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ABSTRACT
Significant research effort has been devoted to the topologi-
cal features of complex networks to enhance the performance
of dynamic processes implemented on these networks. In
this work, we investigate how to optimize a network for
a given dynamic process via a minor topological modifi-
cation. The algebraic connectivity a(G) of a network G
characterizes the performance of e.g. synchronization of dy-
namic processes at the nodes of the network G and random
walks on networks which models e.g. the dispersion phe-
nomena. We confine ourselves to the problem: “Where to
add a link in a network G such that the algebraic connec-
tivity is increased the most?” Exhaustive searching for the
optimal link addition is computationally infeasible. Hence,
we propose two strategies: 1. adding a link between the
minimal degree node and a random other node; 2. adding
a link between a node pair with the maximal |ui − uj | , the
absolute difference between the i − th and j − th elements
of the Fiedler vector of G. Strategy 1 and 2 are compared
with random link addition in three classes of networks: the
Erdös-Rényi random graph, the BA model and the k-ary
tree. The Fiedler vector based strategy 2 performs better
than strategy 1. However, strategy 1 requires only local
information, i.e. node degree.
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1. INTRODUCTION
Topologies of complex networks ranging from biological

networks such as gene regulatory networks [1], metabolic
networks[2], artificial networks like the Internet, the WWW
to social networks, e.g. paper citations, collaboration net-
works etc. [3], have been accumulated by active investiga-
tion in recent years. Significant research efforts have been
conducted in their topological features and the correspond-
ing network modeling [4][5]. Researchers from physics, bi-
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ology, psychology, sociology and economics have been also
actively involved in the performance analysis of dynamic
processes on complex networks, e.g. diffusion of informa-
tion and synchronization processes on e.g. neural networks.
In this work, we explore the following question: How to op-
timize a network for a certain dynamic process via a minor
topology modification?
The algebraic connectivity a(G) or the second smallest

eigenvalue of the Laplacian matrix of a network G, defined
in Section 2, is widely studied in the literature due to (a)
its importance for the connectivity, a basic measure of the
robustness of a graph. The larger the algebraic connectivity
is, the larger the relative number of links required to be cut-
away to generate a bipartition [6]; (b) its correlation with
performance of dynamic processes, e.g. synchronization of
dynamic processes at the nodes of a network and random
walks on graphs which model e.g. the dispersion phenomena
or exploring graph properties [6]. A network has a more ro-
bust synchronized state1 if the algebraic connectivity of the
network is large [7, 8]. Random walks move and disseminate
efficiently in topologies with large algebraic connectivity.
In this paper, we confine our problem as the following:

“where should we add a link to a network G such that the
algebraic connectivity a(G) can be increased the most?” For
large real-world networks, to improve the network perfor-
mance, a minor modification on the current network, i.e.
adding a small number of links, is usually required due to
economic concerns. The investigation on adding one link
to improve the algebraic connectivity will also provide in-
sights on how to dynamically add a set of links one by one
so that the algebraic connectivity is maximally increased.
The number of possibilities of adding a link to a network
G(N,L) with N nodes and L links is N

2
− L. For large

realistic (hence sparse) networks, it is infeasible to compare
all these possibilities and find the optimal one. Hence, we
propose two strategies of adding a link to optimize the alge-
braic connectivity. The node pair (i, j) where a link can be
added, can be characterized by various topological metrics
such as the node degree, i.e. the number of links that is
connected with the node, or the distance between the node
pair. We propose two strategies based on these topological
metrics. Strategies are compared together with random link
addition in various classes of networks.
The structure of this paper is outlined as follows. Section

2 introduces the definition of algebraic connectivity as well
as related theoretical results. The design of strategies are

1 In human brain networks, a high synchronization should
be avoided because it may cause epileptic attachs.



explained in Section 3. We evaluate these strategies in Sec-
tion 4 by comparing them with the random link addition.
We conclude our paper in Section 5.

2. BASIC DEFINITION AND THEORY
Let G be a graph and let N denote the set of nodes and

L the set of links, with N = |N | nodes and L = |L| links,
respectively. The Laplacian matrix of G with N nodes is an
N×N matrix Q = ∆−A, where ∆ = diag(di) and di is the
degree of node i ∈ N and A is the adjacency matrix of G.
The Laplacian eigenvalues are all real and nonnegative [9].
The set of all N Laplacian eigenvalues μN = 0 ≤ μN−1 ≤
... ≤ μ1 is called the Laplacian spectrum of G. Fiedler [10]
showed that the second smallest eigenvalue μN−1 is 0 if and
only if the graph is disconnected. In addition, he proposed
to call the second smallest eigenvalue of Q as the algebraic
connectivity of G and it is denoted as μN−1 = a(G) for
simplicity.
The following Theorem is well known (see, for example

[11])

Theorem 1. Let G be a general graph of N nodes. Let
G + e be the graph obtained by adding a link e between
two nodes that are not directly connected in G. Then the
eigenvalues of G interlace those of G+ e, that is,

0 = μN (G) = μN (G+ e) ≤ μN−1(G) ≤ μN−1(G+ e)

≤ μN−2(G)... ≤ μ1(G) ≤ μ1(G+ e)

It follows from Theorem 1 that, if the multiplicity of
μN−1(G) is larger than 1, i.e. μN−2(G) = μN−1(G), the
algebraic connectivity remains the same after a link is added,

i.e. μN−1(G) = μN−1(G+e). Since trace(Q) =
N

i=1
μi(G) =

2L. We deduce that
N

i=1
(μi(G+ e)− μi(G)) = 2

which implies that at least one inequality in Theorem 1 must
be strict and

0 ≤ μN−1(G+ e)− μN−1(G) ≤ 2 (1)

When is the algebraic connectivity increased the most (i.e.
by 2) via adding a link? According to [12],

Theorem 2. Let G be a connected graph with N nodes
and let i and j be two non-adjacent nodes in G. The largest
possible increase in the algebraic connectivity, i.e. μN−1(G+
e) = μN−1(G) + 2 occurs if and only if G = KN\{i, j}, the
complete graph minus one link.

Das [13] has proved the following theorem regarding to
the pendants in a graph, which are nodes with degree 1.

Theorem 3. Let G be a simple connected graph with N >
2 nodes. If G has a pendant node, then the algebraic con-
nectivity is less than or equal to 1. Moreover, the algebraic
connectivity is strictly less than 1 if the pendant node is not
adjacent to the highest degree node.

Real networks usually possess a set of pendants. Hence,
the algebraic connectivity of a real-world network is likely to
be smaller than 1, μN−1(G) < 1, even after a link is added
in the network.
We mention still another theorem of Das [13]:

Theorem 4. If an isolated node is connected by links to
all the N nodes of a graph G, then the Laplacian eigenvalues
of the resultant graph are as follows: one of the eigenvalue is
N + 1, the other eigenvalues can be obtained by increasing
the eigenvalues of the old graph G by 1 except the smallest
one 0, which is always an eigenvalue of Q.

3. STRATEGIES OF ADDING A LINK TO
OBTAIN HIGH ALGEBRAIC CONNEC-
TIVITY

In this section, we investigate the increase of the algebraic
connectivity due to the addition of a link between {i, j} in
relation with the topological characteristics of {i, j}. We
propose link addition strategies based on topological met-
rics of {i, j}. The eigenvector based strategy is studied sep-
arately.

3.1 Topological metrics based strategy
Since μN−1(G) ≤ μN−1(G+e) ≤ μN−2(G) in Theorem 1,

we define the normalized increase of the algebraic connec-
tivity as 0 ≤ μ∗ =

μN−1(G+e)−μN−1(G)
μN−2(G)−μN−1(G)

≤ 1. A link e = (i, j)
can be added if i and j are not yet connected in G. We start
with a specific network to explore all possible realizations of
adding a link to a graph in order to gain some insights in the
relationship between μ∗ and the topological characteristics
of {i, j} such as:

• degree of node i and j;

• clustering coefficient of i and j: the clustering coeffi-
cient of a node cG(v) characterizes the density of con-
nections in the environment of a node v and is defined
as the ratio of the number of links y connecting the
dv > 1 neighbors of v over the total possible

dv(dv−1)
2 ,

thus cG(v) = 2y
dv(dv−1) .We assume cG(v) = 0 if dv = 1.

• node betweenness of i and j: the betweenness Bv of
node v is Bv =

s6=v 6=t∈N ,s6=t

σst(v)
σst

, where σst is the

number of shortest paths from s to t, and σst(v) is the
number of shortest paths from s to t that pass through
node v.

• hopcount between node i and j: the number of hops
or links in the shortest path between i and j.

The correlation between μ∗ introduced by the addition of
link (i, j) and topological metrics of the node pair {i, j} is
supposed to be topology dependent. We consider the follow-
ing topologies: the Erdös-Rényi random graph Gp(N) and
the Barabási-Albert (BA) power law graph [4]. Tradition-
ally, complex networks have been modeled as Erdös-Rényi
random graphs Gp(N), which can be generated from a set
of N nodes by randomly assigning a link with probability p
to each pair of nodes. Besides their analytic tractability, the
Erdös-Rényi random graphs are reasonably accurate mod-
els for peer-to-peer networks and ad-hoc networks. The BA
power law graph we generated starts with m nodes; at every
time step we add a new node with m links that connect the
new node to m different nodes already present in the sys-
tem. The probability that a new node will be connected
to node i is proportional to the degree di of that node, i.e.



di/ j dj = di/2Lt, where Lt is the number of links in step
t. The power law degree distribution is followed by many
natural and artificial networks such as the scientific collab-
orations [14], the world-wide web, protein networks and the
Internet [15].

3.1.1 Erdös-Rényi random graph Gp(N)

Given one Erdös-Rényi random graph G = G0.6(100), in
each realization, a link e = (i, j) is added to G provided
it does not exist in G, and we calculate μ∗ and topological
metrics of {i, j}. All possible realizations of adding a link to
G are considered. Figure 1(a) shows that μ∗ is large if and

30

28

26

24

22

20

18

16

14

B
n

7065605550
degree

Figure 2: The degree and the node betweenness of a node
in an Erdös-Rényi random graph G0.6(100).

only if one node of the pair {i, j} has small degree. A simi-
lar correlation between μ∗ and the node betweenness is ob-
served in Figure 1(c). Furthermore, Figure 2 illustrates that
the node betweenness is positively correlated with the degree
of the node. Hence, the metric “degree” will be considered
instead of the node betweenness whose computational com-
plexity is much higher. The correlation between μ∗ and the
clustering coefficient is relatively weak as illustrated in Fig-
ure 1(b). There exists hardly correlation between μ∗ and
the hopcount between i and j, which is mostly equal to 2 in
such a dense graph.

3.1.2 BA power law graph
We perform the same experiment in a BA power law graph

with N = 100 and m = 3. A small m is selected such
that the power law degree distribution can be observed for
N = 100. As shown in Figure 3, different from an Erdös-
Rényi random graph, an relative high increase in μ∗ implies
low degree of both node i and j. However, the inverse does
not hold. Adding a link to two low degree nodes only mod-
estly increases μ∗. In fact, many nodes in a BA power law
graph possesses a low degree. Again, the positive correla-
tion between betweenness and degree of a node as shown in
Figure 4, persuades us to consider the node degree which is
simpler to compute than the node betweenness. Similarly,
no clear correlation between μ∗ and the clustering coefficient
as well as the hopcount between i and j appear in Figure 3
(b) and 5.
In view of the correlation between μ∗ and the topological

metrics regarding to node i and j where a link is added
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Figure 4: The degree and the node betweenness of a node
in a BA model with N = 100 and m = 3.
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Figure 5: The increase of the algebraic connectivity μ∗ due
to the addition of link (i, j) in relation with the hopcount
between i and j in a BA model with N = 100 and m = 3.
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Figure 1: The increase of the algebraic connectivity μ∗ (the z axis) due to the addition of link {i, j} in relation with (a) the
degree of node i and j; (b) the clustering coefficient of node i and j (c) the betweenness of node i and j separately in x and
y axis in an Erdös-Rényi random graph G0.6(100).
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Figure 3: The increase of the algebraic connectivity μ∗ (the z axis) due to the addition of link {i, j} in relation with (a) the
degree of node i and j; (b) the clustering coefficient of node i and j (c) the betweenness of node i and j seperately in x and
y axis in a BA model with N = 100 and m = 3.

in both the Erdös-Rényi random graph and the BA power
law graph, we propose a topological metric based strategy
that adds a link between a minimum degree node and a
random other node, which are not originally connected. This
strategy is also motivated by Theorem 3 and 4, where the
algebraic connectivity is shown to be limited by the lowest
degree nodes. Furthermore, the metric degree is the simplest
to calculate and it can be obtained only from the node and
its neighbors, i.e. local information.

3.2 Fiedler vector based strategy
Maas [16] showed that after inserting an edge between

node i and j, the upper and lower bounds of the algebraic
connectivity μN−1(G+ e)

min μN−1(G) +
εα2

ε+ (2− α2)
, μN−2(G)− ε ≤

μN−1(G+ e) ≤ min α2 + μN−1(G), μN−2(G)

are related to α = |ui − uj | , the absolute difference between
the i− th and j − th elements of the Fiedler vector u of G.

The Fiedler vector u is the eigenvector corresponding to the
second smallest eigenvalue (i.e., the algebraic connectivity)
of the Laplacian matrix of a graph. In the lower bound, the
first term increases with increasing ε whereas the second one
decreases. The highest lower bound can be achieved by a
choice of ε that makes both terms equal:

ε =
β − 2
2

+
(β − 2)2

4
+ β 2− α2

1
2

≥ 0

where β = μN−2 − μN−1 ≥ 0. The higher α is, the lower
is ε, and the higher the highest lower bound is. Higher α
also contributes possibly to a higher upperbound. Hence,
μN−1(G+ e) tends to be large if α = |ui − uj | is large.
This is further illustrated by Figure 6, where all realiza-

tions of adding a link are performed in both an Erdös-Rényi
random graph G0.6(100) and a BA power law graph with
N = 100 and m = 3. The μ∗ is positively correlated with
α = |ui − uj | .
Therefore, we propose the strategy of adding a link to the

node pair {i, j} with the highest α = |ui − uj |, such that the
algebraic connectivity can be increased the most. As shown
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Figure 6: The increase of the algebraic connectivity μ∗ due to the addition of link {i, j} in relation with |ui − uj | in (a) an
Erdös-Rényi random graph G0.6(100) (b) a Barabási-Albert (BA) power law graph with N = 100 and m = 3.

in Figure 6, if we apply the strategy of adding a link to
the node pair with the highest |ui − uj |, i.e. |ui − uj |max =
0.986 and |ui − uj |max = 0.468 in these two graphs, the
algebraic connectivity is increased by μ∗ = 0.859 and μ∗ =
0.293, which is close to the corresponding maximal possible
increase of algebraic connectivity μ∗max = 0.917 and μ∗max =
0.301, respectively.

4. STRATEGY EVALUATION
The strategies proposed are based on the correlation study

in specific graphs. Since correlation between metrics are
topology dependent, a strategy, that works in one topology,
may not work in another network. Hence, in this section, we
examine the validity of these two strategies in the class of
the Erdös-Rényi random graphs, BA power law graphs and
k-ary tree, where each node is connected to k children. From
the Erdös-Rényi random graph, over the BA model to the
k-ary tree, both the randomness of node interconnections
and link density decrease.
We carried out 104 iterations for each simulation. In each

iteration, an Erdös-Rényi random graph Gp(N) or a BA
power law graph is generated and the second and the third
smallest Laplacian eigenvalues are calculated. First, we add
a link between a random non-connected node pair without
any strategy and obtain the normalized increase of the alge-
braic connectivity μ∗(0). Second, we perform strategy 1: add
a link between the node with the minimum degree and a
random non-connected node. The corresponding increase of
the algebraic connectivity is μ∗(1). Third, we perform strat-
egy 2: add a link to the node pair {i, j} with the highest
α = |ui − uj | and obtain μ∗(2).

4.1 Erdös-Rényi random graph Gp(N)

Simulations are carried out for Erdös-Rényi random graph
with p = 0.6,N = 50, 100, 200, 400, 800. Besides, with fixed
N = 200, we perform simulations for p = 0.2, 0.4, 0.6 and
0.8.We evaluate the gain of the strategy by comparing with
the link addition without any strategy, i.e. Pr[μ∗(s) − μ∗(0) ≥
x], s = 1 and 2 for strategy 1 and 2, respectively. Any
link addition, including the optimal one follows μ∗ ≤ 1.
Hence, μ∗(s) − μ∗(0) < 1. Figure 7 and 8 show that both
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Figure 7: Gain Pr[μ∗(s)−μ∗(0) ≥ x] of stragtegy 1 (s = 1) and
strategy 2 (s = 2) in the Erdös-Rényi random graph Gp(N),
where p = 0.6.

strategies perform better than random link addition, with
probability larger than 0.9, i.e. Pr[μ∗(s) − μ∗(0) ≥ 0] > 0.9.
Both strategies work better for smaller networks as shown
in Figure 7. Strategy 2 performs better than strategy 1
in Erdös-Rényi random graphs with various network size
N and link density p. The effect of the link density is not
obvious in Erdös-Rényi random graphs which are generally
dense. As shown in Table 1, the effect of strategy 1 and 2
is evident in E[μ∗(1)] and E[μ∗(2)] compared to E[μ

∗
(0)] when

no strategy is applied. Strategy 2 performs better, but it
requires the knowledge of the topology of the whole network.
Only local information, the degree, is needed in strategy 1.

4.2 BA model
The same simulations are carried out in the BA model

with N = 100, 200,400 and m = 3, 4, 5. As illustrated in Fig-
ure 9, strategy 1 behaves the same as link addition without
strategy, while, strategy 2 performs better with probability
round 0.9 than random link addition, i.e. Pr[μ∗(s) ≥ μ∗(0)] ≈



Table 1: Strategies comparison in Erdös-Rényi random graphs.

p = 0.6 N = 50 N = 100 N = 200 N = 400 N = 800
E[μ∗(2)] 0.644 0.594 0.532 0.469 0.401

E[μ∗(1)] 0.407 0.387 0.364 0.340 0.303

E[μ∗(0)] 0.049 0.0214 0.00951 0.0042 0.00169

N = 200 p = 0.2 p = 0.4 p = 0.6 p = 0.8
E[μ∗(2)] 0.588 0.544 0.532 0.579

E[μ∗(1)] 0.481 0.396 0.364 0.391

E[μ∗(0)] 0.012 0.0092 0.0095 0.011
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Figure 9: Gain Pr[μ∗(s) − μ∗(0) ≥ x] of stragtegy 1 (s = 1) and strategy 2 (s = 2) in the BA model with (a) N = 100 (b)
N = 200 and (c) N = 400.
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where N = 200.

0.9. Furthermore, m (or equivalently the link density) has
no effect on the performance of both strategies. Figure 10
shows that strategy 2 works slightly better on BA power law
graphs with smaller size N.

Table 2: Strategies comparison in BA power law graphs.

m = 3 N = 100 N = 200 N = 400
E[μ∗(2)] 0.558 0.521 0.477

E[μ∗(1)] 0.153 0.146 0.142

E[μ∗(0)] 0.170 0.161 0.148

4.3 K-ary tree
We investigate the k-ary tree [17] of depth2 D where each

node has exactly k children. In a k-ary tree the total number
of nodes is

N(D) = 1 + k + k2 + · · ·+ kD =
kD+1−1
k−1 , k 6= 1

1 +D, k = 1

Since the interconnections of nodes in a k-ary tree is deter-
mined, we examine one specific k-ary tree with k = 2, d = 7
and try all the possibilities of adding a link. On average, the
algebraic connectivity can be increased by E[μ∗(0)] = 0.137.
On average, strategy 1 improves the algebraic connectivity
by E[μ∗(1)] = 0.129 < E[μ∗(0)], which is not better than ran-
dom link addition. Given the level of the node pair, where
2The depth D is the number of hops (or links) from the root
to a node at the leaves.
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k-ary tree with k = 2, d = 7.

a link is added, μ∗ is found to be higher if these two nodes
share fewer common parents. The optimal link addition is
between two nodes both in level 2. Hence, none of them has
degree 1. As shown in Figure 11, the positive correlation be-
tween μ∗ and |ui − uj | still remains, but weaker than in the
Erdös-Rényi random graph and the BA power law graph.
The increase of algebraic connectivity achieved by strategy
2 is μ∗(2) = 0.24, round half of the maximal possible increase
μ∗max = 0.51.

4.4 Comparison with optimal link addition
Our strategies are evaluated via Pr[μ∗(s)−μ∗(0) ≥ x], s = 1

and 2 for strategy 1 and 2 respectively, by comparing them
with the random link addition. One may be curious to
know how far our strategies are from the optimal link ad-
dition. The maximal possible increase or optimal increase
of the algebraic connectivity μ∗max can be obtained by try-
ing all possible ways of adding a link to a network. Due
to the computational complexity, we compare our strate-
gies with the optimal link addition in 104 Erdös-Rényi ran-
dom graphs G0.6(100) and in 104 BA power law graphs with
N = 100, 200 and m = 5. As shown in Table 3, strategy 2
performs generally better than strategy 1, and is close to
the optimal link addition, especially in Erdös-Rényi random

Table 3: Strategies comparison with optimal link addition

G0.6(100)
BA model
N = 100,m = 5

BA model
N = 200,m = 5

E[μ∗max] 0.62 0.87 0.88
E[μ∗(2)] 0.59 0.56 0.52

E[μ∗(1)] 0.39 0.15 0.14

E[μ∗(0)] 0.021 0.17 0.16

graphs.

5. CONCLUSION
The difficulty of applying strategies to optimize the alge-

braic connectivity (or in general a topological metric R) by
adding a link e = (i, j) based on topological characteristics
of node pair {i, j} is due to the fact that the correlation
between metrics (e.g. between μ∗ and degrees of the node
pair) is topology dependent. In other words, a strategy, that
works for a given type of graphs, may not work in other
classes of networks.
Strategy 1 seems to perform better in the class of dense

graphs such as the Erdös-Rényi random graphs, although
the effect of the specific link density of Erdös-Rényi random
graph is not obvious. However, strategy 1 looses its effect
in sparse networks like the BA power law graph and the
k-ary tree, where many nodes possess the minimal degree.
Another extreme example is G = KN\{i, j}, the complete
graph except one link. Each node has the maximal degree
N−1 except that node i and j have the minimal degreeN−2.
Adding a link between i and j leads to the maximal increase
of the algebraic connectivity μN−1(G + e) = μN−1(G) + 2
or μ∗ = 1 according to Theorem 2.
Strategy 2 seems to be applied better in graphs with more

randomness in interconnections of nodes. From the Erdös-
Rényi random graph, over the BA model to the k-ary tree,
the randomness of node interconnections decreases. Strat-
egy 2 performs better in Erdös-Rényi random graphs and
BA power law graphs than in the k-ary tree, which is reg-
ular in node interconnections. In other words, the positive
correlation between μ∗ and |ui − uj | is weaker in the k-ary
tree. The worst case is the regular D-lattice, where each
node has 2D neighbors. A D-lattice is even more regular



than a k-ary tree in the sense that more nodes have the
same degree except nodes in the border. The second and
third smallest eigenvalue of a D-lattice are the same. The
algebraic connectivity remains the same wherever a link is
added. Hence, the correlation between μ∗ and |ui − uj | dis-
appears completely.
Strategy 2 performs generally better than strategy 1 in

Erdös-Rényi random graph, BA model and k-ary tree. How-
ever, strategy 2 requires the Fiedler vector, or the whole
network topology, while only the node degree is needed in
strategy 1, which can be applied even when the network is
partially known. The computational complexity3 is reduced
from O(N5) of the optimal link addition searching to O(N3)
by strategy 2 and to O(N) by strategy 1. Finally, strategy 2
is shown to be close to the optimal link addition, especially
in Erdös-Rényi random graphs.
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