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Abstract— Defining an optimal protection strategy against
viruses, spam propagation or any other kind of contamination
process is an important feature for designing new networks
and architectures. In this work, we consider decentralized
optimal protection strategies when a virus is propagating over
a network through a Susceptible Infected Susceptible (SIS)
epidemic process. We assume that each node in the network
can fully protect itself from infection at a constant cost, or the
node can use recovery software, once it is infected.

We model our system using a game theoretic framework.
Based on this model, we find pure and mixed equilibria, and
evaluate the performance of the equilibria by finding the Price
of Anarchy (PoA) in several network topologies. Finally, we
give numerical illustrations of our results.

I. INTRODUCTION

Virus spread processes in networks can be explained,
using epidemic models [1], [2], [3], [4]. The probability of
infection over time [1], [2], [5], especially in the steady-
state, and the epidemic threshold [2], [6], [7] in relation to
the properties of the underlying network have been widely
studied in the past. We consider the Susceptible Infected
Susceptible (SIS) model, which is one of the mostly studied
epidemic models [1], [5]. In the SIS model, at a specific time,
the state of each node is either susceptible or infected. The
recovery (curing) process of each infected node is an inde-
pendent Poisson process with a recovery rate d. Each infected
node infects each of its susceptible neighbors with a rate
B, which is also an independent Poisson process. Protection
strategies [8], [9], [10], [11], such as immunization [12], or
quarantining [13] prevent nodes from being infected, while
additional mechanisms [14], like anti-spyware software or
clean-up tools, could clean the virus from an infected node.

This paper considers investment games that find appro-
priate protection strategies against SIS virus spread. In par-
ticular, we consider a game, in which, each node (host) is
a player in the game and decides individually whether or
not to invest in antivirus protection. Further, if a host does
not invest in antivirus protection, it remains vulnerable to
the virus spread process, but can recover (e.g., by a system
recovery or clean-up software). The utility or payoff of each
node (player) is: (i) the investment cost, if the node decides
to invest in antivirus software or else (ii) the cost of being
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infected, which is proportional to the infection probability in
the epidemic steady-state.

Game theoretical studies for networks problems have been
conducted, in routing [15], network flow [16], or workload
on the cloud [17], employing standard game-theoretic con-
cepts [18], [19] such as pure Nash or mixed equilibrium.
The Price of Anarchy (PoA) [20], [19] is often used as
an equilibrium performance evaluation metric. While many
papers have been focused on the process of virus spread and
network immunizations to suppress the spread, few epidemic
studies use game theory as a tool. Omic et al. [21] tune the
strength of the nodal antivirus protection i.e. how big the
curring rates (d;) should be taken. Contrarily to [21], (i) we
fix the curing and infection rates, which are not part of the
game, and the decision consists of a player’s choice to invest
in an antivirus or not; (ii) we also consider mixed strategies
Nash Equilibrium. The goal of [21] is in finding the optimal
0; for each player ¢, while this paper targets the optimal
decision of taking an anti-virus that fully protects the host,
because today’s antivirus software packages provide accurate
and up to date virus protection. The related papers on security
games [22], [23], [24], [25] are usually applied in non-SIS
environments (e.g., (i) without considering the infection state
of the neighbors and (ii) without an additional mechanism for
recovery), for generalized game settings [25] or by assigning
nodal weights to reflect the security level [24].

Our main contributions are summarized as follows:

1) We prove that the game is a potential game by
showing that it is equivalent to a congestion game.
We determine a closed-form expression for the pure
equilibrium for a single community/full mesh network.
We also prove the existence and uniqueness of a mixed
equilibrium.

2) We provide a measure of the equilibrium efficiency
based on the Price of Anarchy (PoA).

3) We extend our equilibrium analysis to bipartite net-
works, where we show that multiple equilibria are
possible. At an equilibrium, the number of nodes that
invest in one partition is often close to the number of
nodes that invest in the other partition.

The paper is organized as follows. The SIS epidemic
model is introduced in Section II. Sections II and IV
describe the game models in a single community (full mesh)
and bipartite network, respectively and subsequently prove
game theoretic results (pure, mixed equilibria and the Price
of Anarchy). The conclusion is given in Section V. The
technical proofs of the presented results and additional results



for the studied and other network topologies are given online,
in our extended version [26].

II. SIS EPIDEMICS ON NETWORKS

We start with the general case, where the network G is
connected, undirected and unweighted with /N of nodes. The
virus behaves as an SIS epidemic, where an infected node can
infect each of its direct, healthy neighbors with rate 3. Each
node can be cured at rate J, after which the node becomes
healthy, but susceptible again to the virus. Both infection and
curing process are independent Poisson processes. All nodes
in the network G are prone to a virus that can re-infect the

nodes multiple times.

We denote the viral probability of infection for node ¢ at
time ¢ by v; (N;t). For each node i of the graph with N
nodes, the SIS governing equation, under the standard N-
Intertwined mean-field approximation (NIMFA) [5], is given
by

= —6vi (N;1) + B(1 = vi(N;1)) > aizv; (Nst),

j=1
(D

where a;; = 1, if nodes ¢ and j are directly connected by a
link, while a;; = 0 if they are not. The physical interpretation
of the governing differential equation (1) is the following: the
infection probability of a node ¢ changes over time by two
competing processes: (i) all infected neighbors of node ¢ try
to infect him with Poisson rate (3, while node i is healthy
(with probability 1 —v;(¢)), and (ii) node ¢ can be cured with
a Poisson rate d, while infected with probability v;(t).

We further confine ourselves to the stationary regime of
the SIS epidemic process, meaning lim;_, o W =0. We
denote 7 = g the effective spreading rate and v; o (V) =
lim; o0 v; (N;t) the probability of node ¢ being infected
in the stationary regime, which is not a function of time £,

but we put oo as an index for distinguishing the stationary
regime. Now, the governing equation (1) boils down to,

dv; (N;t)
dt

N
0= —Vioo (N) +7(1 = 03,00(N)) > aivj,00 (N)  (2)
j=1

Based on (2), v; o (IN) could be expressed as [1], [5],

i (N) = 1— 1 3)

N
L4730 aijvj,00(N)
j=1

for Vi = 1,2,...,N. These steady-state equations only
have two possible solutions: the trivial v;oo(N) = 0, cor-
responding to the exact absorbing state in SIS epidemics,
and the non-trivial solution, corresponding to the metastable
SIS regime. In this paper, we focus on the metastable SIS
regime.

The infection probabilities could be substantially different
after some nodes decide to invest in a protection, causing
those nodes not to be part of the epidemic process. Three
scenarios are considered. The first one is a single community
game, which could be regarded as a simple social network
or a wireless and other full mesh networks (e.g., MANETS).
We also study bipartite networks, often employed in the

design of telecommunication networks. The main reason
is that a bipartite topology provides satisfactory level of
robustness after node or link failures. For instance, the
topology of the Amsterdam Internet Exchange is designed as
a bipartite network such that all the locations in Amsterdam
are connected to two high throughput Ethernet switches. In
addition, the topologies of sensor networks are also bipartite
graphs.

A. Single community (full mesh) network

We first consider a single community (or full mesh)
network, modeled as a complete graph K, where a;; = 1
for all 7 and j. If some nodes are removed from the original
graph, the resulting graph K, is also a complete graph,
where n € {0,1,..., N}. By symmetry, we have that all
Uim(n) are equal. For brevity, in such a case, we sometimes
use the notation v, (n) = v; oo(n) From (3), we have [1],
(51,

1 > 1
V.,00(N) = Vi,00(n) = { 1 T(n—1)° if 7> —, @

0, otherwise

for each node ¢ in a complete graph.

B. Bipartite network

The bipartite network Kj; n consists of two clusters,
M and N, with M and N nodes, such that one of the
nodes within a cluster are connected, but all the nodes from
different clusters are connected to each other. Therefore,
there are exactly (M + N) nodes and M N links in the
network.

The bipartite network also possesses an interesting prop-
erty: if nodes from any of the two clusters are removed from
the original graph, the resulting graph is again a bipartite
graph K, ,,, where m and n are the number of remaining

nodes in M and A clusters, respectively.

The governing equations (3) reduce for Ky j; to two
equations with two unknowns - the infection probabilities
v,,&l)(m,n) and v,(,jgo)(m,n) in the clusters M and N,
respectively, in the metastable state stationary regime. Con-
trarily to the complete graph, the two probabilities depend
on two values: m and n. The solution is [1],

2mn —1
n(rm + 1)
©)

III. GAME MODEL ON A SINGLE COMMUNITY NETWORK

2
-1
v‘ﬁﬁ%m,n) — T " and U('/;Q (m,n) =
’ Tm(tn + 1) ’

In the investment game on the complete graph K, each
node is a player and decides individually to invest in antivirus
protection. The investment cost is C, while the infection cost
is H. When a node invests, it is assumed to be directly
immune to the virus and not part of the epidemic process
anymore. Hence, this node cannot infect other nodes nor can
be infected. If a node does not invest in antivirus protection,
it is prone to the epidemics and might be infected by the
virus (with rate (), but also can use additional protective
mechanisms, like recovery or anti-spyware software (with
rate ¢). The induced network, without the nodes that decide
to invest, is also a complete graph and it influences on the
epidemic spread process.



A. Pure strategies

The investment cost for any player is a constant C' and
does not depend on the action of the other players. If a
player decides not to invest, his cost is a linear function of
its infection probability v; o (n) of node ¢ in the metastable
state of the SIS process. The probability v; »(n) depends
explicitly on the number of nodes n that decide not to invest.
In other words, there is an initial contact graph G = K in
which all the nodes are connected and the decisions of all
the nodes induce an overlay graph Gy = K, only composed
of the nodes that have decided not to invest.

1) Congestion Game: Due to players’ decisions, we have
a congestion game, because the utility of each player depends
on the number of players that have decided not to invest.
Each node has the choice between two actions: invest (further
denoted by 1) or not (further denoted by 0). The payoff
obtained by a player, in case he does not invest, depends on
the number of players that choose the same action (0) not to
invest. We denote by o; € {0,1} the action of node i. For
example, the payoff S;; of a player i € {1,2,..., N} which
decides to invest is defined by: S;; = C := S;, while the
payoff of a player ¢ which decides not to invest is: S;o(n) =
Hv; o0(n) := Sp(n). This game is a congestion game [27]
as the payoff of a player depends on the number of players
that choose his action. In the context of a congestion game,
a (pure) Nash equilibrium is a vector of (pure) strategies,
characterized by the number of nodes n* that do not invest.
We remark that several Nash equilibria lead to the same n*.
We are interested in the existence and uniqueness of this
value n*.

Definition 1. At a Nash equilibrium, no node has an interest
to change unilaterally his decision. The number n* of nodes
that do not invest at a Nash equilibrium is defined for any
player i, by Sﬂ § Slo(n* + 1) and Slo(n*) S Sil-

Our game is symmetric as all players share the same set
of payoff functions. The following important property (in
Proposition 1) says that our game is not only a congestion
game but also a potential game, due to the potential formula
in [28, Theorem 3.1].

Proposition 1. The game is potential, where ®(n) = C'(N —
n)+HY y_,v. (k) is the potential function of the game.

The existence of a potential function in a game shows
the existence of pure Nash equilibrium: any minimum of the
potential function ® is a pure equilibrium. The existence also
allows decentralized procedures like best response dynamics
or reinforcement learning [29], [30] to converge to the pure
Nash equilibrium. We can assume, for example, that an
investment is valid only for a fixed amount of time and then
each node pays again after expiration of his license.

Proposition 2. For the number of nodes n* that do not invest
at equilibrium, the following inequality holds:

Voo (n™) < % < veo(n™ +1).

Moreover, above the epidemic threshold (T > ﬁ ), n* is
uniquely defined by:

n*_{ min{N, [@]}, ifC < H ©

, otherwise

where [x] is the closest integer greater or equal than x and
N is the total number of nodes.

2) Performance of the equilibrium: In order to evaluate
the performance of the system, considering a non-cooperative
behavior of each node, we use the Price of Anarchy (PoA)
metric [20]. We define the social welfare SW(n) of this
system, when n users do not invest, as the summation of the
cost for all users:

N
SW(n) =Y Sio,(n) = C(N —n) + nHv_o(n) (1)
i=1
We define n°P* such that: n°?* = argmin, SW(n), while
the Price of Anarchy, considering pure strategies, is defined
by:
Y SW(n*)
SW (nort) —
Before finding the Price of Anarchy, we first need to char-
acterized the globally optimal solution solution.

PoA, =

Proposition 3. The value that minimizes the social welfare
is n°P" € {N,[1+ 11}

The following Corollary 1 also holds:

Corollary 1. The equilibrium value n* is at least as large
as the optimum value n°P?, thus n* > n°Pt,

We have determined n* and n°P?, therefore, we can find
PoA, in an exact, but rather complex form. However, we
can obtain a simple upper bound for PoA,,.

Corollary 2. The Price of Anarchy PoA, is bounded by:

1
1< PoA, < ————.
ST e Dy

B. Symmetric mixed strategies

We now assume that each individual decides with a
probability p to invest in the anti-virus protection. Moreover,
the game is symmetric and then we look for a symmetric
mixed Nash equilibrium. Each individual is faced with a
new game, which depends on the realization of the random
choice process of all the other individuals. We denote by
Si(oi,p) the expected cost of player ¢ choosing the pure
strategy o; against the probability choice p of the other N —1
players. For any user i, we have S;,, (p) = Zg;ol Sio, (N +
(V-1 (1 = p)pN 17", where by definition Sjo(1) = 0.
Hence, the total expected cost of node ¢ which invests with
probability p’ and when all the other nodes invest with
probability p, is:

Si(p',p) = p'Sir(p) + (1 — p')Sio(p). ®)

Definition 2. At equilibrium, the indifference property p* is
solution of S;(0,p*) = S;(1,p*).

Definition 2 is a starting point for the characterization of
the mixed equilibrium. The existence and uniqueness of a
symmetric mixed equilibrium p* are shown by Propositions 4
and 5, respectively.



Proposition 4. A symmetric mixed equilibrium exists.

Now, the equilibrium point p* could be determined from
an exact, but rather complex, non-closed expression in p:

N-—-1
Si(0,p) =) Sio(n+1) (N; 1) (1=p)p" "

n=0

N-1
_ _i N -1 _ n N—-1-n
—H;(l m)( . )(1 p)"p , )

with n = [1] because Sjo(n + 1) = v; o(n+ 1) if 7 >
and S;o(n + 1) = 0, otherwise.

1
n

Proposition 5. The symmetric mixed equilibrium is unique.

Expression (9) involves generalized hyper-geometric func-
tions [31], which explains the difficulty of finding a closed
form for p*.

1) Approximation: In order to get a closed form ex-
pression of the symmetric mixed strategy, we consider the
following approximation: instead of considering a player
faced to realize a symmetric mixed strategy of the other
players and optimizing his average cost, we consider that
a player is part of an average game. If player ¢ chooses
strategy 1 with probability p’ we obtained the following
average approximated cost:

SNyl p) = p'C + (1 — p')Hvi oo ((p) + 1), (10)

where 7i(p) is the average number of nodes, except node 4,
that decide not to invest, i.e. ii(p) = (1 — p)(N — 1). Based
on Bernstein theorem [32], one can find that: for an arbitrary
small £ > 0, there exists ng(e, N, 7, p, p’), such that for each
N > no(e, N,7,p,p/), it holds | S (p/, p) — Si(p/, p) |<
e. In other words, S2PP™*(p/, p) can be arbitrary close, for any
g, to the real S;(p’,p). Moreover, numerical simulations in
Fig. 1a show that the corresponding PoA’s are similar even
for low N. Finally, Proposition 6 characterizes the mixed

equilibrium, based on the approximation.

Proposition 6. If we approximate the number of nodes
that do not invest by its average, we obtain the following
symmetric mixed Nash equilibrium:

if C<H(l-
otherwise.

1— —H ;)
P = { T(Hac)(N—1)7 TN-1) /)

If the investment cost C' is higher than the curing cost H,
then the equilibrium is p* = 0, because even, if a node is
infected, its cost H 1is less than the cost C, then he would
pay to be protected.

2) Performance of symmetric mixed equilibrium: The so-
cial welfare can be defined considering the mixed strategies:
SW(p) = LiL, Silp, p)-

Further, we compute the optimal social welfare by using
the approximated cost function Sy

arg min SW (p) = argmin [pS(1,p) + (1~ p)S(0,p)]

— remin (C—H)p+H(1-
TR O i pel— i 1]

Proposition 7. The optimal solution of the social welfare
(SW) is N -min{C, H}(1 — ﬁ) and it is achieved for

0, if C>H
pPt =L 01— —x—pl f C=H
1—%, if C<H.

Based on Proposition 7 and SW (p*) = NC, we are now
able to approximate PoA,, in the case of mixed strategies:

Corollary 3. When each node uses a mixed strategy, the
Price of Anarchy PoA,, can be approximated by:

C
PoA,, ~
? min{C, H}(1 —

I .
T(N—-1) )
C. Comparison of strategies

In the previous sections, we have studied two different ap-
proaches for our non-cooperative investment game: the pure
and the mixed strategies. These two game variants assume
significantly different decision processes for each node. First,
the approximation of the expected number of nodes that do
not invest at equilibrium is very close to the result obtained
using the potential game approach: 7w = N(1 — p*) ~ n*.
Second, we compare the social welfares obtained in each
situation, and we observe that pure strategies always yields
a lower social welfare compared with symmetric mixed
strategies.

As stated in Corollary 3, S;(0,p*) = S;(1,p*) = C, i.e.
the payoff of all the players is equal, hence SW,;, = C'N. On
the other hand, in the proof of Corollary 2, we find SW; =
SW(n*) > CN. Corollary 4 immediately follows.

Corollary 4. The social welfare is smaller if all the nodes
use a pure strategy (SWy) compared to the case in which

all the nodes use a symmetric mixed strategy (SW} ), i.e.
SWy < SWp.

The bound achieved in Corollary 4 is tight, because
(SW(n*) — CN) is small - based on Proposition 2. This
is also visualized in Fig. 1a, where indirectly, by comparing
the Price of Anarchy for different equilibria, we show the
approximation leads to almost correct value for the real
expected payoff.
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Fig. 1: (a) Price of Anarchy depending on the number of
nodes N (main plot). Ratio % of the social welfares

ﬁ), if pel0,1— m)depending on the size N of the network (inset); (b) Number

of nodes which do not invest as a function of 7 (main plot)
or the ratio % (inset) for N = 15.



We evaluate the performance of the decentralized system
(equilibrium) compared to the centralized point of view
(social optimum) via the Price of Anarchy of our system
in different cases: pure and mixed strategies. We show how
this metric depends on the system parameters, such as the
number of nodes (decision makers), the effective epidemic
spreading rate 7 = % and the costs C' and H.

Fig. la illustrates the PoA with the following costs C' =
0.4, H = 0.5 and the effective spreading rate 7 = 2/3.
We observe that when the number of nodes is relatively
small (N < 8): using pure strategies yields a smaller PoA
compared to the case of mixed strategies. Moreover, we find
that the upper bound of the pure PoA, is very close to
both PoA, and PoA,,, when N becomes relatively large
(N > 10). We also observe that the approximation of the
expected payoff, which induces a closed form expression of
the mixed equilibrium, is very close to the exact PoA,,
We show in Fig. la (inset) the ratio g&/v depends on the
size N of the network. Fig. 1a matches Corollary 4, i.e., the
social welfare obtained using pure strategies in the game, is
lower than the one obtained via symmetric mixed strategies.
This difference is noticeable when the network is small but
diminishes quickly (e.g., for N = 8§, SVVg* = 0.9821, and

for N > 10, EVV‘;* 1).

In Fig. 1b, we "describe the number of nodes which do not
invest considering the two methods: decentralized n* (Nash
equilibrium) and the centralized case n°P* (social welfare),
depending on the effective spreading rate 7 (main plot) and
ratio of the costs of not investing and investing % (inset).
First, we observe that our result is correct, i.e., considering
a decentralized point of view, the number of nodes which
invest is lower than that of the centralized point of view. This
result is somewhat surprising, as in general in a decentralized
system, the players are more suspicious and we would think
that in our setting, more nodes would invest at equilibrium
compared to the central decision. Second, those numbers are
exponentially decreasing with the effective spreading rate 7:
the more the infection rate 5 dominates the curing rate 9,
more nodes decide to invest in equilibrium. On the other
hand, the number of nodes increases if the relative cost of
investment decreases, as expected. However, the increase is
faster in a decentralized system for a fixed % (Fig. 1b inset).

IV. GAME MODEL IN BIPARTITE NETWORK

In this section, we characterize the equilibrium points,
their existence and uniqueness for bipartite network G 7, . If
m and n nodes do not invest in an anti-virus, from partitions
M and N, respectively, the induced graph is also bipartite
Gy = K n. For simplicity, we define k = %

Proposition 8. The equilibrium pair (n*,m*) exists and
satisfies the following inequalities. For each node

C

Sfrom M, v,(ﬁ/lo)(n*,m*) < =< (M)(n m” + 1) and

7S
from N, vFﬁ.Q(n*,m*) < % < UFﬁQ(n* +1,m")

Moreover, above the epidemic threshold, the following hold:

1) for a given n* (m?*) there is no more than one m*
(n*).

2) for any T and k > % orT > %71_;?@ and k < %
[n* —m*| < 1 ie n* and m* are either equal or
consecutive integers.

3) in general, it is possible to have multiple equilibria
pairs such that [n* — m*| > 2 for some (n*,m*).

The social welfare is now given by:

N
=Y Sio,(n) =C(N —n+ M —m)

+ H(nws (n,m) + muss(n,m)). (1)

opt opt —
(nP", mePt)

Price of Anarchy:

We define the
arg miny, ,,,) SW(n, m)

. _SW(n"m”)

optimal  pair
and the

Proposition 9. In Ky s, the minimum (optimal) value of
the social welfare is equal to SW = max{r?MN — 1,0} -

: C (M+N)+2 .
min{ T HT(:M-‘,-l)(TN-i-l) }. In particular,
0 and (n°Pt,mert) =

1) if MN < %, then SW =

(N, M).

2) if MN > &, 7max{M, N} G2 < > & then:
SW = C ML QQVM}V} and (n°P, m°Pt) = (5, M)
if M > N; (n°P", mP*) = (N, =ky) if M < N or
both points for M = N.

. T(M+N
3) if MN > 712, Tmax{M, N} A2 < ks then
?MN M+N)+2 0 o
SW = H( 7'(7'M-|-)1[)((7'NJ;-1))Jr : and (7’L pt’m pt) =
(N, M).

Based on the results in Propositions 8 and 9, we can now
find a tight bound for the Price of Anarchy (PoA).

Corollary 5. The Price of Anarchy is bounded by:
(M + N )
max{72MN — 1,0} min{

PoA <

H(r(M1N)+2) }
dex{]\{ N} C(tM+1)(TN+1)

The only used inequality in the proof of Corollary 5
is from Proposition 8. Moreover, we have the following
Corollary 6.

Corollary 6. The upper
(M+N

bound in Corollary 5

bigger

ACOI N2y s

max{r?MN—1,0} min{ - nnx{M NI ' COrM+D)(*NF1)

than max{2, & }.

Because the bound of PoA from Proposition 5 is accurate,
Corollary 6 tells us that the loss of the social welfare due
to decentralized investment decision often could be larger
than 100% from the optimal. For a bipartite graph, not much
could be said about the mixed equilibrium due the fact that
the bipartite network is not symmetric, and players’ uniform
social welfare function cannot be defined.

For the bipartite network, the upper bound of the Price
of Anarchy (PoA) is illustrated in Fig. 2. Figs. 2a and 2b
both demonstrate the change of the upper bound of the Price
of Anarchy as a function of N for several fixed values of
M. All the figures confirm Corollary 6 that the upper bound
of PoA is bigger than the maximum of 2 or % In all the
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Fig. 2: 2D plots of the upper bound of the Price of Anarchy
as functions of N for fixed M.

cases, the closer M and NN are to one another - the smaller
upper bound of PoA (the minimum values in Figs. 2a and

2b). For fixed M and % < 2, the upper bound is dominated

by TQ(MtJQVA)/[T\,aﬁM’N} (Corollary 5), which decreases in N

for N < M, achieves its minimum (close to 2) and then

increases for N > M (Fig. 2b). For fixed M and & > 9

the upper bound is dominated by %Q‘Q{ﬁj}ﬁﬁ%jﬂyjﬁg

(Corollary 5), which decreases in N for N < M; achieves
its minimum (close %); stays almost constant for M ~ N;
and increases for N > M (Fig. 2a).

V. CONCLUSIONS

In this paper, we explore the problem of finding optimal
decentralized protection strategies in a network, where a node
decides to invest in an anti-virus or to be prone to the virus
SIS epidemic spread process. If a node (host) decides to
invest, it cannot be infected, while if a node chooses not
to invest, it can be infected by a virus and further spreads
the virus inside the network. We study this problem from a
game theoretic perspective. If a node decides to invest, the
cost function of the node is the investment cost, otherwise the
cost function is linearly proportional to the node’s infection
probability in the epidemic steady state.

We show the existence of a potential structure, which
allows us to prove the existence and uniqueness and derive
the pure and mixed equilibrium in a single-community (or
mesh) network. Moreover, we find the pure equilibrium in a
bipartite network. We also evaluate the performance of the
equilibrium by finding the Price of Anarchy (PoA).
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