm that often seems to find the
optimum when given enough time (their instances have less
than 5,000 vertices and 6,600 edges).

The state-of-the-art heuristic for k-GRIP is a greedy al-
gorithm presented by Summers et al. [36], called here
STGREEDY. In its generic form, such a greedy algorithm
adds in each of the k iterations the element (here: edge)
with the largest marginal gain (here: best improvement of
effective graph resistance). To this end, STGREEDY computes
the full pseudoinverse of L as a preprocessing. Then, the
marginal gains of all vertex pairs are computed via Eq. (5)
in O(n) time per edge. The edge with best marginal gain is
added to the graph, and the pseudoinverse is updated using
Eq. (4). The worst-case time complexity is O(kn3), which
is due to the evaluation of the gain function in k rounds
on O(n?) node pairs. The preprocessing takes O(n?) time
with standard tools. For monotonic submodular problems, the
generic greedy algorithm has an approximation ratio of 1—1/e.
Even for non-submodular problems such as k-GRIP (see [35]
for a counterexample), the greedy algorithm still often leads
to solutions of high quality [1], [37].

Algorithms that improve the time complexity of the greedy
approach for a general setting were proposed in [14], [25].
These algorithms use randomized techniques and reduce the
total number of function evaluations by a factor of k. They
achieve provable approximation guarantees in cases where the
greedy algorithm admits them, too.

IV. HEURISTICS FOR k-GRIP

In this section, we propose different techniques to improve
the performance of the greedy algorithm for k-GRIP. Our ap-
proaches are: SIMPLSTOCH, COLSTOCH, SIMPLSTOCHJLT,
COLSTOCHJLT and SPECSTOCH. They all make use of an
existing randomized technique and follow the general greedy

TABLE I
WORST-CASE TIME COMPLEXITIES OF ALL APPROACHES INVOLVED.
COLUMNS CORRESPOND TO PRINCIPAL STEPS OF ALGORITHM 1. IN
GENERAL, THE DOMINANT FACTOR COMES FROM THE TOTAL NUMBER OF
EVALUATIONS AND THEIR TIME TO BE EVALUATED (SECOND COLUMN).

Compute #Evals x SingleEval ~ Update
STGREEDY O(n 3) (an) x O(n) O(kn )
SIMPLSTOCH O(n?) O(n?) x O(n) O(kn?)
COLSTOCH O(smlogn) O(n?) x O(n) O(ksmlogn)
SIMPLSTOCHILT ~ O(m log nn~=2) O(n?) x O(logn) O(kmlognn=2)
COLSTOCHILT O(mlognlogsn=2) O(n?) x O(logs) (5(kmlognlog sn2)
SPECSTOCH O(cm) 0O(n?) x O(c) O(kem)

framework of Algorithm 1. Functions named as OBJ* relate
to the objective function while those named as CANDIDATE*
relate to the set of possible candidate elements.’> The worst-
case time complexities of all approaches are shown in Table I.

For submodular functions the greedy framework can be
combined with a lazy technique [23] that boosts the perfor-
mance of the algorithm. This process is based on the fact
that, even though marginal gains of elements might change
between iterations, their order often stays the same. Important
for us: “(T)he lazy greedy algorithm can be applied to cases
with no strict guarantee (for submodularity) since experience
shows that it most often produces the same final solution
as the standard greedy algorithm” [24]. Based on the above
observation and existing, positive results on lazy greedy for
k-GRIP [36], we also employ this technique.

All our approaches improve the speed of the greedy algo-
rithm by reducing the candidate set and/or by accelerating the
objective function calculation. Nearly inevitably, the above in-
curs a smaller or larger trade-off between speed improvement
and solution quality degradation.

A. SIMPLSTOCH

Our first idea is to simply apply the generic randomized
technique proposed in generic form by Mirzasoleiman et
al. [25] in the context of k-GRIP. The main idea of [25] is
to not inspect all possible elements for insertion, but only a

3Functions not defined explicitly in the pseudocode are described in detail
in the text.

Algorithm 1 General framework for k-GRIP
1: function GREEDYFRAMEWORK(G, k, 6)

2: Input: Graph G = (V, E), k € Z~o, accuracy 0 < § < 1

3: Output: G, — graph after k edge insertions

4: Go+— G

5: COMPUTEOBIJ(Go, ...) > compute step

6: s + CANDIDATESIZE(m, n, k, §)

7: for r < 0,...,k—1do > main loop

8: S < CANDIDATES(s, G, ...)

9: for each {a,b} € S x S do > # of evaluations
10: gain(a, b) < EVAL(a, b, ...) b single evaluation
11: (a™,b") + argmax,c gypeg galn(a b)

12: Gr+1—G U(a,b)
13: UPDATE(Gr41, -..) > update step
14: return G, 41
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reduced sample S. For non-negative monotone submodular
functions (which does not hold for k£-GRIP), the stochastic
approach provides an approximation ratio of (1 — 1/e — §),
where 0 < § <1 is an accuracy parameter.

Regarding SIMPLSTOCH, any sample S is a subset of
(‘2/) \ E. During each iteration of the main loop we sample
uniformly at random s := "2,;’” log% vertex pairs (Line 8 in
Algorithm (1)), resulting in (n?—m) log } function evaluations
overall. Those are performed via the Laplacian pseudoinverse,
in a similar way as in STGREEDY. More precisely, L is com-
puted once before the main loop (Line 5) and is used within
the loop to quickly determine single evaluations (Line 10).
Every time an edge is added to the graph, Lf is updated
accordingly via Eq. (4) (Line 13). The cost of the main loop
for SIMPLSTOCH is reduced compared to greedy by a factor of
k. Yet, computing L is still very time- and space-consuming.

B. CoLSTOCH

Our first improvement upon SIMPLSTOCH avoids the full
pseudoinversion of L, reducing the cost of Line 5 in Alg. 1.
To this end, we make the following observation: evaluating a
single vertex pair {a, b} via Eq. (5) requires only two columns
of LT; precisely those corresponding to vertices a and b. That
is why, instead of sampling elements from (‘2/) \E, COLSTOCH
restricts the sampling process to elements from V, the set of
LT columns. Carefully selecting S is critical as it affects the
quality of the solution. Even if our problem is not submodular,
ny/ - log(3)
elements (Line 6), leading to n? log% evaluations over all
iterations, similar to SIMPLSTOCH.* Moreover, to limit the
quality loss, we choose elements of S following graph-based
sampling probabilities (see below). These probabilities are
initially calculated during the compute step (Line 5) and are
updated accordingly in the update step (Line 13). Function
CANDIDATES() also receives those sampling probabilities in
each iteration (Line 8). Once S is determined, we compute all
columns of L' corresponding to vertices in S.> We do so by
solving s linear systems. More precisely, we solve one linear
system for each vertex a € § : Lx = e, — % - 1, where
1 = (1,...,1)T and x L 1. Then, COLSTOCH performs
function evaluations only between vertex pairs in S x S
(Line 10). Finally, to further improve the overall running time,
we do not update LE[:,S] for all @ € S at the end of each
round (Line 13 of Algorithm 1). Instead, we update individual
columns of L on demand; only if the corresponding vertices
participate in the candidate set S of the following round.

To update previously computed columns, we use the out-
dated solver solution and apply the update formula Eq. (4)
iteratively for all (in-between) rounds. To do so, we store
columns together with the associated round count.

we choose the default sample size of s =

“The only difference here is that we sample pairs of LT columns, which
is a subset of (‘2/) and not (‘2/) \ E. Obviously, we reject vertex pairs that
already exist in the graph as edges.

SThis step is performed once in the main loop after Line 8. For the
complexity analysis we consider it as part of the compute step and for that
reason it is not depicted in the loop of the generic Algorithm 1

diag(L") Strategy: Let us now explain the sampling
probabilities for selecting S. Following previous studies [38],
[40], vertex pairs with maximal effective resistance are good
candidates for largely decreasing the total effective resistance
of a graph. However, the effective resistance metric is not
directly applicable in this context. For once because COL-
STOCH requires a vertex-based metric and secondly, and more
importantly, because computing the effective resistance for
all vertex pairs {a,b} € (‘2/) \ E would eventually require
(pseudo)inverting L. To work out these issues, we sample
vertices according to their corresponding diagonal entries in
L*. Obviously, this is an effective resistance-based metric since
the diagonal entry L[a, a] of a vertex a corresponds to the
summed effective resistance between a and all other vertices:
>_bev\{a} TG (a, b). Vertices with maximum L' diagonal val-
ues are connected badly to all other vertices in the graph (in
the electrical sense) [38]. Moreover, computing diag(L) can
be performed in almost-linear time, using the connection of
effective resistance to uniform spanning trees (USTs) of G.
In [2] the authors proposed an algorithm that approximates
diag(L'") via UST sampling techniques. The algorithm obtains
a +e-approximation with high probability in O(m log* n-e~2)
time for small-world graphs (diameter bounded by O(logn)).
For k-GRIP, we need to sample USTs for every new graph
Gyr4+1 (in round r). We do so during the update step of Algo-
rithm 1 (Line 13). We save computations by reusing previously
computed USTs corresponding to G,.. Those trees are not
uniformly distributed in the new graph G,;1 := G, U {a,b}
and need to be reweighted accordingly. Moreover, we still need
to sample a number of USTs corresponding to trees of G,11
that contain the additional edge {a,b}. To do so, we use a
variant of Wilson’s algorithm [42]. The final sample set is the
union of the reweighted USTs (originally from G,) and the
newly sampled USTs in G, 41.

C. *STOCHILT

In this section we propose an improvement that exploits the
following observation: to evaluate the gain function for an arbi-
trary vertex pair {a, b}, we only require to compute the squared
Lo-norm of two distance vectors: bg(a, b) = HLT(ea - eb)H2
and rg(a,b) = |BTLi(e, —e)||° (Eq. (6)). Viewing
bg(a,b) and rg(a,b) as pair-wise distances between vectors
in {L"},cv and {BTL} ¢y (respectively) allows us to apply
the Johnson-Lindenstrauss lemma [16]. In this case, pairwise
distances among vectors are nearly preserved if we project the
vectors onto a low-dimensional subspace, spanned by O(log n)
random vectors. The JLT lemma states the following:

Lemma IV-C.1 (Johnson-Lindenstrauss): Given fixed vec-
tors uy...,u, € R and > 0, let Q € R*? be a
random =+1,/¢ matrix (i.e., independent Bernoulli entries)
with ¢ < 241logn/n?. Then with probability at least 1 — 1/n

(1 —n) [lui — u3)* < [Qus — Quy||> < (1 + 1) [u; — v
)

for all pairs 7,5 < n.
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Using Lemma IV-C.1, we can simply project matrices Lt
and BTL' onto q vectors, i.e., the ¢ rows of some random
matrices P € R?*" and Q € R?*™, respectively. To
actually reduce the overall computation time, we need to
avoid the involved pseudoinversion. For that, we resort to
efficient linear system solvers. Thus, combining the random
projections technique with fast linear solvers, one can ap-
proximate distances between vertex pairs within a factor of
(1 4+ mn) in O(I(n,m)logn/n?) time, where I(n,m) is the
running time of the Laplacian solver. Hence to approximate
bg(a,b) and rg(a,b), we compute the projected distances
|PL (e, — eb)H2 and ||QBLf(e, — e3) %, respectively. We
avoid the solution of two sets of Laplacian systems by ex-
pressing the effective resistances directly via the projection of
bi-harmonic distances onto the lower dimension space. More
precisely, we only solve LY = P7 — 111TPT and use®
Y = LTP7 to express effective res1stances

2

= (e

2
= (ea — eb)TLTBBTLT(ea —ep) = HBTLT(ea — eb)H

HQBTYP(ea —ey) . —e)"PTY"BQTQB YP(e

(10)
since Q and P are orthogonal matrices.

We can integrate the JLT approximation both in the context
of CoLSTOCH and SIMPLSTOCH (having COLSTOCHJLT
and SIMPLSTOCHJLT respectively). Let us consider the case
of COLSTOCHJLT: Again, the compute step is performed
after selecting set S (just after Line 8). Indeed, we compute
the vectors in {L'},es and {BTL'},cs for Gg, where

|S| = ny/% -log(%). Since, later, we only perform evalua-
tions for pairs in S x &S, it suffices to consider projections
onto logs rows (via P € RI°8sx" and Q e Rlogsxm),
During the main loop of Algorithm 1 we perform the same
number of overall function evaluations as in COLSTOCH,
that is O(n?). However, now a single function evaluation

for an arbitrary vertex pair takes O(logs) via the formula
IPL (e0 e’
1+[QBTYP(ea—es)?|
n).” For the update step, we need to sample new projections
P and Q and recompute the two matrices PL' and QBT YP.

gain(a,b) =~ 7 (up to a relative error of

D. SPECSTOCH

Finally, we propose an approach that exploits the spectral
expression of the gain function. More precisely, we combine
the spectral expressions of effective resistance and bi-harmonic
distance (Egs. (8) and (7)) to write Eq. (5) as:

>lio ()\1) - (uila] — wi[b])?
14350, 5, - (uifa] — uib])?

Eq. (11) benefits from the fact that both effective resistance
and bi-harmonic distance only depend on the spectrum of the

same matrix L. Still, the full spectral decomposition of L
incurs O(n?) time and is equally prohibitive as computing L

gain(a, b) = (11

®Due to L - %IIT = O (the zero matrix).
In our experiments we set 7 = 0.55.

a — €p

for larger G. To reduce the complexity, we propose an approx-
imation of Eq. (11) using standard low-rank techniques and
new bounds for both distances. To do so, we exploit the fact
that the bulk of eigenvalues tends to concentrate away from the
smallest eigenvalues [8]. Moreover, we compute only a small
number of eigenpairs on the lower side of the spectrum. We
expect that the smaller eigenpairs have a larger influence on
the sums of Eq. (11). For small , the entries of eigenvector u;
fluctuate slowly, so we should carefully select {a,b} to avoid
near-zero contributions. Moreover, for small ¢, contributions
are accentuated by a large weight, /\2 On the other hand,
for large i, the eigenvectors w; fluctuate rapidly, since they
correspond to high frequency modes of the spectrum. Their
importance is undermined by % (small for large 7). The above
observations suggest that for a new edge addition {a, b}, the
focus should be on eigenpairs corresponding to small q.

We now show how to derive bounds for b(a,b). First we
break Eq. (8) into partial sums where ¢ < n is a cut-off value.

bG(a,b):ZM+ 3 (u[a];i;[b})

1=2 * i=c+1

. Z (aila] —wile)? | ;2 > (uila) - wilp))?
2 i—ct1 . (12)
< 2_; % + ;2 (- ;(ua[a] —uit])*)

2 ~ 1
= TCQ + ;()\12 22 )(ui[a] - ui[b])2
The first inequality holds for large enough eigenvalues (> 1),
since A\e < Ay and ot > for any ¢ (recall that we
index the eigenvalues ordereci non decreasmgly) Moreover,

the third line comes from the following observation:

n n

> (wifa] —wp)? = (uwila] - wft])?

= Zui[a] + Z:ui[b}2 — QZui[a]
CJUT b =2

= [[od[|* + [[uF|I” ~ 20l

13)

for a # b since U is double-orthogonal. Moreover:

where the inequality in the third line holds, since A\, > Ac44
for any 7. Following the above, we can easily derive similar
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bounds for rg(a,b). Plugging those bounds together, we can
approximate Eq. (11) using the following inequality:

732 + Zj:Q(/\iQ - )\12 )(uila] — wy [b])2 -
1+ A% + Z;:Q(A% - Aln)(ui[a] —wb))? < gain(a, b)

2+ (5 — 5k (wila] — wil)?

(15)

Adapting the general framework of Algorithm 1 for SPEC-
STOCH is rather straightforward: In Line 5 we compute the
first ¢ eigenpairs along with the largest eigenvalue of L
(corresponding to Gg). We do so using standard iterative meth-
ods, such as the Lanczos algorithm [27], which often takes
O(cm) time for sparse matrices, depending on the desired
accuracy and eigenvalue distribution. During the main loop,
the algorithm performs O(n?) function evaluations (dictated
by the stochastic approach). Single function evaluations in
Line 10 require only O(c) time using the bounds in Eq. (15).
Finally, we update the eigenpairs of G, in Line 13. To speed
up the update step, we bootstrap the solution of the eigensolver
with the solution of the previous round.

V. EXPERIMENTAL RESULTS

We conduct experiments to demonstrate the performance
of our contributions compared to STGREEDY. All algorithms
are implemented in C++, using the NetworKit [34] graph
APIs. Our test machine is a shared-memory server with a
2x 18-Core Intel Xeon 6154 CPU and a total of 1.5 TB
RAM. To ensure reproducibility, experiments are managed by
SimexPal [3]. Moreover, we use both synthetic and real-world
input instances. The synthetic ones follow the Erdds-Rényi
(ER), Barabasi-Albert (BA) and Watts-Strogatz (W S) models.
The real-world graphs are taken from SNAP [18] and NR [30],
including application-relevant power grid and road networks.
In this context, we consider medium graphs those whose vertex
count is < 57K. The largest graph has around 129K nodes. To
evaluate the quality of the solutions, we measure gain improve-
ments: R(G)—R(Gy). Our code and the experimental pipeline
are available at https://github.com/predari/graph-robustness-k.

Configuration experiments: First, it is essential to verify
that STGREEDY produces good quality, as claimed by the
authors of [36], even without any approximation guarantees.
To this end, we compare STGREEDY with an exhaustive search
on three synthetically generated graphs (BA, WS and ER of
size n = 1000) and different values of k& = 2, 5,20, 50, 100 8
and different values of k = 2,5,20,50,100. Our experiment
confirms that STGREEDY achieves the same solution as the
exhaustive search in all cases. Moreover, we evaluate the
performance of SIMPLSTOCH for different accuracy values
on the medium graphs of Table II. Following the experiments
in [25], we set the accuracy parameter 6 to .9 and .99° (which
are reasonable values according to the experiments of Ref. [25]
and our own preliminary experiments). In Table III, we see
that there is a clear trade-off between quality and running

8The parameters used for generating those graphs are described in Fig. 1.
%Providing that § can be larger than 1 — 1

TABLE Il
SUMMARY OF GRAPH INSTANCES, PROVIDING (IN ORDER)
NETWORK NAME, VERTEX COUNT, AND EDGE COUNT.

Graph V] |E|
inf-power 4K 6K
facebook-ego-combined 4K 8.8K
web-spam 4K 37K
Wiki-Vote 7K 100K
p2p-Gnutella09 8K 2.6K
p2p-Gnutella04 10K 39K
web-indochina 11K 47K
ca-HepPh 11K 117K
web-webbase-2001 16K 25K
arxiv-astro-ph 17K 196K
as-caida20071105 26K 53K
cit-HepTh 27K 352K
ia-email-EU 32K 54.4K
loc-brightkite 57K 213K
soc-Slashdot0902 82K 504K
ia-wiki-Talk 92K 360K
flickr 106K  2.31M
livemocha 104K 2.19M
road-usroads 129K 165K
TABLE 1II

QUALITY AND SPEEDUP OF SIMPLSTOCH
(RELATIVE TO STGREEDY) FOR DIFFERENT APPROXIMATION BOUND.

Relative Quality

SIMPLSTOCH =5 T F=20 | k=50 | k=100

5=09 09662 | 09610 | 09606 | 09810 | 09898

5= 99 09239 | 0.9241 | 09442 | 0.9559 | 09694
Relative Speedup

SIMPLSTOCH | —— 5 — 5T =20 [ k=50 | =100

5=09 76 76 37 37 31

5= 99 20 39 %) a1 36

time, controlled by the accuracy parameter. Still, even for a
large J, the solution of SIMPLSTOCH is not far off compared
to STGREEDY, being only 8% off in the worst data point
(k = 2). We also note that the solution quality is improved
as k becomes larger. To benefit from that trade-off, in the
following experiments we set J at .09 for medium graphs and
.099 for larger ones.

Additionally, we perform configuration experiments to de-
termine the quality of the gain approximation via Eq. (15) for
SPECTSTOCH. To do so, we randomly select a vertex pair and
compute Eq. (15) for a different number of eigenvectors. We
measure the relative error of the approximation compared to a
full spectrum computation. In Fig. 1 we depict the results for
synthetic graphs and eigenvector number from 1 to n = 1000.
Even for a few tens of eigenvectors, the relative errors for WS
and ER are already quite small. The relative error for BA is
larger and would require a couple of hundreds eigenvectors to
achieve a similar approximation.

Finally, we experiment with different solvers for the solution
of Laplacian linear systems. We decide to use the sparse LU
solver from the Eigen [12] library for medium graphs and the
LAMG solver [19] from NetworKit for larger ones. We do
so, because LAMG exhibits a better empirical running time
for larger complex networks than other Laplacian solvers. For
the solution of the eigensystem (required by SPECSTOCH), we
use the Slepc [15] library.
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Fig. 1.

Relative error of gain via Eq. (15) for different number of eigenvectors.

Comparison to SoA: We first compare our approaches on
the medium graphs of Table II, configured according to the
previous section. Closely behind STGREEDY, SIMPLSTOCH
and COLSTOCH produce the best solutions and they are
on average 2% away from the reference (Fig. 2(a)). More-
over, SPECSTOCH, SIMPLSTOCHJLT and COLSTOCHILT
are away by 9%, 14% and 15%, respectively. On the other
hand, regarding running time, the JLT-based approaches are
the fastest, being on average 48x (SIMPLSTOCHJLT) and
68x (COLSTOCHIJLT) faster than STGREEDY (Fig. 2(b)).
The scaling of COLSTOCHJLT is worse than that of SIM-
PLSTOCHIJLT for large k. This is due to the update step of
Algorithm 1, where COLSTOCHJLT needs to update both the
effective resistance metric and the necessary operations for
JLT. Although the slowest, SIMPLSTOCH has a good scaling
behavior as it performs only few computations in the update
step and thus is independent of k. Overall, SPECSTOCH is the
best approach for medium graphs as it produces good quality
results and is on average 26X faster than STGREEDY. A
disadvantage of SPECSTOCH is that the running time becomes
worse as k grows due to the k eigensystem updates.

Finally, in Fig. 3 we depict results for the large graphs of Ta-
ble II. For this experiment we report absolute values since we
do not have a clear reference; STGREEDY always times out.!0
The best approaches for large graphs are COLSTOCHJLT
and COLSTOCH. Both of them produce the highest quality
results and COLSTOCHJLT is the fastest approach, requiring
on average 2 [20] minutes for £ = 2 [k = 20]. SPECSTOCH is
on average as fast as COLSTOCH but its performance depends
a lot on spectral properties (clustered eigenvalues or not) of
each input, as shown by the degree of skewness in Fig. 3.

10The time limit is set to 43,200 seconds (12 hours).

CovuSrocnJLT
B SeecSTocH

5 20 50 100

(a) Quality

O.. —0~ SweStocn

Speedup

(b) Speedup

Fig. 2. Aggregated results (via geometric mean) of k-GRIP on medium graphs (n <
57K) for different k. Results are relative to STGREEDY.

VI. CONCLUSIONS

To conclude, our randomized techniques for speeding up
the state-of-the-art greedy algorithm for k-GRIP do pay off.
For medium-sized graphs, COLSTOCH provides a decent 6x
acceleration with a quality close to greedy’s. Here, a subset
of vertices i is selected for which Lf[i,i] and, thus, their
summed effective resistances are large. When favoring speed
over quality, SPECSTOCH, which exploits spectral properties
of the graph, seems to offer the better trade-off (on average
28x faster than greedy). For larger graphs and whenever
high quality is crucial, the best option is COLSTOCH. When
running time is important and a decrease in quality is allowed,
COLSTOCH can still be significantly accelerated by JLT, i.e.,
CoLSTOCHJLT.

Our future plans include the extension of the problem to
edge deletions. This problem is related to the protection of in-
frastructure and also important in corresponding applications.

Acknowledgments: We are grateful for coding support in
early development stages by HU Berlin student Matthias Gorg.
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