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Abstract— In this paper we study an exam-
ple of a complex network, namely the road
infrastructure of the Netherlands. In order to
investigate the factors influencing the robustness
of the complex network under consideration,
we calculate a set of generic topological char-
acteristics, related to the connectivity, degree,
clustering and the shortest path length. Along
with these widely considered topological charac-
teristics, we also study the spectrum of the road
graph, i.e. the collection of all eigenvalues of the
associated adjacency matrix and the Laplacian
matrix. The topological characteristics show
that the road infrastructure differs substantially
from many other real-world networks. However,
there are complex structures, as for instance the
power grid, that resemble topological properties
of the Dutch road infrastructure.

I. INTRODUCTION

Complex networks characterize a wide
range of natural and man-made systems, e.g.
the Internet, the WWW, networks of food
web, social acquaintances, citation between
papers, as well as many others. Traditionally,
the topology of a complex network has been
modeled as the Erdős-Rényi random graph
[11], [12], [13]. However, the growing inter-
est in complex networks has prompted many
researchers to propose other more complex
models, e.g. small-world [26] and scale-free
networks [2]. Besides the modeling, consid-
erable attention has also been given to the
problem of capturing, in quantitative terms,
the underlying complex principles (see e.g.
[3], [10], [27]). In fact, each complex network
is classified by a set of distinguishing topo-
logical characteristics, which in part define its
robustness [1], [23].

In this paper we analyze a set of generic
topological characteristics for the complex
network of the Dutch road infrastructure. In
the Netherlands, transportation is of special
importance because the country functions as
a gateway for the traffic of goods between
western Europe and the rest of the world.

Moreover, the rapid grow in the use of private
cars [18] motivates an analysis of the underly-
ing structure to better understand the ongoing
traffic problem.

For the complex network of the road in-
frastructure we analyze the characteristics re-
lated to the connectivity, degree, clustering
and the shortest path length. Along with these
widely considered topological characteristics
we also consider the spectrum of the road
graph, i.e. the collection of all eigenvalues of
the associated adjacency matrix [5], [7], [8]
and the Laplacian matrix [19], [20], [21], [22].
Furthermore, we compare most of the con-
sidered characteristics to those in the Erdős-
Rényi random graph. The advantage of the
Erdős-Rényi random graph is that most of the
topological characteristics can be analytically
expressed in contrast to many others models
where computations are hardly possible [4],
[25].

The paper is organized as follows. Section 2
explains how the Dutch road infrastructure can
be represented by a graph. Section 3 presents
the analysis of the set of generic topologi-
cal characteristics, related to the connectivity,
degree, clustering, shortest path length and
the eigenvalue spectrum in Sections 3.1-3.5,
respectively. Section 4 summarizes our main
results on the topological characteristics of the
road graph.

II. CONSTRUCTING THE ROAD GRAPH

We have used the data from the National
Road Database, provided by the AVV, i.e. the
Dutch transport research centre, which is a
part of the Rijkswaterstaat organization. The
National Road Database is a digital database
of nearly all roads in the Netherlands. In the
National Road Database there are approxi-
mately 825 000 roadsections, each character-
ized by a unique roadsection-ID. The road
graph has been created by including only the
roadsections being part of the motorway or
the provincial road. Here, we must make one
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important remark: each roadsection is assigned
with a unique ID, even if it belongs to the
same road. A road, on the other hand, is also
characterized with a unique roadnumber. For
instance, a road separated in two lanes, each
having a unique roadsection-ID, is also having
the same roadnumber for both lanes. This
being the case, we take into account only the
roadsections having different roadnumbers. As
a consequence, the roadsection which repre-
sent a node in the road graph, is connected to
other nodes by an undirected link, resulting in
the road graph GR = (NR, LR), consisting of
NR = 14756 nodes and LR = 19253 links,
respectively.

III. TOPOLOGICAL CHARACTERISTICS

In this section, we quantitatively analyze the
graph of the road infrastructure in the terms
of various topological characteristics. The set
of topological characteristics we compute here
includes most of the characteristics discussed
in the networking literature. Along with these
widely considered topology characteristics, we
also analyze the graph’s spectrum of the as-
sociated adjacency matrix and the Laplacian
matrix.

A. Connectivity
A graph is connected if there exists a path

between each pair of nodes. When there is
no path between at least one pair of nodes,
a graph is said to be disconnected. A discon-
nected graph consist of several independent
components or clusters. We have used two
different procedures to check the number of
components the road graph has: the Prim’s
algorithm1 and the number of zero eigenvalues
of the Laplacian matrix. In fact, the multiplic-
ity of 0 as an eigenvalue of the Laplacian ma-
trix is equal to the number of components of a
graph [15]. The graph of the road infrastruc-
ture has exactly 170 components: the graph
of the largest component (LC), defined as
GLC = (NLC , LLC), contains NLC = 14098
nodes and LLC = 18689 links, respectively.
The second largest component has 24 nodes,
which makes the largest component to be ‘the
giant one’, since it clearly dominates all the

1Prim’s algorithm is an algorithm that finds a mini-
mum spanning tree for a connected weighted graph. This
means that it finds a subset of the links that forms a
tree that includes every node, where the total weight of
all the links in the tree is minimized. When a graph is
unweighted, any spanning tree is a minimum spanning
tree [6].

TABLE I
NUMBER OF CLUSTERS SNc WITH SIZE Nc IN THE

ROAD INFRASTRUCTURE GRAPH GR. IN THE

ANALYSIS OF GR , WE ALSO CONSIDER TWO

SUBGRAPHS: THE GRAPH GLC OF THE LARGEST

COMPONENT WITH NLC = 14098 NODES AND THE

GRAPH GRC OF THE REMAINING PART WITH

NRC = 658 NODES.

SNc 124 11 7 6 4
Nc 2 4 3 6 8

SNc 2 2 2 2 2
Nc 10 12 14 17 24

SNc 1 1 1 1 1 1 1 1
Nc 5 15 18 19 21 22 23 14098

other components. Table I depicts number of
components, defined as SNC

, of the size NC

contained in the road graph. Henceforth, along
with the graph of the largest cluster GLC ,
we also consider the graph formed by the
remaining clusters (RC), denoted as GRC =
(NRC , LRC), where NRC = 658 and LRC =
568, respectively.

B. Degree Distribution
The two most basic characteristics of a

graph are the number of nodes N and the
number of links L. They define the mean nodal
degree E[D] = 2L

N , which is the coarsest
connectivity characteristics of a graph. Net-
works with higher E[D] are better connected
on average and, consequently, are likely to
be more robust. The graph of the road in-
frastructure results in the mean nodal degree
of E[DR] = 2.6 whereas the largest cluster,
and the graph of the remaining clusters, have
a mean nodal degree of E[DLC ] = 2.7 and
E[DRC ] = 1.7 respectively.

The topological characteristics, given in
Subsection III-A, shows why the graph of
GLC has similar mean nodal degree as GR:
the two graphs have almost the same num-
ber of nodes while GLC has slightly more
links in relative sense. However, the mean
nodal degree of GLC , in contrast to the mean
nodal degree of the connected Erdős-Rényi
random graph2 E[DER] = p(NLC − 1) =
log (NLC) = 9.55, is rather low. This is due to

2The value of the link probability p above which a
random graph almost surely becomes connected tends,
for large N , to pc ∼ logN

N (for details see [17]).
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Fig. 1. The degree distribution of GR, along with
GLC and GRC .

the fact that in GLC the number of links and
nodes are comparable, creating the topology
with low-degree nodes. To examine this in
more detail, we have calculated the nodal
degree distribution.

The nodal degree distribution Pr[D = k] is
the probability that a randomly selected node
has a degree k. The nodal degree distribution
contains more information about connectivity
in a given graph than the mean nodal degree:
given a specific form of Pr[D = k] we
can always restore the mean nodal degree by
E[D] =

PDmax

k=1 kPr[D = k], where Dmax is
the maximum degree in a given graph. From
the degree distribution of the three considered
graphs, i.e. GR, GLC and GRC , shown in
Figure 1, we can deduce the following.

A node in GR is at least connected to
one and at most to six neighboring nodes.
Similarly, in GLC , whereas in GRC a node is
at most connected to four neighboring nodes.
Moreover, in GR and GLC , the probability
Pr[D = k] is largest for degree 3, in contrast
to GRC where most of the nodes have degree 1
(see also Table I). In fact, nodes with degree 1
and 3 dominate more than 82% of the structure
of GLC and GRC . This observation is also
very evident from Figures 2 and 3, which
show that the removal of links of nodes with
degree 3 and 1 has the largest impact on the
robustness of GLC and GRC , respectively.

To examine the correlation between the
degrees within the neighborhood of a node
i, we have calculated the average degree of
the neighbors of a node i, given that this
node has degree k. For GLC , this average
degree, as depicted in Figure 4, is nearly
constant. As the majority of nodes has degree
3, E[Dneighbors of node i|dnode i = k] follows
the prediction of being constant. However, for
a node with degree 2 this expected value is
showing that a node more likely connects to a
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Fig. 2. The degree distribution of GLC when the
links of nodes with degrees DLC = 1, 2, 3 and 4 are
removed. Clearly, the removal of nodes with DLC =
3 has the largest impact on the structure of GLC
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Fig. 4. The average degree of neighbors of a node
in GLC , given that this node has degree k.

lower degree node. Hence, these nodes consti-
tute the weakest part of the road infrastructure.
Recall that for GLC , we observed in Figure 1
that the probability for a node to have degree
2 is relatively small but still greater than the
probability Pr[D ≥ 4].

C. Clustering
Clustering expresses local robustness in the

graph and thus has practical implications: the
higher the local clustering of a node, the
more interconnected are its neighbors. Clus-
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tering in a graph is quantified by a clustering
coefficient, which is defined by Watts and
Strogatz [26], [27]. The clustering coefficient
cG(i) of a node i is the proportion of links
y between the nodes within the neighborhood
of a node i, divided by the number of links
that could possibly exist between them. For
an undirected graph, a node i with degree di
has at most di(di−1)

2 links among the nodes
within its neighborhood. Thus, the cluster-
ing coefficient cG(i) for a node i is given
by cG(i) = 2y

di(di−1) . In other words, the
clustering coefficient is the ratio between the
number of triangles that contain node i and
the number of triangles that could possibly
exist if all neighbors of i were interlinked.
The clustering coefficient for the entire graph
is the average of the clustering coefficient
of nodes with degree larger than 1, given as
cG =

1
N−|N (1)|

P
i∈N−N (1) cG(i), where N is

the set of all nodes and N (1) the set of degree
1 nodes in the graph.

In the graph of the largest cluster GLC ,
the clustering coefficient for 7976 nodes is
equal to 0, similar to lattice graphs where no
links exist among the neighboring nodes, i.e.
the neighbors of a node are not interlinked.
Although, 7976 nodes have the clustering co-
efficient equal to 0, the average clustering
coefficient for GLC , cLC = 0.11, is still
relatively high. For the Erdős-Rényi random
graph [25], with the same number of nodes as
in the largest cluster, the clustering coefficient
is cER =

E[DER]
NLC−1 = 0.00068, showing indeed

that the graph of the largest cluster graph has
relatively high clustering coefficient.

D. Shortest Path Length Distribution

The shortest path length is important for
many networking applications, the most im-
portant being routing. The basic characteristic
associated with the shortest path length is the
hopcount, i.e. the number of hops or links
between a pair of nodes3. Correspondingly,
the hopcount distribution Pr[H = h] is the
probability that a random pair of nodes are at
h hops from each other. From the hopcount
distribution, the mean hopcount is derived as
E[H] =

PHmax
h=1 hPr[H = h], where Hmax

is the longest hopcount between any pair of

3For many applications it is useful if links in a graph
can be labelled with a weight. Such a graph is referred to
as a weighted graph. Recall that in this analysis the link
weights are not taken into account. Hence, the shortest
path length equals the hopcount.
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Fig. 5. The shortest path length (hopcount) distri-
bution of GLC .

nodes. Hmax is also referred to as the diameter
d of a graph.

The hopcount distribution for the largest
cluster GLC of the road graph, as shown in
Figure 5, approximates the Gaussian distribu-
tion with the mean E[HLC ] = 80.6 and the
standard deviation σ[HLC ] =

p
V ar[HLC ] =√

1324.8 ' 36. According to Figure 5, the
diameter is dLC = 255. For the Erdős-Rényi
random graph of the same size as the largest
cluster, it is presented in [25] that the mean
hopcount is E[HER] =

ln(NLC)
ln(E[DER])

' 5 and
the diameter is about two times the mean hop-
count. These results indicate that the complex
network of the road infrastructure does not
follow the prediction of exponentially grow-
ing graphs, such as the Erdős-Rényi random
graph, but it belongs to the class of D-lattice
graphs, where E[H] ∼ D

3N
1

D and D is the
lattice dimension. Thus, the road infrastructure
graph most likely is a subgraph of a two-
dimensional lattice graph because the lattice
dimension equals D = 1.99.

E. Graph Spectra
We have calculated the spectrum of the ad-

jacency matrix and the Laplacian matrix of the
road infrastructure graph. First, we introduce
the adjacency matrix and the Laplacian matrix
that allow us to calculate the graph spectra.

The adjacency matrix A of a graph G with
N nodes is an N ×N matrix whose rows and
columns are labeled by graph nodes, i.e. a 1 or
0 in position (i, j) according to whether node i
and node j are adjacent or not. The Laplacian
matrix of a graph G with N nodes is an N×N
matrix4 Q = ∆ − A, where ∆ = diag(ki)
and ki is the degree of the node i ∈ N . The

4Note that for k-regular graphs we have Q = kI−A.
In contrast, for non-regular graphs there is no easy one-
to-one correspondence between A and Q.
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Fig. 6. The adjacency spectrum of GLC .

eigenvalues of A and Q are called respectively
the adjacency and the Laplacian eigenvalues.

The adjacency eigenvalues are all real, de-
noted by λN ≤ λN−1 ≤ ... ≤ λ1. The
spectral density of a graph is the density of
the eigenvalues of its adjacency matrix A. For
a finite system, it can be written as a sum
of δ functions ρ(λ) = 1

N

PN
i=1 δ(λ − λi),

which converges to a continuous function with
N →∞. The spectral density of a graph can
be directly related to the graph’s topological
characteristics [7]. In Figure 6, the spectral
density of the largest component of the road
graph is shown. Since no triangles exist in
a subgraph of lattice, we are interested in
whether triangles exist in the structure of GLC .
This can be derived from the characteristic
polynomial [25]: the number of triangles in
GLC is 1

6

PN
i=1 λ

3
i = 1448.

Peaks in the spectrum reflect structure and
regularity in the graph. Given that most of
the nodes have degree 1 or 3, the regularity
in the structure is expected. Hence, nodes
with small degrees are responsible for the
peak at λ = 0 [9], [14]. For instance, the
local configurations with two and more dead-
end nodes produce eigenstates λ = 0, where
the dead-end node is a node with degree 1.
The corresponding eigenvectors have non-zero
components only at the dead-end nodes [16],
[24]. More local configurations that produce
zero eigenvalue are shown in Figure 8. In fact,
each time when two rows in the adjacency
matrix A are the same, the rank of A decreases
with 1, which is equivalent to an increase in
the multiplicity of the eigenvalues λ = 0.
Furthermore, two connected nodes with the
same neighbors result in the eigenvalue −1.
This is due to the fact that the sum of the
identity matrix I and the adjacency matrix A
has identical rows, which correspond to the
two connected nodes.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eigenvalue x

f µ(x
)

road graph
largest comp. of road graph
remaining comps of road graph

Fig. 7. The Laplacian spectrum of GR, along with
GLC and GRC .

The Laplacian eigenvalues are all real and
nonnegative [21]: they are contained in the
interval [0, N ]. The set of all N Laplacian
eigenvalues µN = 0 ≤ µN−1 ≤ ... ≤ µ1
is called the Laplacian spectrum of a graph
G. Figure 7 depicts the Laplacian spectrum
of the entire graph GR, along with the largest
component GLC and the remaining part GRC

of the road infrastructure.
The Laplacian spectrum of the road graph

contains a peak at µ = 1 and several smaller
peaks at µ = 2, 3, 4 and 5, respectively. A
peak at µ = 1 most likely originates from
a significant amount of nodes with degree 1
[9], [14]. Taking this conjecture into account,
the question we seek to answer is: "Does the
specific spectral behavior of the road graph
come from the majority of nodes with the cor-
responding degree?" or else, "To what extent
are the basic topological structures, such as a
path, cycle and a tree, responsible for it?" To
answer this question we will study the Lapla-
cian spectrum of two considered subgraphs,
GLC and GRC . In particular, we will examine
whether a specific spectral behavior of the
road graph originates from the nodes located
in GLC and more importantly, which nodes
are responsible for it?

From Figure 7 we observe that GR has
almost the same spectral behavior as GLC .
The only difference is that in the spectrum of
GLC there exists no peak at µ = 2. Moreover,
in Figure 7 we observe that the spectrum of
GRC has a peak at µ = 2 and smaller ones at
µ = 1, 3 and 4, respectively. The Laplacian
spectrum of a graph, which is a union of
several disjoint components, is the addition
of the spectra of each component [21]. The
same holds true for GRC , consisting of 169
components from which 124 are line graphs
with only two nodes. In fact, the Laplacian
spectrum of the path graph PN with N = 2
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nodes comprises the eigenvalues µ (P2) = 0
and 2. Thus, the majority of nodes with the
degree 1 is also responsible for the peak in
the spectrum of GRC and, consequently, for
the disappearance of the peak at µ = 2 in
the Laplacian spectrum of GLC . Recall that
besides this peak at µ = 2, caused by the basic
topological structure, nodes with small de-
grees, i.e. degree 1, are primarily responsible
for the peak at the corresponding µ. In Figures
13, 14, 15 and 16, respectively, we plot the
Laplacian spectrum of GRC after sequential
removal of nodes with degrees 1, 2, 3 and 4,
respectively. From these Figures we observe
that although a peak at certain µ primarily
originates from a significant amount of nodes
with the corresponding degree, the specific
spectral behavior of GRC is above all influ-
enced by eigenvalues being a consequence of
basic topological structures. Thus, only the
nodes of GRC with degree 1 are responsible
for the peak at µ = 2 in the Laplacian
spectrum of GR.

In Figures 9, 10, 11 and 12, we plot the
Laplacian spectrum of GRC after sequential
removal of nodes with degrees DLG = 1, 2, 3
and 4, respectively. From Figure 9 it is obvious
that the peak at µ = 1 primarily originates
from nodes with the corresponding degree
whereas in Figure 11 we see that the removal
of nodes with degree 3 completely changes
the structure of the road graph. On the other
hand, in Figures 10 and 12 it is visible that the
removal of nodes with degree 2 and 4 does not
influence the underlying structure.

The application of the Laplacian spectrum
analysis to the three considered graphs leads
to the following conclusion. Peaks appearing
in the spectra are mainly due to the majority
of nodes with the corresponding degree, since
the removal of nodes with degree of lower
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Fig. 8. Local configurations that produce zero eigen-
value in the spectrum of the adjacency matrix.
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probability of appearance hardly does influ-
ence the underlying structure of the subgraph
in consideration. Moreover, the basic topolog-
ical structures are responsible for a particular
spectral behavior but only if the majority of
nodes to a large extent contributes to it.

IV. CONCLUSION

This paper has focussed on the road in-
frastructure of the Netherlands, which is an
example of a complex network. For this com-
plex network we have calculated topological
characteristics related to connectivity, degree,
clustering and the shortest path length. Apart
from these widely considered characteristics,
we have investigated the graph’s spectrum of
the associated adjacency and the Laplacian
matrix. In particular, we discussed how the
underlying complex principles, captured in a
wide range of topological characteristics, are
related to the robustness of the road graph.

The topological characteristics we have an-
alyzed, reveal the following conclusions. The
graph of the road infrastructure is dominated
by a single giant component. The degree dis-
tribution, derived from the entire as well as the
largest component, differs substantially from
that of many other real-world networks: in
literature, e.g. [1], [23], it has been over-
whelmingly shown that the degree distribution
of many real-world graphs belongs to the class
of scale-free networks. Furthermore, in [23],
many real-world graphs have a small-world
character similar to random graphs, but they
have unusually large clustering coefficient like
scale-free networks. Recall, in Section III-D
we showed that the Dutch road infrastructure
does not have short path lengths because it is
most likely a subgraph of a two-dimensional
lattice. Despite the awareness that the Dutch
road infrastructure differs substantially from
many other real-world networks, its topolog-
ical characteristics do resemble specific com-
plex structures, for instance the power grid,
which is also found in [23].

In this paper, we used a set of generic topo-
logical characteristics to analyze the underly-
ing topology of the road infrastructure graph.
Consequently, a broader group of complex
networks stands on the agenda for future work.
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