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ABSTRACT
Dynamic networks appear in several contexts: QoS rout-
ing faces the difficult problem of accurately and efficiently
maintaining, distributing and updating network state infor-
mation, and in wireless ad hoc networking, signal strength
fluctuations complicate the choice of stable paths. In this
paper we will focus on the stability of paths in a network
with dynamically changing link weights. The level of path
stability has a direct relation to the number of updates that
are necessary to maintain an accurate view of the network
state. If a small change in the network state does not affect
the shortest path, then such a change need not be distrib-
uted throughout the network. We evaluate path stability by
adding noise and observing the change in paths.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer Com-
munication Networks–Network Protocols

General Terms
Theory, Performance

Keywords
Network dynamics, Link-state update policy, shortest path,
link weight perturbation, Quality of Service

1. INTRODUCTION
The need for a Quality of Service (QoS) aware Internet has

been acknowledged by the research and business community
for many years. Consider the simple example of telephony
over Internet (VoIP). Two parties can communicate if the
packetized voice is well within 200 ms mouth-to-ear delay.
In addition, the communication requires a certain bound on
the number of packets that are lost. Hence, as QoS mea-
sures we have time and loss. In fact, we may require also
additional criteria such as bandwidth, monetary cost, and
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delay variation (jitter). The exact QoS routing algorithm
SAMCRA [17] can handle an arbitrarily large amount m of
QoS measures (such as time, distance, cost, jitter, etc.) and
even returns the optimal path in the m-dimensional space
subject to a constraints vector. The latter means in the
VoIP example that the path must guarantee an end-to-end
delay within, 200 ms. Thus, for each QoS measure a QoS
constraint can be included.
Despite the existence of QoS algorithms like SAMCRA

[11], the Internet still lacks a (widely) working QoS archi-
tecture. Assuming the Internet infrastructure has enough
resources to be able to provide QoS, then the problem is
that of accurately and efficiently maintaining, distributing
and updating the dynamic QoS link weights. Monitoring
any change along the Internet is simply not possible and
even not desirable, because not all changes are important.
Further there is a topology range of interest: not all details
of the entire global Internet are needed to determine a path
PAB from source A to destination B. If we first look at the
time-scale in a network topology as illustrated in Figure 1,
we distinguish between changes that occur (1) infrequently
and (2) frequently. The first kind reflects topology changes
due to failures and the joining/leaving of nodes. In the cur-
rent Internet, only this kind of topology changes is consid-
ered. Its dynamics are relatively well understood. The key
point is that the time between two “first kind” topology
changes is long compared to the time needed to flood this
information across the whole network. Thus, the topology
databases on which routing relies, converge rapidly (with
respect to the frequency of updates) to the new situation.
The second type of rapidly varying changes are typically

related to the consumption of resources or to the traffic flow-
ing through the network. The link weight coupling to state
information seriously complicates the dynamics of flooding
because the flooding convergence time T can be longer than
the change rate ∆ of some measure (such as available band-
width).
Figure 1 illustrates how the bandwidth BW on a link may

change as a function of time. In contrast to the first kind
changes where T << ∆, in the second kind changes, T can
be of the same order as ∆. Apart from this, the second type
changes necessitate the definition of a significant change that
will trigger the process of flooding. In the first kind, every
change was significant enough to start the flooding. The sec-
ond kind significant change may be influenced by the flood-
ing convergence time T and is, generally, strongly related to
the traffic load in (a part of) the network. An optimal up-
date strategy for the second type changes is highly desirable
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Figure 1: Network topology changes on different
time scales. BW stands for bandwidth.

in future multimedia networks that are characterized by the
broad variability in traffic profiles and QoS requirements.
The Internet is shown to possess a power-law like degree

distribution [5], while ad hoc networks may vary from lat-
tice structures to random graphs [8]. Moreover, the link
weights in these ad hoc networks depend on a fluctuating
signal strength. Since paths strongly depend on both link
weight structure and graph properties, the network dynam-
ics will dependent on these factors, even to the extent that
some control strategies successful in a certain class of graphs
may not work properly in other graphs. We will examine
different classes of graphs.
Throughout this paper we use the following notation to

represent a network: G(N,L) denotes a network topology,
where {N} is the set of N nodes and {L} is the set of L
links.
The goal of this paper is to evaluate the influence of dy-

namic link weights on the stability of paths. Our philosophy
is that one must first understand the underlying concepts of
dynamic networks, before developing link-state update pro-
tocols. The research presented in this paper will enhance
our knowledge of how to properly choose the link-state up-
date triggering thresholds or hold-down timers and may pro-
vide a first indication of what level of inaccuracy in the link
weights is acceptable. The rest of the paper is organized as
follows: in Section 2, we will provide an overview of related
work. Section 3 provides our research framework. Section 4
evaluates path stability under constant noise, and Section 5
under uniformly distributed noise. In Section 6 path stabil-
ity is bounded in case noise is only added to the path. In
Section 7 we end with conclusions.

2. RELATED WORK
The current Internet only considers infrequent topology

changes and consequently the study of these changes dates
back to the early days of the ARPANET. One of the topics
studied is that of end-to-end Internet path stability. Pax-
son [14] defined two types of stability, namely “prevalence,”
meaning the likelihood that a particular route is encoun-
tered and “persistence,” the likelihood that a route remains
unchanged over a long period of time. Based on measure-
ments he found that Internet paths are heavily dominated

by a single prevalent route, but the time over which routes
persist show wide variation, ranging from seconds to days.
In the context of QoS routing or ad hoc networking, the

frequent changes in the network resources become a decisive
factor and many problems emerge, e.g.: (a) how to predict
the traffic load, (b) when to update the network with new
information, (c) how to update the network, and (d) how to
cope with inaccurate network state information. Below we
briefly review the literature related to these problems.

2.1 Traffic prediction
Anjali et al. [1] proposed an algorithm to estimate the

available bandwidth of a link in MPLS networks. They used
a linear prediction model that is solved through Wiener-
Hopf equations. Sang and Li [15] assessed the predictability
of traffic by considering how far into the future a traffic rate
process can be predicted with bounded error and what the
minimum prediction error is over a specified prediction time
interval. They used two models, namely the auto-regressive
moving average and the Markov-modulated Poisson process
and concluded that the applicability of traffic prediction is
limited by the deteriorating prediction accuracy with in-
creasing prediction interval. Jain and Dovrolis [10] targeted
the end-to-end available bandwidth and stated that the vari-
ability of the available bandwidth increases significantly as
the utilization of the “low capacity” link increases, which
makes a lightly loaded network have a more predictable and
smooth throughput. You and Chandra [21] and Basu et al.
[3] analyzed Internet data measured at a campus and mod-
eled this data using auto-regressive processes. Papagiannaki
et al. [13] studied the evolution of IP backbone traffic at
the larger time scale of hours and introduced a methodol-
ogy to predict when and where link additions/upgrades have
to take place in an IP backbone. They used mathematical
tools to process historical information and extracted trends
in traffic evolution at different time scales.

2.2 Network update triggering
Frequently updating the network, through the dissemi-

nation of link-state advertisements (LSA), can cause a sig-
nificant overhead. Different link-state update policies have
been proposed, which are reviewed in [12], [16], [2]. The
link-state update policies can be classified as either periodic
based (LSA at fixed intervals) or trigger-based (LSA at a
certain event) and may use either a hold-down timer or the
moving-average principle [12] to reduce the number of LSA.

2.3 Network update distribution
The current Internet disseminates its network state through

the entire autonomous domain by using broadcast (flood-
ing). In broadcast every router replicates the network state
information onto all of its outgoing links. This method is
too costly when the frequency of updates is expected to be
high. To reduce the overhead in broadcasting, Garcia and
Spohn [6] proposed the adaptive link-state protocol (ALP).
A router in ALP disseminates link-state updates incremen-
tally to its neighbors for only those links along paths (trees)
used to reach destinations. Huang and McKinley [9] also
proposed a tree-based protocol (T-LSR) that only constructs
a single tree shared by every router for the dissemination of
LSA and combines it with broadcast to make the protocol
robust against node/link failures.

2.4 Inaccurate network state



The dynamics of link weights, prohibits an always accu-
rate and up-to-date view of the network resources. The level
of accuracy in state information depends on the choice of up-
date strategy and can seriously impact the effectiveness (in
terms of blocking) of path selection algorithms. A discussion
of routing under inaccurate state information can be found
in [7].

3. RESEARCH FRAMEWORK
In this section we provide a framework for the remaining

part of this paper. The goal is to evaluate the stability of
a path in a dynamic environment in a mathematical and
simulative way. Our simulations consist of generating mini-
mally 104 graphs (from a particular class of graphs) with link
weights according to a specific distribution. We assign one
weight wl per link l ∈ {L}. We can consider this graph to
be a snapshot in time of our dynamically changing network.
In this graph, we compute the shortest path P between a
source A and a destination B. Next, we perturbe all the
link weights in the graph by adding “link weight noise” wl;α

with strength α, such that the resulting link weight equals
wl+wl;α, ∀l ∈ {L}. This new graph represents a snapshot of
the network at a later point in time and the noise represents
the impact of the arrival/departure of flows over time on the
resources. The level of noise is related to the period of time
and the size and arrival rate of the flows. We recompute the
shortest path P 0 between A and B in the perturbed graph
and compare this path with the previously retrieved path
P . We store the difference in path structure, i.e. how many
links are different ∆l, and the difference in path weight ∆w.
Three classes of graphs are investigated, namely the class of
random graphs Gp(N) [4], with link density p independent
of N , the class of square two-dimensional lattices, and the
class of Internet-like power-law graphs [5], with exponent
τ = 2.4 in the nodal degree distribution Pr[d = k] ∼ k−τ .
The source A and destination B are chosen randomly.
By varying α (α > 0, corresponding to the level of noise

or perturbation), we are able to evaluate the perturbation
threshold that causes P and P 0 to differ. The expected dif-
ference in weight between P and P 0 gives an indication of
the size of the link-state update thresholds that should be
used. When adding negative noise, a link weight may be-
come negative. Negative or zero link weights are not consid-
ered realistic link weights. To assure positive link weights
we truncate negative or zero link weights at a very small
value (ε = 10−5) near zero1 .

4. ADDING CONSTANT NOISE
The simplest scenario for adding noise is adding a constant

noise to all links in the graph G(N,L). More generally, con-
sider a uniform distribution U(b, c) to which we add a con-
stant noise α. This results in the perturbed graph G0(N,L)
with link weights uniformly distributed in the range (b +
α, c + α]. A scaling of this distribution, does not affect its
properties and we can therefore use the distribution U(a, 1),
with a = b+α

c+α
representing a relative measure for noise.

The value for a has a large influence, as shown in Figure
2. We have considered (106) complete graphs with N = 25
nodes and simulated with a = 0 up to 0.5 in steps of 0.05.
Since the source and destination are always connected by the
1 In our mathematical analysis we use 0.

direct link in the complete graph, the weight of the shortest
path can never exceed 1.
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Figure 2: Probability density function of the weight
of the shortest path in the complete graph G1.0(25)
for different a in the link weight distribution U(a, 1).

When a = 1
2
, the link weights are uniformly distributed

within ( 1
2
, 1] and the shortest path must be the direct link,

because the weight of any path with h > 1 hops obeys
w(Ph>1) =

h
j=1w(nj → nj+1) ≥ 2

j=1 w(nj → nj+1) >

1 ≥ w(Ph=1).
In fact, in a complete graph with uniformly distributed

link weights specified by U(a, 1) with 0 < a < 1
2
, if the

weight of the shortest path lies within (a, 2a], the shortest
path can only be the direct link. The probability for the
direct link to be distributed within (a, 2a] is a

1−a and the
corresponding probability density is

fW (x) =
a

1−a
a

=
1

1− a
, x ∈ (a, 2a]

which explains the uniform part in Figure 2.
When 1

3
≤ a < 1

2
, a similar reasoning can be applied to

show that paths with more than two hops can never become
the shortest path. When the weight of the direct link lies
in (2a, 1], paths with one hop and two hops compete to be
the shortest path. In different classes of graphs, a similar
analysis2 can be made, as long as we can compute the prob-
ability that an h-hop path exists. Hence, given that the link
weights are uniformly distributed in the range (b, c], it is
possible to predict the influence of adding constant noise.

5. ADDING UNIFORM NOISE
In this section we will evaluate the influence of adding uni-

formly distributed noise. We have assigned the link weights
as follows: wl = U(0, 1) and wl;α = αU(−0.5, 0.5), ∀l ∈ {L}.
Initially all link weights were assigned a value chosen from
a uniform distribution in the range (0, 1]. In the second
scenario we added uniformly distributed noise in the range
α[−0.5, 0.5]. We have also simulated with a Gaussian dis-
tribution N(µ = 0, σ = α) for the link weights/noise: the
results were similar to those of the uniform distribution.

2For more mathematical and simulation results we refer to
[20].



5.1 Mathematical analysis
We will provide upper bounds on the difference in path

weights ∆w = w(P 0) − w(P ), between the perturbed path
P 0 and the unperturbed path P in any class of graphs.
By construction,

w(P ) = min
P⊂{PAB}

l∈P
wl

w(P 0;α) = min
P 0⊂{PAB}

l0∈P 0
(wl0 + wl0;α)

where wl are the unperturbed link weights and where wl;α

is the perturbation with strength α ≥ 0. Clearly, w(P 0; 0) =
w(P ) and the maximum possible perturbed weight is bounded
by

w(P 0;α) ≤ w(P ) +
α

2
hP

where hP is the hopcount of the shortest non-perturbed
path. The other extreme in case of truncation is w(P 0;α) =
0, which occurs if there is a path from A to B with all link
weights zero. Hence, denoting ∆w = w(P 0;α)−w(P ),

−w(P ) ≤ ∆w ≤ α

2
hP

In practice, the relevant range for α is limited to wl0 +
wl0;α ≥ 0, where truncation is not necessary. The probabil-
ity that a perturbed link weight is smaller than zero is found
from (3) in the Appendix, with h = 1 and z = 0 as

Pr [wl0 +wl0;α ≤ 0] =
α
8
, α ≤ 2

1
2 −

1
2α , α > 2

(1)

The probability never exceeds 50%.
Roughly, the probability to have a zero weight path is

bounded from below by,

Pr w(P 0;α) = 0 ≥
e∈P 0

Pr [wl0 +wl0;α ≤ 0]

≈
α
8

E[h]
, α ≤ 2

1
2 −

1
2α

E[h]
, α > 2

which is only significant for large α and a small expected
hopcount E[h].

5.2 Simulations for ∆w

We will first present our results for the difference in path
weights∆w = w(P 0;α)−w(P ) for different classes of graphs.
For each simulation 104 connected graphs were created. We
have simulated with the random graphs Gp(N) with link
density p = 0.2 and p = 0.01, the power-law graphs with
τ = 2.4, and the square two-dimensional lattices. All graphs
consisted of N = 1000 nodes, except for the square two-
dimensional lattices which contained N = 1024 nodes.

5.2.1 The random graph
In Figure 3 we present E[∆w] as a function of the pertur-

bation strength α.
For the class of random graphs with p = 0.2, E[∆w] de-

creases already for very small values of α, although this
decrease is only small. For large α, E[∆w] saturates at
E[∆w] ≈ −E[w(P )]. For the class of random graphs with
p = 0.01, E[∆w] starts decreasing at larger α than with p =

α
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Figure 3: The expected difference in length (E[∆w] =
E[w(P 0) − w(P )]) between P and P 0 for the class of
random graphs (N = 1000), as a function of the per-
turbation strength α.

0.2 and the decrease is steeper. However, E[∆w] again satu-
rates at E[∆w] ≈ −E[w(P )]. This implies that E[w(P 0;α)] ≈
0 for large α, irrespective of p, as was expected from our
mathematical analysis.
In Gp(N), a typical length is E[w(P )] ∼ lnN

Np [19]. The
ratio of the two link densities considered here (p = 0.2 and
p = 0.01), 0.2

0.01
= 20 almost precisely equals the ratio in

E[∆w] at saturation, which equals E[∆w,p=0.01]
E[∆w,p=0.2] =

−0.730
−0.037 =

19.5.
The expected hopcount of the shortest path P in Gp(N)

with p fixed and uniformly (or exponentially) distributed
link weights scales as O(logN) and the number of paths be-
tween source and destination is expected to be large, for N
large. If α is high, there is a high probability that several
links have truncated weights. Especially for Gp(N) when p
is fixed, this results in a high probability that the shortest
path only consists of such zero-weight links. This behavior is
verified in Figure 3. For smaller link density p, the number
of (truncated) links is smaller and the expected hopcount
larger. Hence a stronger perturbation is required before the
saturation state E[∆w] ≈ −E[w(P )] ≈ − lnN

Np is reached. In
fact, since saturation means that the source and destination
nodes are connected by truncated links, we can consider a
superconducting subgraph, which only contains the trun-
cated links of the original graph. The link density of this
subgraph is pPr [wl0 + wl0;α ≤ 0], where Pr [wl0 + wl0;α ≤ 0]
is given by (1). If α is large enough so that the subgraph is
connected, then E[∆w] will saturate. The critical link den-
sity equals pc ≈ lnN

N
and hence pPr [wl0 +wl0;α ≤ 0] ≈ lnN

N

or α ≈ 8 lnN
pN

(we have used Pr [wl0 +wl0;α ≤ 0] = α
8
in (1),

because in the simulated cases saturation already occurs for
α ≤ 2), as verified in Figure 3. The minimal α for saturation
scales with 1

p
.

5.2.2 The square two-dimensional lattice
For the class of two-dimensional lattices, the expected

minimum hopcount [18] equals E[hmin] ≈ 2
3

√
N for large

N . Although the expected hopcount of the shortest path is
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dimensional lattices (N = 1024), as a function of the
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bounded from below by the minimum hopcount, we still ex-
pect a scaling of the hopcount as O(

√
N). For small α there

is first a slight decrease (E[∆w] < 0), after which a lin-
ear increase is manifested. Initially, on average 50% of the
link weights are decreased and the remaining link weights
increased. In this case, the expected weight of a randomly
chosen path remains the same as in the unperturbed graph.
However, the shortest path is likely to benefit more from
the reduced link weights (by locally circumventing increased
link weights), than that it is hampered by the increased link
weights. This explains the small decrease for small α. For
larger α, some decreased weights are truncated and can-
not decrease further than ε = 10−5, while increased weights
have no upper bound. If α increases, the increased weights
will have an increased influence. For large α approximately
50% of the in total 2(N −

√
N) links will be truncated at

ε = 10−5. Hence, enough possibilities exist to circumvent a
single high link weight. However, due to the relatively high
expected hopcount not all high link weights may be circum-
vented. Since these high link weights increase with α, this
explains the absence of saturation in Figure 4. The slope
of the linear increase equals 0.054, which can be explained
by considering a scaled version of the perturbed graph in
case α → ∞. For large α, approximately 50% of the link
weights in the perturbed graph are truncated and the re-
maining link weights are approximately3 uniformly distrib-
uted in the range (0, α

2
]. Dividing the link weights by α does

not alter the shortest path and hence we choose for α→∞
a scaled perturbed graph, with 50% of the link weights 0 and
50% of the link weights uniformly distributed in the range
(0, 0.5]. Hence, the expected weight of the shortest path in
the perturbed graph is approximated by E[P 0] ≈ αE[P 00],
where P 00 equals the shortest path in the scaled (α → ∞)
perturbed graph. Since both the shortest path P in the
unperturbed graph and P 00 are independent of α, we can
approximate the slope in Figure 4 by E[P 00]. Simulations
indicate that E[P 00] = 0.078 for N = 1024. The small devia-
3The actual distribution can be found via (3) in the Appen-
dix.

tion from the slope in Figure 4, stems from the fact that we
have assumed a uniform distribution for the non-truncated
links in the (scaled) perturbed graph, which only holds for
α→∞.

5.2.3 The power-law graph
For the class of power-law graphs, we expect that the hop-

count of the shortest path scales as O(logN), but that it is
larger than the expected hopcount in Gp(N), which also
scales as O(logN). Contrary to the class of random graphs,
we expect that the number of paths in the power-law graphs
between a source and destination node is relatively small. In
this case, there are less possibilities to circumvent the links
with high weights, which is manifested for large α where
E[∆w] increases linearly with α. This linear increase is best
observed for smaller N in Figure 5.
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Figure 5: The expected difference in length (E[∆w] =
E[w(P 0) − w(P )]) between P and P 0 for the class of
power-law graphs (N = 100), as a function of the per-
turbation strength α. The link weights were chosen
according to wl = U(0, 1) and wl;α = N(0, α), ∀l ∈ {L}.

The slope for τ = 2.0 is smaller than for τ = 2.4, which is
expected because a smaller τ leads to denser graphs and
hence more possibilities to circumvent high link weights.
The decrease for small α, as observed for the class of lat-
tices, is also visible here.
We have also simulated with link weights with a granular-

ity of 10, meaning that the link weights could only take one
out of 10 values uniformly distributed in the range [0,1]. In
this case the paths P and P 0 remained the same (E[∆w] = 0
and var[∆w] = 0) up to α = 2, which confirms that choosing
a coarser granularity improves stability.

5.3 Simulations for ∆l

To better evaluate the difference between P and P 0, we
have also stored the number of different links ∆l. More
formally, ∆l is the sum of the non-overlapping links of P and
P 0 and therefore (between the same source and destination
nodes) ∆l cannot be 1 or 2. Figures 6-9 display the results
for∆l in three different classes of graphs. We have simulated
with α = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, but
to avoid an overload of curves, we have plotted only four
values of α.



5.3.1 The random graph
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In Figures 6 and 7 we can observe that for G0.2(1000), a
small perturbation α can already trigger a large ∆l. An in-
teresting observation is that E[∆l] and var[∆l] increase up to
α = 0.05, after which they decrease and stabilize for α > 0.1.
Note that α = 0.1 is precisely the value at which E[∆w] for
p = 0.2 in Figure 3 stabilized. In Figure 7, we have also plot-
ted the expected hopcount E[h] of the shortest path in the
perturbed graph and its variance var[h]. The mean E[h] and
variance var[h] are similar in shape to E[∆l] and var[∆l].
This is expected since the shortest path in the unperturbed
graph is independent of α. In Figure 7, E[h] for α = 5
equals 1.92, which corresponds to the expected hopcount of
the shortest path in the random graph Gp0(N) with constant
link weights (E[hmin] ' 2 − p0 and var[hmin] ' p0(1 − p0),
[18]), as follows: if the number of truncated links in the

perturbed random graph Gp(N) with a constant (i.e., trun-
cated) link weight ε scales asO(Nb), b ≥ 1, then the shortest
path in that graph behaves as if all links were constant. In
that case the average number of truncated links per node >
1. We can consider such a graph as “superconducting.” The
number of truncated links equals Lα

8
, where L = pN(N−1)

2

for Gp(N), and scales as O(αN2) for α large enough and p
independent of N . We expect that

E[hmin] ' 2− p · Pr [wl0 + wl0;α ≤ 0]

and with p0 = p · Pr [wl0 + wl0;α ≤ 0]

var[hmin] ' p0(1− p0)

which is verified in the simulations. For instance, for α = 5
we have E[hmin] ' 2 − 0.2( 12 −

1
10 ) = 1.92, which perfectly

matches the simulation results. Only if α . 8 lnN
pN

our scaling
rule does not apply and we can consider the graph to be
in “normal” or “transition” regime. The transition from
normal to superconducting is observed in Figure 7.

5.3.2 The square two-dimensional lattice
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Figure 8: Probability that the number of differ-
ent links ∆l equals k in the class of square two-
dimensional lattices (N = 1024) for different values
of α.

Due to the regular structure of the two-dimensional lat-
tices, ∆l can never be odd. We have removed those odd
values from Figure 8. The high probabilities that ∆l = 0 in
Figure 8 suggest that the two-dimensional lattices are more
stable than the random graphs. There is a higher proba-
bility that the paths P and P 0 are identical. Compared to
the random graphs, the tail of ∆l in the two-dimensional
lattices is longer, due to the higher expected hopcount.

5.3.3 The power-law graph
The results for the power-law graphs are displayed in Fig-

ure 9. For small values of α the paths can be considered
stable, but for high α we see a long tail and an irregular
“distribution” function. These irregularities in the distri-
bution suggest regularity or combinatorial confinement (in
part of) the topology. The long tail suggests that sometimes
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Figure 9: Probability that the number of different
links ∆l equals k in the class of power-law graphs
(τ = 2.4 and N = 1000) for different values of α.

the hopcount of the shortest path in a power-law graph can
be very large.

6. BOUNDS ON PATH STABILITY
The simulations in the previous sections consisted of per-

turbing all links in the network, because over time, traffic
is sent between different source-destination pairs and hence
a large part of the network is affected. We have also exam-
ined how an increase in the use of a single shortest path can
decrease its attractiveness as a shortest path. In practice,
traffic between a source A and destination B is directed to
the shortest path between A and B, and the other paths
between A and B are not utilized. For instance, if a single
flow is allocated on the shortest path, its resources will de-
crease, and its weight (e.g., delay) will increase. Depending
on the size of the flow, the weight of the path may increase
in such a way that it no longer is the shortest path anymore.
In this section, we will evaluate the minimal total amount
of noise that needs to be added to a shortest path in order
for it to change. This amount of noise can be bounded. A
lower bound is obtained from the difference in weight be-
tween the shortest path P1 and the second shortest path
P2. The minimal total amount of noise α (which is the
sum of the noise on the links constituting the shortest path)
must obey α ≥ w(P2)− w(P1). Since P1 and P2 may share
some links, adding this lower-bound noise may not change
the shortest path. Only if P1 and P2 are link disjoint, α
equals w(P2)−w(P1). By computing the shortest path (Pl)
that is link disjoint with P1, we can find an upper bound
α ≤ w(Pl)− w(P1).
We have simulated with the class of random graphsG0.2(N),

complete graphs, and lattices, all with independent uni-
formly distributed link weights in the range (0, 1]. The re-
sults for G0.2(N) are plotted in Figures 10-13. Figures 10
and 11 indicate that the difference in weight decreases when
N increases, because E[w(P )] ≈ lnN

Np [19]. The probabil-
ity density function for w(P2) − w(P1) in Figure 10 seems
to follow an exponential distribution, unlike the probability
density function for w(Pl) − w(P1) in Figure 11. However,
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Figure 10: The probability density function (pdf)
of the difference in weight between the shortest and
second shortest path, for different network sizes, in
the class of random graphs.
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Figure 11: Probability density function of the dif-
ference in weight between the shortest path and the
second shortest path that is link-disjoint with the
first, in the class of random graphs.

for large N , they both tend to zero as observed in Figure 12.
The larger and denser a network becomes, the more paths
exist, and those paths will be more correlated (i.e., have a
higher overlap) and their difference in weight will decrease.
However, also E[w(P1)] decreases (as lnN

Np
). We have there-

fore computed the relative difference in weight w(P2)−w(P1)
w(P1)

in Figure 13.
Figure 13 shows that the difference in weight decreases

a little faster with N than the weight of the shortest path.
The results for the complete graphs are similar to those for
G0.2(N), especially for N large. The probability density
function for the difference w(P2) − w(P1) in the class of
lattices is displayed in Figure 14.
Although the probability density function for w(P2) −

w(P1) in the class of lattices deviates a little from an ex-
ponential distribution, it provided a good approximation
for the class of random graphs and hence might provide a
good starting point for modelling the difference in weight
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in any class of graphs. The probability density function for
w(Pl) − w(P1) is displayed in Figure 15. The probability
density function tends to a Gaussian distribution with in-
creasing mean. To illustrate this, we have plotted in Figure
16 the expected difference in weight in the class of lattices.
As can be observed from Figure 16, the difference in weights

w(P2)−w(P1) decreases with N . However, the difference in
weights w(Pl)−w(P1) increases, which makes the difference
in weights between the link-disjoint paths a less suitable up-
per bound in sparse networks that have a large expected
hopcount. However, since w(P2) − w(P1) gives us a con-
servative estimate, this is the more important measure to
predict the stability of a path in worst case.
Finally, in order to test the accuracy of our lower (and up-

per) bounds, we have simulated the minimal total amount
of noise that needs to be added to a shortest path in order
for it to change. We have added a constant noise α to the
links on the shortest path and evaluated the minimal α that
was required to change the shortest path. We have simu-
lated with the class of random graphs Gp(N), with p = 0.2
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Figure 14: The probability density function (pdf)
of the difference in weight between the shortest and
second shortest path, for different network sizes in
the class of lattices.
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Figure 15: Probability density function of the dif-
ference in weight between the shortest path and the
second shortest path that is link-disjoint with the
first, in the class of lattices.

and exponentially distributed link weights with mean 1. N
was chosen in the range [25, 400]. All simulations consisted
of 104 iterations. In first instance, the shortest path was
computed between a (randomly chosen) source and destina-
tion node. This path is referred to as SPold. In the next
step we added a constant noise to the links in SPold, and
gradually increased this noise until SPold was replaced by a
new shortest path SPnew, for which w(SPnew) < w(SPold).
The minimal noise α (per link), for which this holds was
stored. Since E [w (SP )] ≈ lnN

Np
, we have plotted NpE[α],

NpE[w(SPold)], and NpE[w(SPnew)] on a log-scale in Fig-
ure 17.
Indeed, as expected, NpE[w(SPold)] forms a linear line

on the log-scale, and hence nicely obeys E [w (SPold)] ≈
lnN
Np
. Also SPnew approximates the lnN

Np
law, which is prob-

ably due to the small expected hopcount (E[h(SPold)] ≈
lnN) of SPold and the relatively small values of α, which
marginally contribute to the overall link weight distribu-
tion. In Figure 17, we have also plotted the lower bound
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scaled per link Np w(P2)
h(P1)

− w(P1)
h(P1)

and the upper bound

per link Np w(Pl)
h(P1)

− w(P1)
h(P1)

. The actual minimal noise E[α]
is nicely captured in between these two bounds. Moreover,
these bounds improve with increasing N . Because the lower
bound w(P2) − w(P1) is most sensitive, it gives us a prac-
tical (worst-case) estimate of the stability of a path in the
network.

7. CONCLUSIONS
In this paper we have taken a new and conceptual ap-

proach to lay the foundation for the development of link-
state update policies. We have combined a mathematical
analysis with simulations on thousands of graphs from dif-
ferent classes to be able to draw confident conclusions.
Generally, a small perturbation does not lead to a large

difference in path weight. If the difference in path weight
is negligible, then it is not necessary to update the network
with superfluous information.
In practice, the link weights will have a finite granularity

instead of the real values used for the simulations. We expect
that a larger granularity will improve the stability of paths
and consequently the predictability of network state.
Our results for the difference in links ∆l displayed more

volatility as a function of the perturbation strength α than
the difference in weights ∆w. Fortunately, the latter para-
meter is a more important measure to set a threshold for
updating the network state.
Finally, through a mathematical and simulative analysis,

we have indicated that the minimal level of perturbation
that is required to make a shortest path obsolete, can be
bounded. Moreover, this level rapidly decreases to zero for
N →∞.

Acknowledgments: We would like to thank Eguzki As-
tiz Lezaun for providing many of the simulation results in
Section 5.

8. REFERENCES

8

6

4

2

E[
W

]

3 4 5 6 7 8 9
100

2 3 4

N

 noise
 SPold
 SPnew
 lower bound
 upperbound
 1.38-0.17lnN
 0.56+lnN
 2.40+0.93lnN

Figure 17: Expected weight of the minimal constant
noise α that changes the shortest path and the ex-
pected weights of the shortest path SPold before the
noise and the shortest path SPnew after noise.

[1] T. Anjali, C. Scoglio, J.C. de Oliveira, L.C. Chen, I.F.
Akyildiz, J.A. Smith, G. Uhl and A. Sciuto, “A New
Path Selection Algorithm for MPLS Networks Based
on Available Bandwidth Estimation,” Proc. of
QofIS/ICQT 2002, LNCS 2511, Zurich, Switzerland,
pp. 205-214, October 16-18, 2002.

[2] G. Apostolopoulos, R. Guerin and S. Kamat, “Quality
of Service Routing: A Performance Perspective,”
Proc. of SIGCOMM’98, Vancouver, BC, Canada, pp.
17-28, September 1998.

[3] S. Basu, A. Mukherjee and S. Klivansky, “Time Series
Models for Internet Traffic,” Proc. of IEEE
INFOCOM’96, pp. 611-620, 1996.

[4] B. Bollobas, Random Graphs, Cambridge University
Press, second edition, 2001.

[5] M. Faloutsos, P. Faloutsos and C. Faloutsos, “On
power-law relationships of the Internet topology,”
Proc. of ACM SIGCOMM’99, Cambridge,
Massachusetts, pp. 251-262, 1999.

[6] J.J. Garcia-Luna-Aceves and M. Spohn, “Scalable
Link-State Internet Routing,” Proc. of IEEE
International Conference on Network Protocols
(ICNP), Austin, Texas, USA, October 14-16, 1998.

[7] R. Guerin and A. Orda, “QoS routing in networks
with inaccurate information: theory and algorithms,”
IEEE/ACM Transactions on Networking, vol. 7, no. 3,
pp. 350-364, June 1999.

[8] R. Hekmat and P. Van Mieghem, “Degree
Distribution and Hopcount in Wireless Ad-hoc
Networks,” Proc. of IEEE ICON’03, Sydney,
Australia, pp. 603-609, Sept. 28 - Oct. 3, 2003.

[9] Y. Huang and P.K. McKinley, “Tree-based link-state
routing in the presence of routing information
corruption,” Computer Communications, vol. 26, pp.
691-699, 2003.

[10] M. Jain and C. Dovrolis, “End-to-End Available
Bandwidth: Measurement Methodology, Dynamics,



and Relation with TCP Throughput,” Proc. of
SIGCOMM’02, Pittsburgh, Pennsylvania, USA,
August 19-23, 2002.

[11] F.A. Kuipers, T. Korkmaz, M. Krunz and P. Van
Mieghem, “An Overview of Constraint-Based Path
Selection Algorithms for QoS Routing,” IEEE
Communications Magazine, vol. 40, no. 12, December
2002.

[12] B. Lekovic and P. Van Mieghem, “Link State Update
Policies for Quality of Service Routing,” Proc. of 8th
IEEE Symposium on Communications and Vehicular
Technology in the Benelux (SCVT2001), Delft, The
Netherlands, October 18, 2001.

[13] K. Papagiannaki, N. Taft, Z-L Zhang and C. Diot,
“Long-Term Forecasting of Internet Backbone Traffic:
Observations and Initial Models,” Proc. of IEEE
INFOCOM 2003, San Francisco, USA, March 30 -
April 3, 2003.

[14] V. Paxson, “End-to-End Routing Behavior in the
Internet,” IEEE/ACM Transactions on Networking,
vol. 5, no. 5, pp. 601-615, October 1997.

[15] A. Sang and S-Q Li, “A predictability analysis of
network traffic,” Computer Networks, vol. 39, pp.
329-345, 2002.

[16] A. Shaikh, J. Rexford and K.G. Shin, “Evaluating the
Impact of Stale Link State on Quality-of-Service
Routing,” IEEE/ACM Transactions on Networking,
vol. 9, no. 2, April 2001.

[17] P. Van Mieghem and F.A. Kuipers, “Concepts of
Exact Quality of Service Algorithms,” IEEE/ACM
Transaction on Networking, vol. 12, no. 5, pp.
851-864, 2004.

[18] P. Van Mieghem, G. Hooghiemstra and R. W. van der
Hofstad, “Scaling Law for the Hopcount,” Delft
University of Technology, report2000125, 2000,
http://www.nas.ewi.tudelft.nl.

[19] P. Van Mieghem, Performance Analysis of
Communications Systems and Networks, Cambridge
University Press, 2005.

[20] Huijuan Wang, Analysis of the Shortest Path Problem:
Link Weight Structure, Observability and K Shortest
Paths, M.Sc. thesis, Delft University of Technology,
March 2005.

[21] C. You and K. Chandra, “Time Series Models for
Internet Data Traffic,” Proc. of 24th conference on
local computer networks, pp. 164-171, October 1999.

APPENDIX
A. APPROXIMATE CALCULUS
In this Appendix we provide an approximate calculus of

the length of a path as function of the hopcount in a class
of graphs with link weight distribution wl+ wl;α, where
wl = U(0, 1) and wl;α = αU(−0.5, 0.5), ∀l ∈ {L}. The
distribution function Fh∗

w (z) is the probability that a sum
of h independent random variables each with cumulative dis-
tribution function Fw is at most z and is given by the h-fold
convolution:

Fh∗
w (z) =

z

0

F (h−1)∗
w (z − y)fw(y) dy, h ≥ 2,

and where Fh∗
w = Fw.

For Fx(z) = z10≤z≤1 corresponding to U(0, 1), and using
(x+ y)n = n

j=0
n
j
xn−jyj and the inverse Laplace trans-

form 1
2πi

c+i∞
c−i∞

esa

sn+1
ds = an

n!
1Re(a)>0, we find

Fh∗
x (z) =

bzc

j=0

(−1)j
j!(h− j)!

(z − j)h, 0 ≤ z ≤ h (2)

while the perturbed situation corresponding to Fw(z) =
U(0, 1) + αU(−0.5, 0.5) is

Fh∗
w (z) =

1

αh

h

j=0

h!(−1)j
j!(h− j)!

h

k=0

h!(−1)k
k!(h− k)!

·
(z − j + αh

2
− αk)2h

(2h)!
1z−j+αh

2
−αk>0 (3)

Since the link weights are independent and also wl and wl;α

are independent, the expected weight of an h-hop path P in
the perturbed graph equals E[w(P )] = h

i=1 E[wl +wl;α] =
h
2
and the variance var[w(P )] = h

i=1 var[wl + wl;α] =
h(1+α2)

12
. By the central limit theorem, provided h is large

enough, we can approximate the distribution (3) with the
Gaussian distribution Φ z−µ

σ
, with µ = E[w(P )] = h

2
and

σ = var[w(P )] = h(1+α2)
12 .


