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a b s t r a c t

Apart from the role the clustering coefficient plays in the definition of the small-world
phenomena, it also has great relevance for practical problems involving networked
dynamical systems. To study the impact of the clustering coefficient on dynamical
processes taking place on networks, some authors have focused on the construction
of graphs with tunable clustering coefficients. These constructions are usually realized
through a stochastic process, either by growing a network through the preferential
attachment procedure, or by applying a random rewiring process. In contrast, we
consider here several families of static graphs whose clustering coefficients can be
determined explicitly. The basis for these families is formed by the k-regular graphs
on N nodes, that belong to the family of so-called circulant graphs denoted by CN,k. We
show that the expression for the clustering coefficient of CN,k reported in literature, only
holds for sufficiently large N . Next, we consider three generalizations of the circulant
graphs, either by adding some pendant links to CN,k, or by connecting, in two different
ways, an additional node to some nodes of CN,k. For all three generalizations, we derive
explicit expressions for the clustering coefficient. Finally, we construct a family of pairs
of generalized circulant graphs, with the same number of nodes and links, but with
different clustering coefficients.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

To characterize key features of networks across a wide range of applications, network science has developed a wide
ange of metrics and mathematical indices [1]. Among the most commonly used metrics are the average shortest path
ength, degree distribution and clustering coefficient. The latter index was introduced by Watts & Strogatz in their seminal
aper introducing the concept of ‘‘small-world’’ networks [2]. Specifically, nodes in a network are characterized by the
tructure of their local neighborhood or connectivity. The concept of clustering is associated with the tendency of some
odes to form cliques as observed in many real-world networks. This index accounts for the ratio between the actual
umber of relations among the neighbors of a node and the maximum possible number of such relations. The clustering
oefficient is defined as the average of this ratio, when averaged over all nodes of the network.
Although the clustering coefficient is generally high in many small-world social and technological networks, it would

e wrong to directly associate the small-world feature with high levels of clustering. For instance, random networks
ield short path lengths—i.e. they exhibit the small-world feature—but fail to achieve high levels of clustering due to
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he random interconnectivity of nodes, which hinders the process of clique formation [1]. The empirical observation of
ery high levels of clustering in many real-world networks has therefore been a source of inquiry and to deal with this
onceptual challenge, many network models with tunable clustering coefficient have been proposed [3,4]. For instance,
arying clustering coefficients are encountered in gene expression networks [5], and also in node spreading influence [6].
he spreading of complex contagious processes—e.g. social cooperation, protest events, the spread of consumer goods and
echnological innovations, the diffusion of health care preventive measures, the growth of violent crime epidemics, the
pread of institutional norms, the adoption of cultural practices, etc.—has been clearly tied to particular levels of clustering
n social and co-presence networks [7].

To study the impact of the clustering coefficient on dynamical processes taking place on any network, many authors
ave focused on the construction of graphs with tunable clustering coefficient, see for instance [3,4]. Typically, the process
o reach a desired value for the clustering coefficient is realized through a stochastic growth process, e.g. following the
referential attachment procedure [8] or alternatively through the rewiring of regular network lattices [2]. Due to the
tochastic nature of these network models most of the results concerning the network properties are only valid for large
etworks.
In what follows, we give a summary of the state of the art associated with the construction of graphs with tunable

lustering coefficient. In [9], the authors explore a ‘‘local’’ rewiring strategy, which allows for an efficient way to adjust the
lustering coefficient, and steer it towards a desired value. However, this method depends on randomness in the choice
f link pairs that are rewired and thus it is not known a priori if a certain target value for the clustering coefficient
an effectively be attained. Krüger et al. [10] use an approach of random ‘‘triangulations’’ of lattices and determine,
mongst others, the clustering coefficient. However, the stochastic nature of the process that determines these so-called
riangulations of the lattice imposes that the obtained results for the clustering coefficient are essentially (ensemble)
verage properties, and thus are only valid for large networks. A simple family of growing small-world networks is
roposed by Shang [11]. The constructed graphs depends on growing the network by closing triangles, followed by a
andom process of link removal. By tuning the link removal, networks with different clustering coefficients but similar
egree distribution are obtained. However, in this family of networks the clustering coefficient can only be determined
xplicitly for the extreme cases of the model, namely the path graph and the so-called Faray graphs. In [12], Yang et al.
ntroduced a model that generates power-law distributions of degree and a tunable clustering coefficient. However, the
onstruction process is based upon preferential attachment and hence stochastic in nature. In addition, the constructed
etworks are necessarily weighted. A variation of the Configuration Model (CM), which also takes the formation of
riangles into account is proposed in [13]. Thanks to this approach, networks can be generated with a given degree
istribution and a preassigned degree-dependent clustering coefficient. Unfortunately, for small-size networks multi-links
nd self-loops can occur, which often have to be discarded for some practical applications. Furthermore, the CM uses
andomly selected stubs to generate links, so there is no control over the final network topology. The Block Two-Level
rdős–Rényi model (BTER) is introduced in [14]. The BTER model is derived to mimic real-world networks exhibiting
ommunity structure. This model also is based upon stochasticity, and again, the results are fundamentally asymptotic
or large networks. In addition Ref. [14] focuses on the transitivity index and not the clustering coefficient. In summary,
he literature offers numerous models and family of networks with some forms of tuning or adjustment of the level of
lustering. However, the vast majority of the available network-generating models are intrinsically stochastic in nature,
nd often assume large networks, with the control over the clustering coefficient and other network properties to be valid
nly over ensemble averaging.
In contrast, in this paper we consider a family of deterministic graphs whose clustering coefficient can be determined

xplicitly and exactly. This study is partially motivated by a number of practical applications in the field of networked
obotics. Recently, Mateo et al. [15] suggested to study the impact of the clustering coefficient on the responsiveness of
ulti-agent systems performing distributed consensus. Their results were backed up by experiments using swarm robotic
etworks, albeit these systems are small in size [15–17]. Thus in order to conduct these experiments, it is important to
ave explicit expressions for the clustering coefficient, such that its impact on the dynamic processes considered can be
asily determined. Since the network size is rather small—with 10 to 50 robots—the asymptotic properties of stochastic
odels cannot reliably be used.
The basis for our model is formed by k-regular graphs on N nodes, that belong to the family of so-called circulant

raphs. In this family of graphs, which we will denote by CN,k, the N nodes form a cycle graph CN . In addition, every node
also connects to all nodes at distance at most k/2 on the cycle, where it is assumed that k is even. This graph forms the
basis for the construction of the Watts & Strogatz small-world graphs [2] and the clustering coefficient for CN,k is given
y Newman in [18]. However, we will show that the formula given by [18] only holds if N is sufficiently large.
In addition, if one assumes that both ends of each edge are rewired with probability p, and by allowing both double and

elf-loops, then the clustering of the resulting small-world graph can also be determined [19]. The corresponding formula
eported in Ref. [19] is the product of the clustering coefficient for CN,k and the factor (1 − p)3. It is worth noting that
his formula is also incomplete in the sense that it presumes N to be sufficiently large. Although both Refs. [3] and [19]
provide a way to construct graphs with a given clustering coefficient, there is no control over the resulting graph given
the fact that their methods are based upon a stochastic process. Moreover, the construction suggested by Ref. [19] has a
non-negligible probability to lead to graphs with multiple links and self-loops.

In this paper, we determine the complete analytical expressions for the clustering coefficient of CN,k for any value of
. We also consider three generalizations of the circulant graphs C . For the first generalization, we add a number of
N,k
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endant links to CN,k. For the second generalization, we add a single node to CN,k, such that it connects to m nodes of CN,k,
which are adjacent on CN . Finally, the third generalization comprises of CN,k with one single node added which connects
to m nodes on CN,k, which are exactly 1 +

k
2 hops away on the cycle CN . For all three generalizations we derive explicit

xpressions for the clustering coefficient. The present article is partially motivated by the fact that a generalized circulant
raph of Type I has the highest collective response at moderate frequency values, in a leader-follower system consisting
f 11 agents, see Fig. 2 in [15]. Note that in [20], the authors propose a generalization of a class of recursive circulant
raphs. However, it is worth pointing out that these generalized recursive circulant graphs belong to the set of circulant
raphs, and hence are all vertex-symmetric. On the other hand, our generalized circulant graphs, do not belong the class
f circulant graphs, as they are not vertex-symmetric.
Lastly, we demonstrate how this family of graphs can be used to create a set of particular network topologies of the

xact same size and number of edges, yet exhibiting vastly different levels of clustering. We demonstrate the impact of
hanging the network topology for a particular network dynamic, namely the leader-follower consensus, which shows
ow networked systems with a small number of nodes N are also strongly influenced by the chosen topology, and thus
aving a family of networks with explicitly known graph-metrics is of great use.

. Clustering coefficient for the circulant graphs CN,k

For the computation of the clustering coefficient, two cases have to be considered. This becomes clear upon introducing
some notations. Let the nodes of CN,k be labeled clockwise from 1 to N . Without loss of generality, let us focus on the
clustering coefficient of node 1. It is obvious that node 1 is connected to the set of nodes S1 = {2, 3, . . . , k/2 + 1} and to
the node set S2 = {N − k/2 + 1, . . . ,N − 1,N}. Now, if the distance between the last node in S1, i.e. node k/2 + 1 and
the first node in S2, i.e. N − k/2 + 1, is more than k/2 on the cycle CN , then node k/2 + 1 does not connect to any node
in S2. This condition translates to

N >
3k
2

. (1)

We will now determine the clustering coefficient for node 1, under condition (1). Obviously, node 1 has a degree k
y construction. Therefore, the maximum number of connections between its neighbors is

(k
2

)
. We now determine the

number of connections between the neighbors of node 1, that are missing. Starting with node k/2+ 1, we have seen that
k/2 links are missing. Next, node k/2, is missing k/2− 1 links. Repeating this argument until node 2, we arrive at a total

of k/2 + 1 + k/2 + · · · + 1 =
k
4 (

k
2 + 1) missing links. In conclusion, the clustering C1 of node 1 satisfies C1 =

(k2)−
k
4 (

k
2 +1)

(k2)
.

iven the symmetry of CN,k, all nodes of this graph have an identical clustering coefficient. Simplifying the expression for
1 we arrive at the following result.

emma 1. Consider the circulant graph CN,k, satisfying the condition N > 3k
2 . Then the clustering coefficient C of CN,k satisfies

C =
3(k − 2)
4(k − 1)

. (2)

Note that Eq. (2) is given in [18], albeit without mention of condition (1). If k becomes large, then C approaches 3/4. This
s why small-world networks constructed be rewiring a small percentage of the links in CN,k, have a clustering coefficient
close to 3/4 for large k (see also Ref. [2]). Fig. 1a depicts an example of a circulant graph satisfying the condition of
Lemma 1.

We now turn our attention to the remaining case:

N ≤
3k
2

. (3)

Again, without loss of generality, we analyze the clustering coefficient of node 1. Starting from the last node in the set
S1, i.e. node 1 + k/2, and moving clockwise k/2 hops on the cycle CN , we arrive at node 1 + k. Under condition (3), this
ode belongs to the set S2 (see Fig. 1b).
For convenience sake, we introduce l = N − k − 1 with l ≥ 0 since CN,k contains at least k + 1 nodes. Obviously,

node 1 + k then corresponds to node N − l. As a result, moving clockwise on CN from 1 + k/2, we cannot reach nodes
N − l + 1, . . . ,N in set S2. Therefore, the number of nodes in S2 that cannot be reached by node 1 + k/2 is l. The same
holds for the nodes 1 + l, . . . , k/2. Next, node l in set S1 does not reach l − 1 nodes in S2. Continuing this argument, we
arrive at node 2 in set S1, that only does not reach one node in S2, namely node N−k/2+1. In summary, the total number
of missing connections between sets S1 and S2 is given by l

( k
2 − l + 1

)
+ l− 1+ l− 2+ · · · + 1 =

kl
2 −

l(l−1)
2 . Again, using

ymmetry arguments for CN,k, we arrive at the following result.

emma 2. Consider the circulant graph CN,k, satisfying the condition N ≤
3k
2 . Then the clustering coefficient C satisfies

C =

(k
2

)
−

kl
2 +

l(l−1)
2(k) , (4)
2

3
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Fig. 1. (a) Circulant graph C14,4 satisfying the condition N > 3k
2 . (b) Relative positions of nodes 1 + k = N − l and N + 1 − k/2.

Fig. 2. Circulant graph C12,8 satisfying the condition N ≤
3k
2 .

here l = N − k − 1.

Note that for the particular case l = 0, i.e. N = k + 1, the circulant CN,k is a complete graph, which therefor has the
lustering coefficient C = 1. Fig. 2 depicts an example of a circulant graph satisfying the condition of Lemma 2.
Combining Lemmas 1 and 2, we obtain the following general result.

heorem 3. Consider the circulant graph CN,k, and define r = min{N − k − 1, k
2 }. Then the clustering coefficient C satisfies

C =

(k
2

)
−

kr
2 +

r(r−1)
2(k

2

) . (5)

Proof. First, assume that condition (1) holds. Then, it follows N − k− 1 > k/2, hence r = k/2. An elementary calculation
reveals that substitution of r = k/2 into Eq. (5) gives Eq. (2). Finally, if condition (3) holds, it follows that N −k−1 ≤ k/2,
hence r = N − k − 1 = l. Now Eq. (5) corresponds to Eq. (4). This finishes the proof. □

The above general expression (5) for the clustering coefficient of circulant graphs allows us to obtain the inequalities
3(k−2)
4(k−1) ≤ C ≤ 1 for any given k and CN,k. Furthermore, C attains k/2 − 1 values between the given bounds. Fig. 3 depicts
his for values of k up to 30.

. Clustering coefficient for the generalized circulant graphs CN,k,m,s of Type I

We have seen in the previous section that for the circulant graph CN,k, the clustering coefficient is at least equal to
3(k−2)
4(k−1) . We now consider a modification to the family of circulant graphs in order to bring down the value of the cluster
oefficient. To achieve this, we add m ‘‘leaves’’ to CN,k, i.e. we add m degree-one nodes to the graph—with m ≤ N—and
attach each node to a separate node on CN,k. We denote the obtained family of graphs by CN,k,m. As an example, Fig. 4a
depicts C .
14,4,3

4
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Fig. 3. All possible values of clustering coefficient C for CN,k with k ≤ 30.

Fig. 4. (a) The graph C14,4,3 from the Type I subfamily of circulant graphs. (b) The generalized circulant graph C7,6,4 .

Mateo et al. [15] studied topologies that optimize the collective response of multi-agent systems subjected to a dynamic
inear leader-follower consensus protocol. Using simulated annealing optimization for the frequency response of a system
f N + 1 = 11 networked agents—one leader and 10 followers, they found that for moderate values of the frequency ω

f the variations of the leading agent, the generalized circulant graph C7,6,4 (see Fig. 4b and Fig. 2 in [15]) has the highest
collective response at a frequency of ω = 0.4 [15].

Theorem 4. Consider the graph CN,k,m and define r = min{N − k − 1, k
2 } and A =

(k
2

)
−

kr
2 +

r(r−1)
2 . Then the clustering

coefficient C satisfies

C =
2A(Nk + N − 2m)
(N + m)k(k2 − 1)

. (6)

Proof. The m nodes attached to CN,k obviously have a clustering of 0 since they are of degree one. The N − m nodes that
are not connected to the m nodes, have the same clustering as in the case of CN,k. Using r = min{N − k − 1, k

2 } and
A =

(k
2

)
−

kr
2 +

r(r−1)
2 , according to Theorem 3, their clustering can be written as A

(k2)
. Finally, we consider the m nodes

on CN,k that are connected to one of the m pendant nodes (yellow nodes in Fig. 4). These nodes have k+ 1 neighbors but
the number of connections between these neighbors is the same as for the C case. Therefore, the clustering for these
N,k

5
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Fig. 5. Envelope for the values of the clustering coefficient of the generalized circulant graphs CN,k,m with N > 3k
2 .

Fig. 6. Generalized circulant graph of Type I C14,4,3,2 .

nodes satisfies A
(k+1

2 )
. Summing over all nodes we obtain

C =

(N − m) A
(k2)

+ m A
(k+1

2 )

N + m
.

Factorizing the latter expression leads to Eq. (6) and finishes the proof. □

Note that for m = 0, we retrieve the result stated in Theorem 3. For any given N and k, upon increasing m, the
clustering coefficient does become smaller. The smallest value is obtained for m = N . It is easy to verify that for N > 3k

2
he clustering coefficient of CN,k,N satisfies

C =
3(k − 2)
8(k + 1)

. (7)

Therefore, under the condition N > 3k
2 , the values 3(k−2)

8(k+1) and 3(k−2)
4(k−1) form an envelope for the clustering coefficient for

CN,k,m (see Fig. 5). For each k, by varying m from 1 to N − 1, we can obtain N − 1 values for C within the envelope
depicted in Fig. 5.

It is clear from the above result, that a lower bound for the clustering coefficient for CN,k,m is given by Eq. (7). If one
seeks to generate clustering coefficients even lower than this value, one has to further modify the topology of the circulant
graphs. Intuitively, this can be achieved by adding more pendant nodes. To do this in a structured way, we propose the
following generalization for the CN,k,m construction.

We start with the circulant graphs family CN,k. To m nodes in CN,k, we add s pendant nodes with s ≥ 1 and m ≤ N .
We denote the obtained family of graphs CN,k,m,s and refer to is as a generalized circulant graph of Type I. As an example,
Fig. 6 depicts C14,4,3,2.
6
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Fig. 7. Clustering coefficient for generalized circulant graph of Type I, CN,k,m,s , with N > 3k
2 .

Fig. 8. Generalized circulant graphs of Type II: DN,k,m . Particular cases of D14,4,2 (a) and D14,4,5 (b).

heorem 5. Consider the generalized circulant graph CN,k,m,s of Type I and define r = min{N − k − 1, k
2 } and A =(k

2

)
−

kr
2 +

r(r−1)
2 . Then the clustering coefficient C satisfies

C =
2A

N + ms

(
N − m
k(k − 1)

+
m

(k + s)(k + s − 1)

)
. (8)

The proof follows from arguments very similar to those presented in the proof of Theorem 4 and is therefore
omitted.For any given N, k and s, the smallest value for the clustering coefficient is obtained for m = N . It is
straightforward to show that for N > 3k

2 the clustering coefficient of CN,k,N,s satisfies

C =
3k(k − 2)

4(s + 1)(k + s)(k + s − 1)
. (9)

Fig. 7 shows values of the clustering coefficient for CN,k,N,s as a function of k, with N > 3k
2 and for several values of s.

. Clustering coefficient for the generalized circulant graphs DN,k,m of Type II

In this section, we consider another type of alteration of the main topology of circulant graphs CN,k, but this time by
dding one single node, which connects to m nodes on CN,k, with 1 ≤ m ≤ N . It is assumed that the m nodes on CN,k are

adjacent on CN . We call the obtained family of graphs, a generalized circulant graph of Type II and denote it by DN,k,m.
Two examples are depicted in Fig. 8: D and D .
14,4,2 14,4,5

7
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Fig. 9. Relative positions of nodes for the case m ≥ k + 1.

To determine the clustering coefficient of DN,k,m, we have yet again to consider two cases. For the first case, all m
neighbors of the central node are connected. This case occurs for m ≤

k
2 + 1. For instance, the particular case D14,4,2

shown in Fig. 8a fits this case. For this case, if m > 1, the clustering of the central node is 1. Note that for m = 1, DN,k,m

is equal to CN,k,1, so the clustering coefficient for this case follows from the results obtained in the previous section.

Lemma 6. Consider the generalized circulant graph DN,k,m of Type II, with 1 < m ≤
k
2 + 1. Define r = min{N − k − 1, k

2 }

nd A =
(k
2

)
−

kr
2 +

r(r−1)
2 . Then the clustering coefficient C satisfies

C =

(N − m) A
(k2)

+ m (A+m−1)

(k+1
2 )

+ 1

N + 1
. (10)

roof. The N − m nodes on CN,k that are not connected to the central node, have the same clustering as in CN,k, namely
A

(k2)
. Denote the set of m nodes on DN,k,m which are connected to the central node by I . A node i in I has k+ 1 neighbors.

Because m ≤
k
2 + 1, among those neighbors there are A connections which are part of CN,k. There are m − 1 additional

connections between the neighbors of node i, namely from the central node to the nodes in I . Hence each node i in I has
clustering Ci =

A+m−1
(k+1

2 )
. As mentioned before, the central node has clustering 1, for m ≤

k
2 + 1. Summing over all nodes,

e obtain Eq. (10). This completes the proof. □

emma 7. Consider the generalized circulant graph DN,k,m of Type II, with m > k
2 + 1. Define r = min{N − k − 1, k

2 } and
=

(k
2

)
−

kr
2 +

r(r−1)
2 . Then the clustering coefficient C satisfies

C =

(N − m) A
(k2)

+
mA+

k
4 (3k−2)+(m−k)k

(k+1
2 )

+
(m2)−

(m−
k
2 )(m−

k
2 −1)

2
(m2)

N + 1
. (11)

roof. Following the same train of thought as in the proof of Lemma 6, the N −m nodes on CN,k that are not connected to
the central node, have a clustering A

(k2)
. When considering the set of nodes I on DN,k,m which are connected to the central

node, it is convenient to consider two cases. We start with the case m ≥ k + 1 (see Fig. 9).
Denote the nodes with index up to k

2 as I1 and those with index k
2 + 1 up to index m −

k
2 as I2. The remainder of

he nodes in I are denoted as I3. We will now count the number of connections between the neighbors of all nodes in I ,
n addition to the A connections which are part of CN,k. Node 1 in I1 induces k

2 additional connections. Node 2 induces
k
2 + 1 additional connections. It can be deduced that the total number of additional connections due to I1 is given by
k
2 +

k
2 +1+· · ·+

k
2 +

k
2 −1 =

3k
8 (3k−2). Every node in I2 induces k additional connections, hence I2 contributes (m− k)k

dditional connections. Finally, the contribution of I3 is similar to the contribution of I1, by symmetry. Therefore, for the
ase m ≥ k + 1, the contribution to the clustering of all nodes in I amounts to

CI =
mA +

k
4 (3k − 2) + (m − k)k(k+1) . (12)
2

8
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Fig. 10. Values of the clustering coefficient C for the generalized circulant graph of Type II D30,k,m when varying the degree of the central node.

or the case m < k + 1, the set of nodes I , can be split into two sets: the aforementioned set I1 and the remaining nodes
n I . With an argumentation similar to the one used in the case m ≥ k + 1, it can be shown that the contribution of the
odes in I to the clustering, is also given by Eq. (12). We leave the details as an exercise to the reader.
Finally, we look at the clustering of the central node. We count the number of connections between its m neighbors,

which are missing. Starting with node 1, we miss m−
k
2 −1 connections. For node 2, we miss m−

k
2 −2 connections, and

o on. Therefore the total number of missing connections satisfies (m −
k
2 − 1) + (m −

k
2 − 2) + · · · + 1 =

(m−
k
2 )(m−

k
2 −1)

2 .

herefore, the clustering of the central node is given by (m2)−
(m−

k
2 )(m−

k
2 −1)

2
(m2)

. Summing over all nodes we obtain Eq. (11). □

Theorem 8. Consider the generalized circulant graph DN,k,m of Type II, with m > 1. Define r = min{N − k − 1, k
2 }, A =(k

2

)
−

kr
2 +

r(r−1)
2 and let σ = min{m − 1, k

2 }. Then the clustering coefficient C satisfies

C =

(N − m) A
(k2)

+
mA+σ (3σ−1)+2(m−2σ )σ

(k+1
2 )

+
(m2)−

(m−
k
2 )(m−1−σ )

2
(m2)

N + 1
(13)

roof. First, assume that the condition m ≤
k
2 + 1 holds. Then, σ = m − 1. Substitution of this value in Eq. (13) gives

q. (10). Finally, if m > k
2 + 1, then, σ =

k
2 . Plugging this value into Eq. (13) leads to Eq. (11). This finishes the proof. □

Fig. 10 depicts the clustering coefficient of D30,k,m, with m ∈ {0, 1, . . . , 30}. We observe the clustering coefficient drops
or m = 1, example: C(D30,4,1) < C(C30,4) =

1
2 , while for m > 1 it holds that C(D30,4,m) > C(C30,4).

. Clustering coefficient for the generalized circulant graphs EN,k,m of Type III

In the previous section, we have generalized the circulant graph CN,k by adding one central node that connects to m
adjacent nodes on the circulant graph. We have seen an example of the resulting circulant graph DN,k,m of Type II, with a
higher clustering coefficient than CN,k, for m > 1. In this section, we introduce another generalization of CN,k, again with
one central node, but this time leading to smaller values for the clustering coefficient.

We consider adding one central node to the family of circulant graphs CN,k. The node will connect to m nodes on CN,k,

which are exactly 1 +
k
2 hops away on the cycle CN . Therefore, m has to satisfy m ≤

⌊
N

1+ k
2

⌋
. We call the obtained graph,

generalized circulant graph of Type III and denote it by EN,k,m. Two examples are shown in Fig. 11: E14,4,3 and E14,4,4.

Theorem 9. Consider the generalized circulant graph EN,k,m of Type III and define r = min{N − k − 1, k
2 } and A =(k

2

)
−

kr
2 +

r(r−1)
2 . Then the clustering coefficient C satisfies

C =

(N − m) A
(k2)

+
mA

(k+1
2 )

N + 1
. (14)

The proof of Theorem 9 is based on similar arguments as the proof of the previous theorems and is therefore omitted.
It is easy to see from Eq. (14) that C is a linearly decreasing function of m. Similarly, subtracting Eq. (14) from Eq. (5),

e can show that the clustering coefficient of E is always smaller than that of C .
N,k,m N,k

9
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Fig. 11. Generalized circulant graphs of Type III EN,k,m . The particular cases are E14,4,3 (a) and E14,4,4 (b).

. Discussion

In Ref. [15], Mateo et al. investigated the influence of the network topology on collective response. Specifically,
hey considered an archetypal model of distributed decision-making—the leader-follower linear consensus—and studied
he collective capacity of the system to follow a dynamic driving signal (the ‘‘leader’’, an external perturbation locally
isturbing the collective dynamics) for a range of network topologies. Mateo et al. reported a nontrivial relationship
etween the frequency of the driving signal and the optimal network topology [15]. The emergent collective response of
he networked dynamical system to a slow-changing perturbation increases with the degree of the interaction network,
hile the opposite is true for the response to a fast-changing one.
Although it is known that at high enough frequency the response is determined by the degree distribution [21], a key

uestion remains open: what is the importance of the structural properties—beyond just the degree distribution—of the
etwork as predictors of a system’s response at different frequencies. Mateo et al. [15] suggested to study the impact
f other network characteristics, such as the clustering coefficient, but it is stated that it is not possible to change the
egree distribution without also changing other characteristics, such as the clustering coefficient. For instance, Arenas
t al. [22] stressed the existence of significant discrepancies in results in the literature for different network models when
onsidering synchronization problems in complex networks. These reported discrepancies are attributed to the fact that
ultiple non-independent parameters (e.g. average degree, clustering coefficient, average shortest path) characterizing

he network were concomitantly changed. This important issue stresses the challenges associated with any parametric
tudies of networked systems.
To avoid the pitfalls highlighted by Arenas et al. in Ref. [22] and to carry out a meaningful parametric study of

etworked systems with different graph topologies, one could look at pairs of networks with the same average degree,
ut with different clustering coefficients. Families of fully deterministic graphs, such as the generalized circulant graphs
resented here, provide a useful tool in determining the impact of network structure on particular complex dynamical
ystems. Given their deterministic character, it can be known exactly howmuch a specific graph topological metric, such as
he clustering coefficient, varies from one graph to the other, thereby making it easier to test and analyze new hypotheses.
o this end, we now show how the classes of generalized circulant graphs introduced in the previous sections can be used
o construct pairs of graphs of the same order (i.e. with the same number of nodes) and size (i.e. with the same number
f edges). Such pairs of graphs thus have the same average degree, but as we will see different clustering coefficients. Let
1 denote a generalized circulant graph CN1,k1,m1,1 of Type I and G2 a generalized circulant graph DN2,k2,m2 of Type II. The

graphs G1 and G2 have the same number of nodes, if the following condition is satisfied:

N1 + m1 = N2 + 1. (15)

The condition for the two graphs to have the same number of links reads:

N1k1
2

+ m1 =
N2k2
2

+ m2. (16)

olving Eq. (15) for N2, and substituting the solution into Eq. (16) leads to

N (k − k ) = (m − 1)k + 2m − 2m . (17)
1 1 2 1 2 2 1

10
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o

W

Fig. 12. Two generalized circulant graphs of the same order and size. Particular cases of C10,6,4 (a) and D13,4,8 (b).

Fig. 13. Collective frequency response for graphs with similar number of edges and nodes. The graph C14,6 with 42 edges is included for the sake
f comparison.

ith the particular choice k1 − k2 = 2, the solution of the Diophantine equation (17) is given by

N1 = (m1 − 1)
k2
2

+ m2 − m1. (18)

Note that N1 is an integer because k2 is even. Eq. (18) gives rise to a family of pairs of graphs CN1,k1,m1,1 and DN2,k2,m2
of the same order and size. This family of graphs is characterized by three parameters. For example, the choice m1 =

4,m2 = 8, k2 = 4, leads to the pair of graphs C10,6,4 and D13,4,8, both having 14 nodes and 34 links (see Fig. 12). However,
these two graphs have notably different clustering coefficients: C(C10,6,4) = 0.380 and C(D13,4,8) = 0.569. It is worth
noting that by altering the choice k1 − k2 = 2, to k1 − k2 = 2t , with t being an integer larger than 1, we can construct
other families of graph pairs, of the same order and size as well.

We can then use the two graphs generated by this approach, to analyze the same distributed linear leader-follower
consensus as in Ref. [15]. By using these graphs, we can study the impact of the clustering coefficient on the collective
frequency response H2(ω)—metric that can be interpreted as the number of agents that are able to respond or follow a
leader evolving at frequency ω—but with equal average degree. Specifically, we follow the analytical approach outlined
in Ref. [15] to compute the collective response H2 (see Materials and Methods section in [15]). Since the graphs have the
same number of nodes and edges, the collective frequency responses for the two graphs can then readily be compared
so as to quantify the impact of the clustering coefficient. The results for this pair of networks are shown in Fig. 13 Given
that both graphs have 14 nodes, there are 14 different possible nodes that can be given the ‘‘leader’’ role, hence we
have a distribution of 14 collective frequency responses. In Fig. 13, we report the average collective response, ⟨H2

⟩,
along with the minimum and maximum values. The average collective response for the classical circulant graph C14,6
is provided for reference. These results show that although C10,6,4,1, D13,4,8 and C14,6 have the same average degree, they
yield different average collective response ⟨H2

⟩. The differences are particularly marked in the mid-range of frequencies
11
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(
i.e. for 5 × 10−2 < ω < 10−1). It is quite clear that the low level of clustering of C10,6,4,1 has a detrimental effect
on the collective response of this networked system. Surprisingly though, the ‘‘best’’ leader node—i.e. the node such that
when driven yields the maximum collective frequency response—in both proposed graphs show similar levels of collective
frequency response, for the best leader in both networks (dotted lines), but at different cost to the average agents response
(solid lines).

These conclusions for the collective response of these particular networked systems highlight the usefulness of the
analytical results obtained for the clustering coefficients of the generalized circulant graphs of Type I, II and III.

Even for small system sizes N = O(10) where the statistical properties of grown networks are unreliable, the effect
of the network topology has nonetheless a noticeable impact as appears clearly in Fig. 13. This increases the usefulness
of such deterministic network models, where network parameters can be varied greatly and known exactly, even for
small networks. It is worth adding that many experiments with artificial networked systems are often on a limited scale,
i.e. with a number of agents of the order of several tens [15–17]. It is also possible to imagine that the new families of
generalized circulant graphs introduced here could be used to study dynamical processes on more complex networks,
such as multi-layered social networks [23] for instance.
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