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h i g h l i g h t s

• We investigate the robustness of 33 real-world metro networks.
• Robustness metrics capture two distinct aspects of metros.
• Radar diagrams assess overall robustness by incorporating ten individual robustness metrics.
• Tokyo is a robust metro thanks to transfers both in the city center and the peripheral area.
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a b s t r a c t

Metros (heavy rail transit systems) are integral parts of urban transportation systems.
Failures in their operations can have serious impacts on urban mobility, and measuring
their robustness is therefore critical. Moreover, as physical networks,metros can be viewed
as topological entities, and as such they possess measurable network properties. In this
article, by using network science and graph theory, we investigate ten theoretical and four
numerical robustness metrics and their performance in quantifying the robustness of 33
metro networks under random failures or targeted attacks.We find that the ten theoretical
metrics capture two distinct aspects of robustness ofmetro networks. First, several metrics
place an emphasis on alternative paths. Second, other metrics place an emphasis on the
length of the paths. To account for all aspects, we standardize all ten indicators and plot
them on radar diagrams to assess the overall robustness for metro networks. Overall,
we find that Tokyo and Rome are the most robust networks. Rome benefits from short
transferring and Tokyo has a significant number of transfer stations, both in the city center
and in the peripheral area of the city, promoting both a higher number of alternative paths
and overall relatively short path-lengths.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

With constant urbanization [1], cities around the world are not only growing in number but they are also growing in size.
As one of the main modes of urban transportation, public transit systems are integral to move people efficiently in cities
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[2–4]. Indeed, they provide myriads of benefits, from reducing traffic congestion to having a lesser impact on the en-
vironment, emitting fewer greenhouse-gases per capita than the conventional automobile [5,6]. The future of public
transportation is therefore bright.While increasing transit use is desirable, effortmust be put into developing designs that are
also resilient and robust. These subjects have gathered much interest in the scientific community in recent years, especially
within the context of resilience to extreme events [7–9]. Resilience typically refers to the ability to return to a previous state
after a disruption, while robustness tends to measure the amount of stress that can be absorbed before failure; Woods [10]
inventoried four uses of the concept of resilience.

Traditionally, transit resilience and robustness have been associated largely with travel time reliability and variabil-
ity [11]. It is still an important topic today from quantifying variability itself [12,13] or its cost [14], to using reliability
and variability as a design criterion [15,16]. Recently, the field of Network Science [17] has emerged as particularly fitted
to measure the robustness of a system, notably by studying the impact of cascading failure [18–20]. Indeed, as physical
networks, metros are composed of stations (nodes) and rail tracks (links), and they therefore possess measurable network
properties [21,22] that can be used to study their robustness [23–25]. Several works have also tried to combine information
from both transit operation and network properties to gain insight into the robustness of transit networks [26–30].

In this work, our main objective is to analyze both theoretical and numerical robustness metrics for 33 worldwide metro
systems within the realms of graph theory and network science. Metro, here, refers to heavy rail transit systems, whether
underground, at grade, or overground. The freely available data from [31] was used.1

To assess the robustness of metros, our main research approach is to subject metros to random failures and targeted
attacks. Ten theoretical robustness metrics are investigated to anticipate the influence of failures and attacks in metro
networks: (i) robustness indicator rT , see [24], (ii) effective graph conductance CG, see [32], (iii) reliability RelG, see [33], (iv)
average efficiency E[

1
H ], see [17], (v) clustering coefficient CCG, see [17] (vi) algebraic connectivityµN−1, see [32] (vii) average

degree E[D], see [32] (viii) natural connectivity λ, see [34] (ix) degree diversity κ , see [35] (x) meshedness coefficient MG,
see [36]. Moreover, the critical thresholds f90% and fc , see for instance [37], are obtained through simulations and categorize
as numerical robustness metrics which provide the ground-truth for the robustness of metros under failures and attacks.

To evaluatewhether the ten theoretical robustnessmetrics anticipate themetros robustnesswith respect to node failures,
we investigate the Pearson correlations between theoretical and numerical robustness metrics. The strong correlations
indicate that different robustness metrics quantify different aspects of robustness and highlight the multi-faced property of
the robustness of metros. Finally, an overall robustness is provided by radar diagrams that incorporate all the ten robustness
metrics.

The paper is organized as follows. The definition and interpretation of theoretical robustness metrics are studied
in Section 2. Section 3 presents the simulation approach for numerical robustness metrics in 33 metro networks. The
performance of the robustness metrics is assessed in Section 4. Section 5 concludes the paper.

2. Theoretical robustness metrics

This section elaborates on the ten theoretical robustness metrics and how these theoretical metrics relate to robustness
of networks. A physical metro network can be represented by an undirected graph G(N, L) consisting of N nodes and L links.
The nodes are transfer stations and terminals, while the links are rail tracks that physically join stations. A graph G can be
completely represented by an adjacency matrix A that is an N × N symmetric matrix with element aij = 1 if there is a
connection between nodes i and j, otherwise aij = 0. The Laplacian matrix Q = ∆ − A of G is an N × N matrix, where
∆ = diag(di) is the N × N diagonal degree matrix with the elements di =

∑N
j=1aij. The eigenvalues of Q are non-negative

and at least one is zero [32]. The eigenvalues of Q are ordered as 0 = µN ≤ µN−1 ≤ · · · ≤ µ1. The degree di =
∑N

j=1aij of a
node i is the number of connections to that node. The degree for the terminals is one.

2.1. The robustness indicator rT

The robustness indicator rT is suggested as a robustness metric for metro networks by Derrible and Kennedy [24]. It
quantifies the robustness of a metro network in terms of the number of alternative paths in the network topology divided
by the total number of stations in the system:

rT =
µ − Lm

NS

where NS is the total number of stations (not limited to transfers and terminals), Lm is the number of multiple links between
two nodes (e.g., overlapping lines), and µ is the cyclomatic number that calculates the total number of alternative paths in a
graph; µ = L−N + P , with L the number of links, N the number of nodes, and P the number of subgraphs. Transit networks
are typically connected and, thus P = 1. The total number of stations, NS in the denominator represents a likelihood of
failure; i.e., the larger the system, the more stations need to be maintained, and therefore the more likely a station may fail.

1 Available at http://csun.uic.edu/datasets.html, accessed July 8, 2016.

http://csun.uic.edu/datasets.html
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For thiswork, we do not consider anymultiple edges.2 Moreover, we also use the number of nodesN (i.e., transfer stations
and terminals) in the denominator as opposed to the total number of stations NS . Due to the sparsity of metro networks,
i.e., L < Lmax with Lmax =

N(N−1)
2 obtained from the complete graph with N nodes, the robustness indicator in this paper is

modified as:

rT =
ln(L − N + 2)

N
(1)

where ln(L − N + 2) is employed rather than ln(L − N + 1) to avoid infinity for a tree graph with L = N − 1. Essentially, rT
increases when alternative paths are offered to reach a destination, and it decreases in larger systems, which are arguably
more difficult to upkeep. The normalized robustness indicator rT is obtained dividing by rT =

ln(Lmax−N+2)
N with Lmax =

N(N−1)
2 .

2.2. The effective graph conductance CG

The effective graph resistance RG captures the robustness of a network by incorporating the number of parallel paths
(i.e., redundancy) and the length of each path between each pair of nodes. The existence of parallel paths between two
nodes in metro networks and a heterogeneous distribution of each path length result in a smaller effective graph resistance
and potentially a higher robustness level.

The effective resistance Rij [32] between a pair of nodes i and j is the potential difference between these nodes when a
unit current is injected at node i and withdrawn at node j. The effective graph resistance RG is the sum of Rij over all pairs of
nodes in the network. An efficient method for the computation of the effective graph resistance in terms of the eigenvalues
is

RG = N
N−1∑
i=1

1
µi

where µi is the ith non-zero eigenvalue of the Laplacian matrix.3 Properties of the effective graph resistance are given
in [32]. The effective graph resistance is considered as a robustness metric for complex networks [38], especially for
power grids [39,40]. In this paper, we use a normalized version of the effective graph resistance, called the effective graph
conductance, defined as

CG =
N − 1
RG

(2)

where CG satisfies 0 ≤ CG ≤ 1. Here, a larger CG indicates a higher level of robustness. The normalized CG enables the
comparison of network robustness among different cities with different metro size.

2.3. Reliability

The reliability RelG of a network is the probability that the network is connected given the failure probabilities of its
components. In this paper, wemodel the reliability of each link specifically as opposed to the nodes. In the absence of actual
reliability data (e.g., track maintenance and age), we use a constant value for the link reliability of 0.999 in accordance
with values found in the literature [41] that includes, amongst others, vehicle breakdowns, power failures, and blockage.
The reliability of a link is defined as one minus the failure probability, and the method assumes that the links have
independent failure probabilities. This reliability measure is used often and in various contexts [42,43], including in public
transportation [44]. It essentially captures robustness by calculating the fraction of time every station is accessible from
every other station. The downside of using the reliability is that it considers networks to be either fully operational or failed
and does not provide any finer distinction. For further information, the reader is referred to [45].

2.4. Average efficiency E[
1
H ]

The hopcount Hij is the number of links in the shortest path between node i and node j. The average hopcount E[H] is
defined as:

E[H] =
2

N(N − 1)

N∑
i=1

N∑
j=1

Hij.

When a network is disconnected, the shortest paths between certain node pairs have infinite distance. To avoid an
infinitely largemetric under the scenario of a disconnected graph, the global average efficiency E

[ 1
H

]
is introduced by taking

2 Even when two stations are directly connected by multiple lines, we assign a value of 1 to the adjacency matrix. The definition is given in Section 3.1.
3 An N × N matrix representing the graph. The definition is given in Section 3.1.
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the reciprocal hopcount between two nodes [17]:

E
[
1
H

]
=

2
N(N − 1)

N∑
i=1

N∑
j=1

1
Hij

. (3)

Assuming the transportation efficiency between two nodes is proportional to the reciprocal of their distance, the global
efficiency quantifies the efficiency of transportation in a network on a global scale.

2.5. Clustering coefficient CCG

The clustering coefficient has become a standard in the network science literature to assess how the neighbors of a node
are connected with one another. It was first introduced by [46]. The clustering coefficient of a node is defined as:

CCi =
2yi

di(di − 1)
where yi is the number of links connecting neighbors of node i and di is the degree of node i. The clustering coefficient of a
node i characterizes the connection density among the neighbors of node i. The maximum clustering coefficient is achieved
in a complete graph where all the neighbors of a node are connected. In this work, we use the average clustering coefficient
that is defined as the average of all individual clustering coefficients:

CCG =
1
N

N∑
i=1

CCi. (4)

For a graph with N nodes, the clustering coefficient is bounded by

0 ≤ CCG ≤ 1

where 0 is obtained in a tree and 1 is reached in a complete graph.

2.6. Algebraic connectivity µN−1

The algebraic connectivity µN−1 is the second smallest eigenvalue of the Laplacian matrix of a graph. When µN−1 = 0,
the graph is disconnected whereas forµN−1 > 0 the graph is connected. It has been shown [32] thatµN−1 ≤ κN (G) ≤ κL(G)
where κN (G) and κL(G) are node and link connectivity representing theminimumnumber of nodes and linkswhose removal
disconnects the graph. Therefore, a high value of the algebraic connectivity indicates a more robust network. In addition, it
implies a strong synchrony in transport networks [47] and more difficulty to break down air transport networks [48] under
random failures. Because the maximum algebraic connectivity for a graph with N nodes equals N , obtained for the complete
graph, we normalize by dividing the algebraic connectivity by N . The normalized algebraic connectivity is denoted as µN−1.

2.7. Average degree E[D]

For a graph with N nodes, the average degree can simply be written as:

E[D] =

∑N
i=1 di
N

(5)

where di is the degree of node i. Put simply, the average degree measures the number of average connections of a node.
A network with a higher average degree can be thought of as more robust since it implies more connections (i.e., higher
connectivity). We normalize the average degree dividing by the maximal degree, which is N − 1, for a graph with N nodes.
The normalized average degree is denoted as E[D].

2.8. Natural connectivity λ

The natural connectivity is defined as:

λ = ln

[
1
N

N∑
i=1

eλi

]
(6)

where λi denote the eigenvalues of the adjacencymatrix of a graph. The natural connectivity characterizes the redundancy of
alternative routes and is considered as ameasure of structural robustness. The natural connectivity is amonotonical function
of eigenvalue λi that is sensitive even to a single link failure [34]. Consequently, when link failures one by one, the natural
connectivity is able to capture each failure, in contrast to, for instance, link connectivity that might be the same for certain
link failures. Themaximumnatural connectivity for a graphwithN nodes is obtained in the complete graphwhich isN−lnN
as N → ∞. In order to compare graphs with different sizes, we normalize the natural connectivity, denoted as λ

∗
, dividing

by the maximum natural connectivity N − lnN .



X. Wang et al. / Physica A 474 (2017) 19–31 23

2.9. Degree diversity κ

The degree diversity [35], also called the second-order average degree, is defined as:

κ =

∑N
i=1 d

2
i∑N

i=1 di
. (7)

It has been shown that κ positively relates to the percolation threshold pc [49] via 1 − pc =
1

κ−1 in the percolation
model. The higher κ is, themore nodes need to be removed to disintegrate a network. In addition, the robustness of dynamic
processes, e.g. epidemic spread, in a network relates to κ regarding the epidemic threshold [50], where below the epidemic
threshold the network is safeguarded from long-term infection. As for homogeneous networks, such as regular graphswhere
each node has the samedegree, the degree diversity tends to the average degree, κ → E[D]. However, for scale-free networks
with N → ∞, the degree diversity tends to the infinity, κ → ∞. In order to scale the value of the degree diversity in the
interval [0, 1], we take the inverse of the degree diversity.

2.10. Meshedness coefficient MG

The meshedness coefficientMG is defined as:

MG =
L − N + 1
2N − 5

(8)

measuring the cycle structure in a planar graph by dividing the actual number of cycles by the potential number of cycles.
It has notably been used to characterize the structural properties of urban street networks [36]. The difference between the
meshedness coefficientMG and the robustness indicator rT lies in the denominator. The robustness indicator rT considers the
number of stations in the denominator, whileMG considers the maximal number of faces in a planar graph. The meshedness
MG satisfies 0 ≤ MG ≤ 1, where 0 is obtained in a tree graph with L = N − 1 and 1 is reached in the maximal planar graphs
with L = 3N − 6.

3. Numerical robustness metrics

Numerical robustnessmetrics are obtained through simulations considering the robustness of 33metro networks against
random failures or deliberate attacks. This approach can be used to evaluate the performance of different robustness
metrics for metro networks under node failures/attacks. This section elaborates on the metro networks, attack strategies
and determination of the critical thresholds.

3.1. Metro networks

We define metros as urban rail transit systems with exclusive right-of-way whether they are underground, at grade or
elevated. We represent a metro network by a graph, where nodes are transit stations and two nodes are connected if two
transit stations are reachable. In this article, we look at 33 worldwide metro networks. Fig. 1 exemplifies the graphical
representation of a physical metro network. Fig. 1(a) shows the map of the Athens metro network4 and the graphical
representation is shown in Fig. 1(b). In Fig. 1(b), stations 1 to 9 are respectively: Kifissia, Aghios Antonios, Attiki, Omonia,
Monastiraki, Pireaus, Syntagma, Aghios Dimitrios, and Airport Eleftherios Venizelos. In this article, only the termini and
transfer stations are taken into account, other stations that do not offer transfers or do not end lines are not considered as
it was found preferable in [24,31]. Moreover, they tend to bias the results by simply connecting with two adjacent stations.
For more details on the methodology, see [24]. Note that the methodology presented here can be readily generalized for
networks including non-transfer stations by considering weighted graphs instead of unweighed graphs, where the weights
equal the number of non-transfer stations between two transfer stations plus one.

3.2. Attack strategies

To determine the robustness of metro networks, the response of metro networks to targeted attacks or random failures
is investigated. This paper considers two strategies for node removal: (i) random node removal and (ii) degree-based node
removal.

• Random removal: Thenode to be removed is chosen at random fromall thenodes in thenetworkwith equal probability.
• Degree-based removal: The node to be removed has the highest degree in the network. If multiple nodes have the

highest degree, one node is chosen at random from all the highest-degree nodes with equal probability. In this paper,
nodes are removed progressively.We first remove the nodewith highest degree, and continue selecting and removing
nodes in decreasing order of their degree.

4 Adapted from http://commons.wikimedia.org/wiki/File:Athens_Metro.svg.

http://commons.wikimedia.org/wiki/File:Athens_Metro.svg
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(a) The map of the Athens metro network. (b) Graphical representation.

Fig. 1. Athens metro network.

3.3. Critical thresholds

Critical thresholds relate to the fraction of nodes that have to be removed from the network, such that the size of the largest
connected component of the remaining network is equal to a predetermined fraction of the size of the original network.
Critical thresholds, which are also used in the percolation model [51,52], characterize the robustness of interconnection
patterns with respect to the removal/failure of network nodes.

After a node is removed, the size of the largest connected component of the remaining network is determined. Measuring
the size of the largest connected component for an interval of removed nodes [1,N] results in a robustness curve. From the
robustness curve,we then determine the critical thresholds f90% and fc . The critical threshold f90% is the first point atwhich the
size of the largest connected component is less than 90% of the original network size. When determining the f90% for random
node removal, the size of the largest connected component is the average of 1000 simulation runs. Similarly, the critical
threshold fc is the first point at which the size of the largest connected component is one (i.e., the network is completely
disintegrated). Fig. 2 exemplifies the determination of the critical thresholds from the robustness curve in Tokyo metro
network with 62 nodes. Computing the size of the largest connected component for removed nodes from 1 to 62 results in
a robustness curve. The size of the largest connected component is 56.77 after randomly removing 4 nodes. After removing
5 nodes, the size becomes 55.48 which is smaller than 90% × 62 = 55.8, i.e., 90% of the size of the network. Therefore,
the critical threshold f90% is determined as 5

62 . The threshold fc is determined in a similar way. The critical thresholds are
regarded as the experimental robustness level of metro networks with respect to node failures.

In this paper, we first consider the threshold f90%, the fraction of nodes that have to be removed such that the remaining
network has a largest connected component that contains 90% of the original network. For the node removal process,
we simulate both random failures and targeted attacks. In the case of random failures, the nodes are removed by random
selection, while for targeted attacks, the nodes are removed progressively based on their degrees (i.e., stations with many
connections are removed first).

For the targeted attacks and random failures, we also consider the critical threshold fc defined as the fraction of nodes to be
removed such that the largest component is reduced to a size of one node (i.e., the network is completely disintegrated). As
opposed to the theoretical metrics discussed in Section 2, the critical thresholds f90% and fc are obtained through simulations.

4. Metric analysis for metro networks

In this section, we study the robustness metrics for the 33metro networks. Firstly, the ten theoretical robustness metrics
are computed for the 33 metro networks. Secondly, the critical thresholds of metro networks under random failures and
targeted attacks are determined by simulations. Thirdly, the relationship between the theoretical robustness metrics and
numerical robustness metrics is studied. Finally, the overall performance of all the robustness metrics for the 33 metros is
investigated.
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Fig. 2. The robustness curve for the Tokyo metro network.

4.1. Effectiveness of robustness metrics

Table 1 shows the values of the ten robustness metrics (from column 4 to column 13) computed using Eqs. (1)–(8) and
the four numerical robustness metrics (from column 14 to column 17) using the algorithms described in Section 3.3 for the
33 metro networks.

According to the rank of the robustness indicator rT , the most robust network is Tokyo with rT = 0.512, followed by
Madrid and Paris with rT = 0.5 and 0.488, respectively. Moreover, Seoul, Moscow and MexicoCity also have a relatively high
robustness level. Clearly, the robustness indicator rT favors larger networks that have developed many alternative paths
between any pairs of nodes. At the same time, rT discredits networks that have a high number of nodes while having few
alternative paths. This is particularly exemplified by the case of New York. Due to the topography of the region, the New York
metro lines run mostly North–South from the Bronx to Lower Manhattan and East–West in Queens and Brooklyn. The lines
therefore seldom intersect as opposed to the case of the Seoulmetro for instance.

According to the effective graph conductance CG, Rome with CG = 0.25 has the highest robustness level, followed by
Cairo and Marseille both with CG = 0.17. The effective graph conductance accounts for the number of alternative paths, but
it emphasizes on the length of each alternative path. For instance, for smaller networks without cycles (e.g., star graph), the
effective graph conductance increases due to the lower average path length between two stations. The topologies in Fig. 3(a)
and Fig. 3(b) are particular examples. In this case, a higher effective graph conductance indicates a lower number of transfer
hops between two transit stations. At the same time, effective graph conductance favors networks with the smallest length
of the shortest paths. Taking Fig. 3(c) (Montreal) and Fig. 3(d)5 (Toronto) as examples, the difference between the topologies
is that station 1 connects to 10 and then connects to station 3 in Toronto, while stations 1 and 10 separately connect to
stations 2 and 3 in Montreal. The total length of shortest paths from station 1 to the rest of the stations is higher in Toronto
than inMontreal. Compared to Toronto, the higher effective graph conductance inMontreal indicates that the effective graph
conductance favors the star-like topology with a smaller average shortest path length.

The reliability RelG indicates, just as the effective graph conductance does, that Rome is the most robust network with
RelG = 0.996. After this, the most robust networks according to their reliability are Bucharest, Cairo andMarseille, each with
RelG = 0.995. Of these three, Cairo and Marseille are also in second place according to the effective graph conductance. The
reliability is sensitive to ‘‘bridges’’ in the network. In this work, a ‘‘bridge’’ is an link that if removed disconnects the network.
They are of importance for the reliability because these edgesmust always be operational if the network is to remain a single
connected component. Using this definition, we see that Rome has four bridges and the three networks following have five.
The network with the lowest reliability is London. This is also the network with the most nodes and with the most bridges.
Metro networks are often scale-free [24], which means that larger networks have more degree one nodes (the links to these
nodes are always bridges). Therefore, it makes sense that the largest network has the highest amount of bridges and is the
least reliable. Of course with different link reliabilities this line of reasoning would not hold any more.

According to the rank of rT , 1
κ
andMG, Tokyo is the most robust metro network compared to other 32metros. Meanwhile,

according to CG, RelG, E[
1
H ], µN−1, E[D] and λ

∗
, Rome is the most robust metro. Barcelona is considered as a robust network

by the clustering coefficient CCG. Madrid has a relatively high robustness level favored by rT and MG. Tokyo and Paris

5 In order to compare the topology of Montreal and Toronto, a link between stations 4 and 5 is added into Toronto and the effective graph conductance
is 0.099.
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(a) Rome. (b) Cairo and Marseille. (c) Montreal. (d) Toronto.

Fig. 3. The topology of metro networks.

(a) Athens. (b) London.

Fig. 4. Critical thresholds in metro networks under nodes removal.

are considered as robust networks by CCG and 1
κ
, respectively. Cario and Marseille have a relatively high robustness level

regarding the second highest value of metrics CG, RelG, E[
1
H ], µN−1, E[D] and λ

∗
. The differences in these results suggest that

robustness is a multi-faceted notion, and one single measure cannot fully capture the overall robustness of a metro network.

Studying critical thresholds, Fig. 4 shows the robustness level of metro networks, taking the Athens and London metro
networks as examples, under random failures and deliberate attacks. The corresponding critical thresholds f90% for targeted
attacks (column 14) and random failures (column 15), and fc for targeted attacks (column 16) and random failures (column
17) are shown in Table 1. Columns 14 and 15 in Table 1 show similar behavior of f90% for targeted attacks and random failures.

Similar to the effective graph conductance CG, Rome has the highest robustness level with f90% = 0.20 both for targeted
attacks and random failures. Cairo andMarseille have the second highest robustness level with f90% = 0.17 for both targeted
attacks and random failures. In contrast, and similar to the robustness indicator rT , an evaluation of the critical threshold
fc under targeted attacks shows that Seoul and Tokyo are the most robust networks. Seoul has a critical threshold fc = 0.76
indicating that 76% of nodes need to be removed before the network collapses. The critical threshold fc under random failures
shows that London, NewYork, Paris and Seoul are the most robust networks.

4.2. Metric correlations

To assess the performance of theoretical metrics in capturing robustness, the Pearson correlation ρ between the ten
robustness metrics and the critical thresholds in the metro networks is investigated. Moreover, the correlations within the
ten robustness metrics are studied.

4.2.1. Correlation between theoretical and numerical robustness metrics
Table 2 presents the Pearson correlation between ten theoreticalmetrics and critical thresholds. The correlations between

CG and f90% for random failures and targeted attacks are 0.89 and 0.91, respectively. The high positive correlation indicates
that CG effectively captures the 10% failure of the metro networks under node removal. Moreover, E[

1
H ] and µN−1 also
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Table 2
Pearson correlation ρ between theoretical robustnessmetrics and the critical
thresholds.

f90%-degree f90%-random fc -degree fc -random

rT −0.41 −0.52 0.87 0.85
CG 0.89 0.91 −0.82 −0.97
RelG 0.54 0.59 −0.72 −0.75
E[

1
H ] 0.76 0.81 −0.9 −0.96

CCG −0.41 −0.52 0.73 0.66
µN−1 0.86 0.85 −0.71 −0.85
E[D] 0.83 0.87 −0.87 −0.99
λ

∗
0.81 0.85 −0.88 −0.98

1/κ 0.56 0.64 −0.74 −0.83
MG −0.43 −0.53 0.89 0.8

Fig. 5. Pearson correlation ρ between theoretical robustness metrics.

characterize the 10% failure of metro networks with performance slightly lower than CG. The reliability RelG positively, but
less strongly, correlates with critical thresholds f90%. However, the above mentioned metrics negatively correlate with fc
(ρ(CG, fc) = −0.82 for targeted attacks and ρ(CG, fc) = −0.97 under random failures).

The high correlation between rT and fc shows that rT effectively characterizes when the network collapses under node
removal. One explanation for the high correlation between rT and fc is that the robustness indicator rT and the critical
threshold fc both characterize the number of alternative paths. Besides rT , the correlations ofmetricsMG and CCG to fc suggest
that these metrics have comparable performance in capturing when the network collapses. Yet, the correlations of rT , MG
and CCG to f90% are negative.

Metrics that positively correlate with f90% and those that positively correlate with fc therefore capture different aspects of
metro networks as hinted above, and both are important for robustness. Redundancy and contradiction between theoretical
metrics are observed when capturing robustness of metros under node removal. Redundancy means that more than one
metric positively correlates with critical thresholds and contradiction means that one specific metric positively correlates
to f90% while negatively correlates to fc and vice versa.

4.2.2. Correlation within theoretical robustness metrics
To analyze the redundancy and contradiction of metrics, the Pearson correlation ρ between all the theoretical robustness

metrics is investigated in Fig. 5. In Fig. 5, CG, E[
1
H ], µN−1 and RelG that effectively capture the critical threshold f90% show a

higher mutual correlation (e.g. ρ
(
CG, E[

1
H ]

)
= 0.95). Similarly, for metrics rT ,MG and CCG that capture the critical threshold

fc , a higher mutual correlation result is observed (e.g. ρ
(
rT , CCG

)
= 0.84).

As shown in Fig. 5, these robustness metrics have a higher mutual correlation which indicates redundancy in capturing
the robustness. Correspondingly, a representative set of robustness metrics by including only one metric from the mutually
strongly depend set of metrics tends to sufficiently and effectively characterize the robustness [35]. For example, when
quantifying the robustness f90%, including CG in the representative set is more sufficient and effective than including CG,
µN−1 and E[

1
H ].
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In contrast to the positive and high correlations between certain metrics, the negative correlations in Fig. 5 (e.g. −0.73
between rT and CG) might be problematic. In particular, when a higher f90% and fc are desired in the design of a metro,
optimizing, for instance, both the robustness metrics rT and CG is beyond reach. Because maximizing rT minimizes CG and
vice versa. This is therefore a major issue, which is not atypical of any robustness study. Indeed, while it is easy to develop
design recommendations that can make a systemmore robust to certain conditions, it is much more challenging to develop
recommendations that canmake a systemmore robust overall. This point emphasizes the need to usemultiple criteria when
assessing the design ofmetro networks. It also points to the fact that robustness (and resiliencemore generally) are terms that
are difficult to define and that cannot be solved with a simple objective function within an operation research context [53].
Instead, much work remains to be done to successfully come up with clear guidelines to transit planners, and simulation
and network science may play an important part towards that end.

A possible approach to deal with this issue is suggested by Van Mieghem et al. [54], who defined a R-value, which is a
weighted sum of all the considered theoretical metrics, i.e., R-value =

∑M
i=1wimi, where wi is the weight for each metric

mi and M is the number of metrics taken into account. In the next subsection, we discuss another approach, which is based
upon radar diagrams that are commonly used in urban planning and geography.

4.3. Overall robustness

To combine the ten calculated theoretical metrics that capture different aspects of robustness, we choose to draw radar
diagrams for each metro. A radar diagram (also called star or spider diagram) is plot with as many axes as there are metrics,
and the overall performance is calculated by measuring the area of the polygon formed. This type of diagram is especially
useful when it is not possible to assign weights to individual metrics. First, for each set of metrics, each individual value xi
is being rescaled to a value in the interval [0, 1] using the rescaling formula: (xi − xmin)/(xmax − xmin). In the radar diagram,
the robustness metrics are placed in a clockwise order. Metrics that are positively correlated with the critical threshold f90%
are located on one side and metrics that are negatively correlated to the critical threshold f90% are placed on the other side.

Fig. 6 shows the radar plots for the 33 metro networks.6 Moreover, Table 1 (last column) contains the areas of the
polygons calculated. Overall, we can see that Rome and Tokyo are the top two of the most robust networks. Tokyo has many
transfer stations in the periphery of the network that both enables it to offer many alternative paths and keep a relatively
low resistance, hence ensuring a robust system. At the other hand of the spectrum, Stockholm, Boston and Hong Kong (the
three least robust metros) have extensive networks with few transfer stations that inherently affect their robustness. Even
Washington DC does not perform well because the transfer stations tend to be located in the city center, and it therefore
achieves poorly in terms of ‘‘resistance’’ (i.e., long many stations without transfer from the terminals in the suburbs to the
city center).

Most other networks tend to perform somewhat in between. From Fig. 6, networks with polygons that are large in the
bottom right corner tend to have many alternative paths. In contrast, metros with polygons that are large in the left-hand
side tend to perform well in terms of resistance (as is the case for Rome despite its simple topology). Mexico City and Berlin
deserve special attention since they seem to perform well in nearly all dimensions. Berlin has a particularly dense U-Bahn
system, andMexico City is known to have L-shaped lines to favor transferring [55].

From this work, clear recommendations can be set to promote a robust metro:

• Transfer stations are desirable to offer alternative paths. However, although large hubs are desirable to facilitate
transferring, smaller hubs are as desirable to offer more options to transfer, thus offering more alternative paths
(moreover they are less vulnerable to targeted attacks than large hubs).

• Long line sections are undesirable since a failure on one station will affect many passengers, likely resulting in the
need for an emergency bus service to substitute failed stations. Transfer stations can therefore be located strategically
to offer alternative paths while ensuring that line segments without transfer stations are kept as short as possible.

5. Conclusion

The main objective of this work was to investigate the robustness of metro networks by analyzing several robustness
metrics. In particular, we study ten theoretical robustnessmetrics and four numerical metrics. For the latter, we investigated
two critical thresholds f , when 90% of the network is still remaining, f90%, and when the complete network is disintegrated,
fc (both under random failure and targeted attack).

Overall, we find that the ten theoretical robustness metrics capture two distinct aspects of the robustness of metro
networks. A first aspect deals with the number of alternative paths, suggesting thatmore alternative paths is more desirable,
as captured in rT . In contrast, the second aspect deals with ‘‘resistance’’, suggesting that longer lines with no shorter
alternative paths perform poorly, as captured in CG. Essentially, as metro networks are expanded, effort should be put into
creating transfer stations, both in city centers and peripheral areas to ensure that not onlymany alternative paths are created
to reach a destination, but also that the average number of stations between two transfers is kept to a minimum. Overall we
found that Rome benefits from shorter transferring paths and Tokyo are able to accomplish more transferring options.

6 The degree diversity κ instead of 1
κ
is used in the radar diagram for the simplicity of computing the area.
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Fig. 6. Radar diagrams for the 33 Metro Networks.

Based on these observations and to fully capture these two aspects and assess the robustness of metro networks, we
plotted the ten theoretical measures (standardized) on radar plots. This method offers both an equal representation of the
variables at play as well as aesthetically-pleasing visual aid to help planners in their task to design robust metro networks.
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