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Abstract. Many networks are characterized by the presence of communities, densely intra-connected groups
with sparser inter-connections between groups. We propose a community overlay network representation
to capture large-scale properties of communities. A community overlay Go can be constructed upon
a network G, called the underlying network, by (a) aggregating each community in G as a node in
the overlay Go; (b) connecting two nodes in the overlay if the corresponding two communities in the
underlying network have a number of direct links in between, (c) assigning to each node/link in the
overlay a node/link weight, which represents e.g. the percentage of links in/between the corresponding
underlying communities. The community overlays have been constructed upon a large number of real-
world networks based on communities detected via five algorithms. Surprisingly, we find the following
seemingly universal properties: (i) an overlay has a smaller degree-degree correlation than its underlying
network ρo(Dl+ , Dl−) < ρ(Dl+ , Dl−) and is mostly disassortative ρo(Dl+ , Dl−) < 0; (ii) a community
containing a large number Wi of nodes tends to connect to many other communities ρo(Wi, Di) > 0.
We explain the generic observation (i) by two facts: (1) degree-degree correlation or assortativity tends to
be positively correlated with modularity; (2) by aggregating each community as a node, the modularity
in the overlay is reduced and so is the assortativity. The observation (i) implies that the assortativity of a
network depends on the aggregation level of the network representation, which is illustrated by the Internet
topology at router and AS level.

1 Introduction

A large system of elements (nodes) and their interactions
or relations (links) can be represented as a network, a
set of nodes interconnected by a set of links. Examples
of complex networks range from biological networks and
communication networks to social networks. The charac-
terization of networks has been extensively investigated
to understand the effect of the network structure on its
functioning [1,2]. Graph theoretical analysis of complex
networks has taken a large flight with the discovery of
small-world properties [3] and the power-law degree dis-
tribution [4] in the late nineties of the last century. Most
studied properties focus on the properties of individual
nodes or node pairs such as the distance between a node
pair and the similarity of two connected nodes in degree.

However, it is equally important to examine the large-
scale properties of a network as a whole. It has been shown
that many complex networks are characterized by the
presence of communities or modules, densely connected
groups of nodes with sparser connections between groups.
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Algorithms to detect non-overlapping communities have
been extensively studied aiming to improve the partition-
ing quality, to reduce the computational complexity as
well as to incorporate extra community related informa-
tion [5–8]. One fascinating observation is that community
sizes, which is the number of nodes in a community, follow
a power law distribution [9,10], when the network is parti-
tioned to maximize the modularity, an measure proposed
by Newman [11] to quantify the quality of a partition-
ing. Statistical properties of overlapping communities has
been studied in e.g. [12]. Moreover, a network can be tiled
instead of with communities but with boxes, where all
nodes within a box are connected by a minimum distance
smaller than a given lB. Large-scale properties at the level
of boxes have been studied in [13].

Many studies have focused on algorithms to detect
community structures and basic community related prop-
erties such as community sizes. In this paper, we propose
to systematically study large-scale properties of complex
networks on a higher hierarchical level: the community
overlay. A community overlay network can be constructed
as shown in Figure 1: first, non-overlapping communities
can be detected via partitioning algorithm in the origi-
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Fig. 1. (Color online) A network G with N = 95 nodes and
L = 213 links and its community overlay network Go. Nodes
with the same color belong to the same community. In the
overlay network, the size of a node is proportional to its node
weight wi = ni/N and the width of a link is proportional to
its link weight wij = lij/L.

nal network, called the underlying network, G(N, L) with
N nodes and L links. Each community is generally a
subgraph with a set of community members densely in-
terconnected by a set of links. Furthermore, we condense
each community in the underlying network as a node in
the community overlay network Go. Two nodes i and j
in the overlay Go are connected if the underlying net-
work has a positive number lij > 0 of links with two end
nodes residing in the corresponding two communities re-
spectively. We assign to each link (i, j) in the overlay Go

a link weight wij = lij/L, and similarly, to each node i a
node weight wi = ni/N , which is the percentage of nodes
residing in the underlying community i. The node weight
can be also any other topological measure of the corre-
sponding community. In this way, the community overlay
network Go captures network features at the community
level. It is a condensed network expression with both link
and node weights. We consider non-overlapping instead of
overlapping communities as the nodes of the overlay, since
analytical approach tends to be feasible when nodes in a
network are as independent as possible.

In this paper, we will investigate whether universal
properties exist in the community overlays upon real-
world complex networks. The second goal is to understand
the relation between characteristics of the underlying net-
work and of its community overlay. This may explain the
general features observed in the community overly net-
works, if there are.

2 Algorithms to detect communities

Finding community structure in complex networks is im-
portant to grasp inherent properties of complex networks,
which can be reflected by the community overlay. How-
ever, some properties observed in the community overlay
can be introduced by the intrinsic mechanism of a com-

munity detection algorithm. In order to avoid this, we se-
lect five algorithms based on different principles. We do
not specify the number of communities in advance nor
use extra community related information such as the node
type in protein network. Hence, we select algorithms that
detect the community structure according to the natural
topological structure.

Table 1 lists the five algorithms we adopt to detect
communities. The modularity M , proposed by Newman
and Girvan [14], is a measure of the quality of a particular
division of the network, which is defined in [11] as

M =

1
2L

N∑
i=1

N∑
j=1

(
aij− didj

2L

)
1{i and j belong to the same community}

(1)

where aij is the matrix element of the adjacency matrix1

A of the graph and di is the degree (the number of neigh-
bors) of node i. The modularity is proportional to the
number of links falling within clusters or groups minus
the expected number in an equivalent network with links
placed at random. Thus, if the number of links within a
group is no better than random, the modularity is zero. A
modularity approaching one reflects networks with strong
community structure: a dense intra-group and a sparse
inter-group connection pattern. If links are placed at ran-
dom, then the expected number of links between node i

and node j equals didj

2L , where dj is the degree of node j.
The motivation of algorithm cnm [15] is to partition a
network into communities with maximum modularity.

Algorithm btw [16] computes community structure in
graphs based on link betweenness. The betweenness of a
link (i, j) is defined as the number of shortest paths be-
tween all pairs of nodes which run through (i, j). If a net-
work contains communities or groups that are only loosely
connected by a few inter-group links, then all shortest
paths between different communities traverse one of these
few links. Thus, the links connecting communities will
have a high link betweenness. By removing these links,
the network can be separated into different communities.

The idea of vot algorithm [8] is that each link is re-
garded as a resistor with the same resistance, and we can
connect a battery between two arbitrary nodes so that
each node has its fixed voltage, thereby building a volt-
age difference. Since nodes inside a community are densely
connected, their voltages tend to be close. A big voltage
gap happens about halfway between the two communities,
where the links are sparse and the local resistance is large.
Therefore, nodes can be divided into different communi-
ties according to a voltage threshold.

Algorithm mrw [17] introduces an information the-
oretic approach that reveals community structure in
weighted and directed networks to comprehend the mul-
tipartite organization of large-scale biological and so-
cial systems. The result is a map that both simplifies

1 Each element aij is either 1 or 0 depending on whether
node i and j are connected or not.
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Table 1. Community partitioning algorithms.

Label (abbreviation) Running time Granularity (number of modules detected) Ref.

CNM (cnm) O(N log2 N) 1st largest number of modules [15]

EdgeBetweeness (btw) O(kmN) 3rd largest number of modules [16]

Voltage (vot) O(N + L) 5th largest number of modules [8]

MRW (mrw) O(N log N) 4th largest number of modules [17]

h-cnm NA 2nd largest number of modules [18]

and highlights the regularities in the structure and their
relationships.

Algorithm h-cnm [18] is based on the cnm algorithm.
It attempts to merge community structures in a balanced
manner which dramatically speeds up the computation
and slightly improves the modularity.

3 Network metrics

We will examine properties of real-world networks as
well as their corresponding community overlay networks
mainly via assortativity and modularity defined as (1).
Since the number of communities in real-world networks,
equivalently, the size of their community overlays differ
from network to network, we cannot simply compare com-
munity overlays of different sizes by graph metrics such as
the average distance between two nodes. Therefore, we
study the metrics which are independent of the network
size. “Mixing” in complex networks [19] refers to the ten-
dency of network nodes to connect preferentially to other
nodes with either similar or opposite properties. Mixing
is computed [20] via the correlations between the prop-
erties of connected node pairs, such as the degree-degree
correlation

ρ(Dl+ , Dl−) = 1 −
∑

i∼j (di − dj)
2

N∑
i=1

d3
i − 1

2L

(
N∑

i=1

d2
i

)2 (2)

where di is the degree (number of neighbors) of node i,
i ∼ j represents the condition that i and j are connected,
N and L are the number of nodes and links respectively.
Networks, where nodes preferentially connect to nodes
with (dis)similar property, are called (dis)assortative. For
example, networks, where high degree nodes preferentially
connect to other high degree nodes, are assortative in de-
gree correlation ρ(Dl+ , Dl−) > 0, whereas networks, where
high degree nodes connect to low-degree nodes, are disas-
sortative ρ(Dl+ , Dl−) < 0. Such a correlation, called as-
sortativity, will be examined based on the degree as well
as on the node weight (e.g. the size of the underlying com-
munity) correlation in the overlay network.

One fundamental link weight related measure [21] is
the link weight correlation of links incident to a node.
The link weight correlation examines whether links con-
nected to a same node tend to possess similar or dissim-

ilar link weights. Ramasco and Gonçalves [22] have pro-
posed a measure that examines the ratio of the average
link weight variance around each node to that of an en-
semble of weight-reshuffled instances of the original graph.
For example, the variance of the link weight around a node
i can be defined as

σ2
w(i) = Σj∈N (i)

(
wij −

Σj∈N (i)wij

di

)2

where N (i) is the set of neighboring nodes of i and
Σj∈N(i)wij

di
is, thus, the average link weight of the links ar-

riving at i. The link weight correlation is then measured
as

Δw =
Eorg[σw ]
Erand[σw]

(3)

where the average standard deviation of link weights
around each node E[σw] is estimated for the original graph
and an ensemble of weight-reshuffled2 instances. The type
of link weight correlation around each node in a network
is revealed by comparing with the randomized instances:
positive (Δw < 1), negative (Δw > 1) or non-correlated
(Δw = 1).

4 Characterizing the community overlays

In this section, we examine features of the large set of real-
world networks and of their community overlays. We have
collected a large data set of real-world networks which rep-
resent the topology of various complex systems. Most of
the data sets, that we have used, are available publicly.
They are complex networks from a wide range of systems
in nature and society. A network is connected if there ex-
ists a path between each pair of nodes. We consider only
the networks formed by the largest connected component
of our real-world networks. Furthermore, we also generate
a network from each classical network model including
the Barabási-Albert power law graph3, the Erdős-Rényi

2 The set of L link weights are re-assigned randomly to the
set of L links.

3 It starts with m nodes. At every time step, we add a new
node with m links that connect the new node to m different
nodes already present in the graph. The probability that a new
node will be connected to node i in step t is proportional to
the degree di(t) of that node.
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Table 2. Network data set. N is node number and L is edge number in network. ρ(Dl+ , Dl−) and ρo(Dl+ , Dl− ) are the
assortativity of the original network and of the community overlay respectively. (a) Network of American football games
between Division IA colleges during regular season Fall 2000, as compiled by Girvan and Newman; (b) network of coauthorships
between scientists posting preprints on the High-Energy Theory E-Print Archive between Jan 1, 1995 and December 31, 1999;
(c) symmetrized snapshot of the structure of the Internet at the level of autonomous systems, reconstructed from BGP tables
posted at archive.routeviews.org; (d) Gnutella snapshots; (e) the direct airport-to-airport American mileage a maintained by
the US Bureau of Transportation Statistics; (f) a graph representing the interconnection between cities in the Netherlands;
(g) class collaborations and call graphs (nodes represent classes, links relations between them) for different software libraries;
(h) the same as(g), but for Linux; (i) protien-protien interaction network in budding yeast; (j) network representing the neural
network of Elegans; (k) Erdős-Rényi random graph; (l) Barabási-Albert power law graph; (m) word-adjacency network of a text
in English; (n) power-grid infrastructure at three different levels of one city-area in Western Europe.

Classification Network N L ρ(Dl+ , Dl− ) ρo(Dl+ , Dl− )

Social a America football 115 613 0.163 −0.119

b High Energy Theory C 5835 13 815 0.185 −0.450

Technological c Internet AS 20060722 22 963 48 436 −0.198 −0.508

d Gnutella crawls 737 803 −0.193 −0.230

Transportation e Air transportation 2179 31 326 −0.688 −0.688

f Dutch road 29 663 34 982 0.246 −0.106

Software Networks g My Sql 5285 11 352 −0.083 −0.465

h Linux 29 663 34 982 −0.068 −0.482

Biological i Yeast 1458 1948 −2.10 −0.175

j C. Elegans 297 2148 −0.163 −0.253

Model k Erdős-Rényi random graph 500 1446 −0.005 −0.333

l Barabási-Albert power law graph 500 1500 −0.055 −0.538

Others m Word Adjacencies English Book 7377 44 205 −0.237 −0.475

n Western Europe Power Grid 3419 3953 −0.128 −0.214

random graph4 and the PFP graph5. The total number of
networks reaches 82. These networks range from biologi-
cal networks, technological networks to social networks as
partly shown in Table 2. More descriptions about these
complex networks can be found in6. Due to the computa-
tional complexity of algorithms of detecting communities,
our data set does not include extremely large networks
such as the social network of users registered to Youtube,
which contains more than 106 nodes.

4.1 Community overlay

We use G(N, L) to denote the original underlying net-
work with N nodes and L links. Recall that each node

4 It can be generated from a set of N nodes by randomly
assigning a link with probability p to each pair of nodes.

5 It grows Internet-like networks by using the two mecha-
nisms. (1) Interactive growth: with probability p, a new node
is attached to an old node in the existing system and two new
internal links are added connecting this old node to two other
old nodes; and with probability 1−p, a new node is attached to
two old nodes and one new internal link is added connecting
one of the two old nodes to another old node. (2) Positive-
Feedback Preference. The probability that a link is attached
to an old node i with degree ki is proportional to the degree
of that node.

6 http://www.nas.its.tudelft.nl/index.php/research/

127

i in the community overlay Go represents a community
in the underlying graph and a link weight wij = lij/L
in Go represents the percentage of links in the under-
lying network directly connecting the two corresponding
communities. We may assign to each node in the over-
lay a node weight wi, which can be the percentage of
nodes/links or any other topological measure of the corre-
sponding community. As an initial start, we consider only
the percentage of nodes ni/N or links li/L in a commu-
nity as a potential node weight. Communities as defined
are densely intra-connected and sparsely inter-connected.
Thus,

∑No

i=1 li = O(L) where No is the number of com-
munities and li = O(nα

i ) where α ≥ 1. Furthermore, real-
world networks are mostly sparse graphs where L = O(N)
and

∑No

i=1 ni = N . Hence, ni = O(li), the percentage of
nodes contained in a community is expected to be pro-
portional to the percentage of links in this community.
We examine four large networks. As shown in Figure 2,
the number of nodes versus the number of links in a com-
munity is close to a linear function. In these cases, it is
sufficient to consider only e.g. the percentage of nodes in
a community as the node weight. Actually, we have con-
sidered both percentage of nodes and percentage of links
in a community as the node weight. They always point
to similar observations. In this paper, we only illustrate
the results where the percentage of nodes in a community
quantifies the node weight wi = ni/N and

∑No

i=1 wi = 1.
For each real-world network, we construct five commu-

nity overlays based on the communities detected via five
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Fig. 2. (Color online) The number of links W nl
i in a community versus the number of nodes W nn

i in that community in four
networks. Internet AS topology: N = 22 963, L = 48 436; next generation network: N = 29 902; L = 32 707; Dutch road map:
N = 32 171, L = 37 447; CondMat, Network of coauthorships between scientists posting preprints on the Condensed Matter
E-Print Archive: N = 27 519, L = 116 181. Algorithm cnm has been applied to detect communities.

algorithms. Community detection algorithms cnm, h-cnm,
vot and mrw have been applied to all the 82 networks,
while the more time consuming algorithm btw has been
only used for the 44 smaller networks. We present the re-
sults of btw in the Appendix and the results of the other
four algorithms in the main text so that the figures are
clear.

4.2 Assortativity and modularity

Firstly, we investigate the degree-degree correlation or de-
gree assortativity of each real-world network as well as
of its 5 community overlays. As shown in Figure 3, the
assortativity of the overlay is smaller than that of the un-
derlying network ρo(Dl+ , Dl−) < ρ(Dl+ , Dl−). Moreover,
the community overlays upon all real-world networks are
mostly disassortative since ρo(Dl+ , Dl−) < 0. These two
observations hold surprisingly for almost all the networks
that we studied, independent of the algorithms applied.

Why is the community overlay more disassortative
than the underlying network ρo(Dl+ , Dl−) < ρ(Dl+ , Dl−)?
Although the influence of degree distribution on assor-
tativity has been widely studied [23,24], this can not be
explained by degree distribution alone because of the fol-
lowing two reasons: Firstly, the networks we considered as
well as their overlays possess diverse degree distribution
whereas they lead to the same observation that the overlay
is more disassortative; secondly, the assortativity tends to
be able to vary over a large range without changing the
degree distribution [24,25].
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Fig. 3. (Color online) Degree-degree correlation of each real-
world network ρ(Dl+ , Dl− ) and of its community overlay
ρo(Dl+ , Dl− ). The dotted line is ρo(Dl+ , Dl− ) = ρ(Dl+ , Dl− ).

In order to explain why the overlays are more dis-
assortative, we first investigate the relation between as-
sortativity and modularity. Here, we illustrate the rela-
tion between modularity and assortativity of a network
given a degree distribution. We have deduced a degree-
preserving rewiring algorithm in [20], that, each rewiring
step, either increases or decreases the assortativity of a
graph. For example, the degree-preserving assortative ran-
dom rewiring is defined as follows: Randomly select two
links associated with four nodes and then rewire the two
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Fig. 4. (Color online) The modularity for both the Barabási-
Albert scale-free graph (N = 500, L = 1500) and the Erdös-
Rényi random graph (N = 500, L = 1500) as a function of the
degree-degree correlation. The algorithm cnm has been used
to detect communities.

links such that the two nodes with the highest degree and
the two lowest-degree nodes are connected. If any of the
new links exists before rewiring, discard this step and a
new pair of links is randomly selected. Given a network,
the degree-degree correlation can be tuned to range from
the minimum to the maximum assortativity via degree-
preserving random rewiring. We consider two represen-
tative graphs, a Barabási-Albert scale-free graph and an
Erdös-Rényi random graph, each with N = 500 nodes
and L = 1500 links. Figure 4 depicts the modularity as
a function of the degree-degree correlation. Actually, the
assortativity has been varied from the minimum to the
maximum for 100 times for each graph. The modularity
has been averaged over the 100 realizations. The modu-
larity is mostly positively correlated to the degree-degree
correlation, especially when the degree-degree correlation
is large. However, negative correlation has been observed
in Figure 4 when the assortativity approaches the mini-
mum7 as well as in another example in [26]. The positive
correlation between assortativity and modularity is, thus,
not universal, but it has been widely observed in real-
world networks and simulated networks and so far has
been explained in [26–28]. Note that the network is always
required to be connected during each degree-preserving
random rewiring step. Similar results have been observed
in [26] where network connectivity is not restricted during
the rewiring.

Newman suggested that assortative mixing is one pos-
sible mechanism for community formation [27]. The other
way around, if a network has an evident community struc-
ture reflected by a large modularity m, the structures
within communities are relatively homogeneous. In this
case, nodes with a similar degree tend to be connected,

7 A real-world network seldom achieves the minimum assor-
tativity given its degree sequence as shown in [30].

which contributes to a large assortativity. Thus, a higher
modularity contributes to a large assortativity as further
explained in [28]. These arguments supports that social
networks are in general more assortative than other real-
world networks because of their modular structure, even
when those networks are of different sizes and link densi-
ties [28]. It is the modular or group structure that (par-
tially) account for the assortativity [28].

In view of the relation between modularity and degree-
degree correlation, we study the modularity of the set of
real-world networks as well as their community overlays.
In general, the overlay has a smaller modularity than the
original network Mo < M, as depicted in Figure 5a. After
condensing each community as a node in the overlay, the
community structure exhibited in the underlying graph
disappears at least partially. Another explanation for the
decrease of modularity in the overlay is that the modular-
ity of a network tends to be small in a dense network [29].
As shown in Figure 5b, the overlay is mostly denser than
the corresponding underlying network.

Another observation is that the modularity of the two
layers are positively correlated with each other. A network
with a large modularity has few links between communi-
ties. Correspondingly, the number of links in the overlay
tends to be small, which may render a large modular-
ity of the overlay [29]. An example is given in Figure 6.
Two networks with distinct modularity are derived from
the Netscience network by degree-preserving rewiring. The
community overlay upon the network with a large modu-
larity is shown to be apparently sparse and its modularity
is large.

The overlay network is constructed by abbreviating
each community in the underlying network as a node. In
this way, the community structure in the overlay is less ev-
ident than in the underlying network, rendering Mo < M .
The modularity and the degree-degree correlation tend to
be positively correlated. In other words, modular struc-
ture contributes to a high assortativity. As a result, the
overlay has a weaker degree-degree correlation compared
to the original network. The overlay is more disassortative.
Newman [31] found that technological and biological net-
works are disassortative while social networks are assor-
tative. Here, we argue that the assortativity of a network
also depends on the aggregated level of the network: a net-
work is more disassortative at a higher aggregated level.
One example is the Internet, a network of autonomous sys-
tems (AS) which are collections of IP networks and routers
under the control of one or more network operators. The
Internet at AS level, as expected, is more disassortative
than that at the router level: ρAS(Dl+ , Dl−) = −0.189 <
ρrouter(Dl+ , Dl−) = −0.024 [31,32].

4.3 Node weight related properties

The node weight in the community overlay represents the
percentage of nodes contained in the underlying commu-
nity. Figure 7a illustrates that the linear correlation co-
efficient between the degree and the weight of a node in
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Fig. 6. (Color online) NetScience network (N = 379, L = 914) rewired to network (a) with a large modulairy M = 0.859
with its community overlay Go(N = 23, L = 27), Mo = 0.354 and to network (b) with a small modularity M = 0.567 with its
community overlay Go(N = 24, L = 180), Mo = 0.

0.5

0.0

-0.5

ρ 
o 

(D
i ,W

i )
 

806040200

index of community overlay networks

 cnm
 h-cnm
 mrw
 vot -1.0

-0.5

0.0

0.5

1.0

ρ o
 (W

l+
 ,W

i- ) 

806040200

index of community overlay networks

 cnm
 h-cnm
 mrw
 vot

(a ) (b )

Fig. 7. (Color online) (a) The correlation coefficient ρo(Di, Wi) between the degree and the weight of a node in the community
overlay networks. (b) The node weight-node weight correlation ρo(Wl+ , Wl−) in the community overlay networks.
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Fig. 8. (Color online) Link weight correlation Δw around a
node in community overlay networks.

the overlays is mostly positive8 ρo(Di, Wi) > 0. In other
words, a community containing a large number of nodes
in the underlying network tends to be directly connected
to many other communities. Since the degree correlation
in the overlay is mostly disassortative ρo(Dl+ , Dl−) < 0
and ρo(Di, Wi) > 0, node weight-node weight correla-
tion9 ρo(Wl+ , Wl−) can be expected to be disassortative,
as shown in Figure 7b.

4.4 Link weight related properties

The link weight correlation around a node is examined by
the metric Δw, as defined in (3). As depicted in Figure 8,
no generic features have been observed in link weight cor-
relation.

Finally, one may wonder whether a community with
a large number of nodes inside tend to connect to other
communities via many links. Thus, we examine the corre-
lation between the node weight Wi and the average link
weight

∑
j Wij/Di around the node. No obvious generic

correlation has been found, as shown in Figure 9. How-
ever, it seems that the community partitioning algorithm
cnm by Newman favors a negative correlation: a commu-
nity with a large number of nodes has, on average, a small
number of links to other communities. This observation
follows the concept of algorithm cnm, which maximizes
the modularity (1), equivalently, minimizes the number of
links between communities. Figure 9 illustrates the influ-
ence of community detection algorithms on the observed
community properties, which motivates us to choose five
algorithms based on different principles to observe the real
universal properties on the community overlays.

8 Note that several overlays have a degree and node weight
correlation close to zero. As shown in Figure 5b, the link den-
sity of some overlays is close to one. In this case, all the nodes
have almost the same degree and there is no correlation be-
tween degree and node weight.

9 The node weight-node weight correlation is the linear cor-
relation coefficient in the node weight of all connected node
pairs in a network. It is also the assortativity based on node
weight.
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Fig. 9. (Color online) The correlation coefficient between the
node weight Wi and the average link weight around the node∑

j Wij/Di.

5 Conclusion

The proposed community overlay (Fig. 1) captures the
interconnections of the underlying communities, the per-
centage of links between communities and the percent-
age of nodes/links or other properties of underlying
communities. It allows us to systematically investigate
large-scale properties of networks at community level. Dif-
ferent community detection algorithms return most often
different community partitions. Without loosing general-
ity, we selected five classic algorithms based on distinct
principles. The community structures of a large number of
real-world networks have been computed by the five algo-
rithms. Each community structure detected by each algo-
rithm is mapped into a community overlay. The following
overlay properties seems to be universal, independent of
the underlying network and the detection algorithm: (a)
the overlay network is more disassortative in degree-degree
correlation compared to the original network; (b) a large
community tends to connect to many other communities;
(c) large communities tend to connect to small commu-
nities and (d) the modularity of the underlying network
and of the overlay are positively correlated. Observation
(c) is a natural consequence of (a) and (b). Actually, as
we condense each community in the underlying network
into a node in the overlay, the modularity in reduced. In
other words, evident community structure hardly appears
in the overlay. Modularity tends to be positively correlated
with or contributes to assortativity. Thus, the assortativ-
ity in the overlay is expected to be smaller or the overlay is
more disassortative. Whether a complex network is assor-
tative or disassortative does not only depend on the mech-
anism based on which the network evolves. The seemingly
generic observation (a) suggests that the aggregation level
of a network plays also an important role in determining
the assortativity of a network. This may explain the dis-
assortativity observed in the As level Internet topology,
which is a higher hierarchical level upon the router level
Internet topology.
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Appendix: Results derived from algorithm btw
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Fig. A.3. (Color online) (a) The correlation coefficient
ρo(Di, Wi) between the degree and the weight of a node in the
community overlay networks. (b) The node weight-node weight
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