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Abstract – It was recently found that cascading failures can cause the abrupt breakdown of a
system of interdependent networks. Using the percolation method developed for single clustered
networks by Newman (Phys. Rev. Lett., 103 (2009) 058701), we develop an analytical method for
studying how clustering within the networks of a system of interdependent networks affects the
system’s robustness. We find that clustering significantly increases the vulnerability of the system,
which is represented by the increased value of the percolation threshold pc in interdependent
networks.

Copyright c© EPLA, 2013

Introduction. – In a system of interdependent
networks, the functioning of nodes in one network
is dependent upon the functioning of nodes in other
networks of the system. The failure of nodes in one
network can cause nodes in other networks to fail,
which in turn can cause further damage to the first
network, leading to cascading failures and catastrophic
consequences. For example, power blackouts across
entire countries have been caused by cascading fail-
ures between the interdependent communication and
power grid systems [1,2]. Because infrastructures in our
modern society are becoming increasingly interdependent,
understanding how systemic robustness is affected by
these interdependencies is essential if we are to design
infrastructures that are resilient [3–6]. Another example
is the human organism is an integrated network where
complex physiological systems, each with its own regula-
tory mechanisms, continuously interact, and where failure
of one network can trigger a breakdown of the entire
system [7]. In addition to research carried out on specific
systems [8–16], a mathematical framework [17] and its
generalizations [18–20] have been developed recently.
These studies use a percolation approach to analyze a
system of two or more interdependent networks subject to
cascading failure [21,22]. It was found that interdependent
networks are significantly more vulnerable than their

stand-alone counterparts. The dynamics of cascading
failure are strongly affected by the structure patterns
of network components and by the interaction between
networks. This research has focused almost exclusively
on random interdependent networks in which clustering
within component networks is small or approaches zero.
Clustering quantifies the propensity for two neighbors of
the same vertex to also be neighbors of each other, form-
ing triangle-shaped configurations in the network [23–25].
Unlike random networks in which there is very little
or no clustering, real-world networks exhibit significant
clustering. Recent studies have shown that, for single
networks, both bond percolation and site percolation
in clustered networks have higher epidemic thresholds
compared to the unclustered networks [26–32].
Here we present a mathematical framework for

understanding how the robustness of interdependent
networks is affected by clustering within the network
components. We extend the percolation method devel-
oped by Newman [26] for single clustered networks to
coupled clustered networks. We find that interdepen-
dent networks that exhibit significant clustering are
more vulnerable to random node failure than networks
without significant clustering. We are able to simplify
our interdependent-networks model —without losing
its general applicability— by reducing its size to two
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networks, A and B, each having the same number of
nodes N . The N nodes in A and B have bidirectional
dependency links to each other, establishing a one-to-one
correspondence. Thus the functioning of a node in
network A depends on the functioning of the correspond-
ing node in network B and vice versa. Each network is
defined by a joint distribution Pst (generating function
G0(x, y) =

∑∞
s,t=0 Pstx

syt) that specifies the fraction of
nodes connected to s single edges and t triangles [26].
The conventional degree of each node is thus k= s+2t.
The clustering coefficient c is

c =
3× (number of triangles in network)
number of connected triples

=
N
∑
st tPst

N
∑
k

(
k
2

)
Pk

. (1)

Site percolation of single clustered networks. –
We begin by studying the generating function of remaining
nodes after a fraction of (1− p) nodes is randomly removed
from one clustered network. After the nodes are removed,
we define t′i to be the number of triangles of which node
i is a part, d′i to be the number of single edges that form
triangles prior to attack, and n′i to be the number of stand-
alone single edges prior to attack. This network is thus
defined by the joint distribution Pn′,t′,d′ . The probability
that a node has n′ single edges from single edges is
the sum of all the probabilities that nodes with more
than n′ single edges will have exactly n′ edges remaining,
which is Q1(n

′)≡∑∞s=n′( sn′ )pn′(1− p)s−n′ . Similarly, the
probability that a node has t′ triangles is the sum of all the
probabilities that nodes with more than t′ triangles will
have exactly t′ triangles remaining. Since the probability
that a triangle will survive is p2, the sum is Q2(t

′)≡∑∞
t=t′(

t
t′ )p

2t′(1− p2)t−t′ . The probability that a triangle
corner will have one edge broken is 2p(1−p)

1−p2 and the

probability that it will have both edges broken is (1−p)
2

1−p2 .
Thus the probability that a node had d′ single edges
forming triangles prior to their destruction is Q3(d

′)≡
( t−t

′
d′ )[

2p(1−p)
1−p2 ]

d′ [ (1−p)
2

1−p2 ]
t−t′−d′ . Combining these three, we

have the corresponding generating function

G(x, y, z, p) =
∑
n′,t′,d′

Pn′,t′,d′x
n′yt

′
zd
′

=

∞∑
n′=0

xn
′
Q1(n

′)
∞∑
t′=0

yt
′
Q2(t

′)
t−t′∑
d′=0

zd
′
Q3(d

′)Ps,t

=G0(xp+1− p, yp2+2zp(1− p)+ (1− p)2). (2)

We define s′ = n′+ d′ to be the total number of single
links of a node after attack. The joint degree distribution

after attack is P ′s′,t′ which satisfies P
′
s′,t′ =

∑s′
n′=0 Pn′,t′,d′ ,

with d′ = s′−n′. The generating function of P ′s′,t′ is

G0(x, y, p) =
∑
s′,t′
P ′s′,t′x

s′yt
′

=

∞∑
s′=0

s′∑
n′=0

∑
t′
Pn′,t′,d′x

s′yt
′

=
∑
n′,d′,t′

Pn′,t′,d′x
n′yt

′
xd
′

= G(x, y, x, p). (3)

Therefore, the generating function of the remaining
network after attack is

G0(x, y, p) =G0(xp+1− p, yp2+2xp(1− p)+ (1− p)2).
(4)

The size of the giant component g(p) of the remaining
network according to ref. [26] is

g(p) = 1−G0(u, v2, p), (5)

where

u=Gq(u, v
2, p),

(6)
v=Gr(u, v

2, p),

and Gq(x, y, p) =
1
µ
∂G0(x,y,p)

∂x
, Gr(x, y, p) =

1
ν
∂G0(x,y,p)

∂y

where µ and ν are the average number of single links and
triangles per node, respectively.
As an example, consider the case when (1− p) fraction

of nodes are removed randomly from a network with
doubly Poisson degree distribution

Pst = e
−µµ

s

s!
e−ν
νt

t!
, (7)

where the parameters µ and ν are the average numbers of
single edges and triangles per vertex, respectively. Accord-
ing to eq. (1), the clustering coefficient is c= 2ν

2ν+(µ+2ν)2 .

Then, G0(x, y) = e
µ(x−1)eν(y−1) and G0(x, y, p) =Gq

(x, y, p) =Gr(x, y, p) = e
[µp+2p(1−p)ν](x−1)eνp

2(y−1), and
u= v= 1− g(p), leading to

g(p) = 1− e−[µp+2p(1−p)ν]g(p)eνp2(g(p)2−2g(p)). (8)

This equation is a closed-form solution for the giant
component g(p) and can be solved numerically. The crit-
ical case appears when the derivatives of the both sides
of eq. (8) are equal. This leads to the critical condition
〈k〉pc = 1, where 〈k〉= µ+2ν, which is independent of
clustering. However, the degree distribution of the doubly
Poisson model changes as we keep the average degree and
change the clustering coefficient. When the degree distri-
bution is fixed, the critical threshold actually increases as
clustering increases [29,30]. Furthermore, fig. 1 shows the
resulting giant component as a function of p. Note that
single networks with higher clustering have smaller giant
components.
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Fig. 1: (Color online) Size of the giant component g(p) in single
networks with degree distribution eq. (7) and average degree
〈k〉= 4, as a function of p, i.e., the fraction of remaining nodes
after random removal of nodes. Curves are from theory, eq. (8),
symbols are from simulation.

Degree-degree correlation. – When constructing
clustering in a network, it is usually impossible to avoid
generating degree-degree correlations. To better under-
stand the effect of clustering on degree-degree correlations,
we present an analytical expression of degree correlation as
a function of the clustering coefficient for a doubly Poisson
clustered network —see eq. (7).
The degree-degree correlation [33] can be expressed as

ρD =
N1N3−N22
N1

N∑
i=1

k3iN
2
2

, (9)

where Nm is the total number of m hop walks between all
possible node pairs (i, j) including cases i= j.
The generating function of the degree of a node in

the network is
∑∞
s,t=0 Pstz

s+2t =G0(z, z
2). Let qst be the

fraction of nodes with s single edges and t triangles that
are reached by traversing a random single link, where
s includes the traversed link and rst is the fraction
of nodes with s single edges and t triangles reached
by traversing a link of a triangle, qst =

sPs,t
〈s〉 , rst =

tPs,t
〈t〉 .

Their corresponding generating functions are Gq(x, y) =
1
〈s〉
∂G0(x,y)
∂x

x and Gr(x, y) =
1
〈t〉
∂G0(x,y)
∂y

y. Moreover, N3 =∑
i

∑
j aijN2(j), where aij is 1 if a link exists between

node i and j, otherwise 0,N2(j) is the total number of two-
hop walks starting from node j. The number of three-hop
walks from a node i is equal to the total number of two-
hop walks starting from all of its neighbors. Thus, N3 =∑
j kjN2(j), where the number of two-hop walks starting

from a node j with degree kj will be counted kj times in
N3. Equivalently, N3 =N

∑
st(s+2t)Ps,tN2(s, t), where

N2(s, t) is the number of two-hop walks from a node with
s single edges and t triangles. The generating function of
the number of single edges and of triangles reached in two
hops from a random node is G2(x, y) =

∑
st Ps,t ·Gsq(x, y) ·

G2tr (x, y). The generating function of the total number of
links and of triangles reached within three hops starting
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Fig. 2: (Color online) Degree-degree correlation as a function
of the clustering coefficient for a Poisson network (eq. (7)) with
average degree 〈k〉= 3 and 4. Curves are from theory (eq. (10))
and symbols from simulations.

from all nodes is G3(x, y) =N
∑
st Ps,t · (Gq(x, y))s(s+2t) ·

(Gr(x, y))
2t(s+2t)

. The number Nk of k-hop walks can be
approximated by its mean in a large network

N1 = N〈k〉,
N2 = N

∂G2

∂x
|x=1,y=1 +2N ∂G2

∂y
|x=1,y=1,

N3 =
∂G3

∂x
|x=1,y=1 +2∂G3

∂y
|x=1,y=1,

When both s and t follow a Poisson distribution,

G0(x, y) = e
µ(x−1)eν(y−1),

Gq(x, y) = G0(x, y)x,

Gr(x, y) = G0(x, y)y.

In this case,

N1 = N〈k〉,

N2 = N 〈k〉
( 〈k〉
1− c +1

)
,

N3 =
(〈k〉3+2〈k〉2+4ν〈k〉+ 〈k〉+6ν)N,

N∑
i=1

k3i =
(
〈k〉3+3 〈k〉2+(6ν+1) 〈k〉+6ν

)
N,

which, together with eq. (9), leads to

ρD =
c− c2−〈k〉c2

1− c+ 〈k〉c− 2〈k〉c2 , (10)

where c is the clustering coefficient, eq. (1).
Figure 2 shows the relation between the degree corre-

lation and the clustering coefficient c for a Poissonian
network (see eq. (7)), for two given average degrees (〈k〉=
3 and 4). The figure shows a positive degree-degree corre-
lation across the entire range, which means that the model
is assortative [29]. The degree-degree correlation increases
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until c achieves half of its maximum and then decreases
to zero when c reaches its maximum. When c is 0 or the
maximum, the nodes connect to either all single links or
all triangles, respectively.

Percolation on interdependent clustered net-
works. – To study how clustering within interdepen-
dent networks affects a system’s robustness, we apply the
interdependent-networks framework [17]. In interdepen-
dent networks A and B, a fraction (1− p) of nodes is
first removed from network A. Then the size of the giant
components of networks A and B in each cascading failure
step is defined to be p1, p2, . . . , pn, which are calculated
iteratively

pn = µn−1gA(µn−1), n is odd,
pn = µngB(µn), n is even,

(11)

where µ0 = p and µn are intermediate variables that satisfy

µn = pgA(µn−1), n is odd,
µn = pgB(µn−1), n is even.

(12)

As interdependent networks A and B form a stable
mutually connected giant component, n→∞ and µn =
µn−2, the fraction of nodes left in the giant component is
p∞. This system satisfies

x= pgA(y),

y= pgB(x),
(13)

where the two unknown variables x and y can be used to
calculate p∞ = xgB(x) = ygA(y). Eliminating y from these
equations, we obtain a single equation

x= pgA[pgB(x)]. (14)

The critical case (p= pc) emerges when both sides of this
equation have equal derivatives,

1 = p2
dgA
dx
[pgB(x)]

dgB
dx
(x)|x=xc,p=pc , (15)

which, together with eq. (14), yields the solution for
pc and the critical size of the giant mutually connected
component, p∞(pc) = xcgB(xc).
Consider for example the case in which each network

has doubly Poisson degree distributions as in eq. (7). From
eq. (13), we have x= p(1−uA), y= p(1−uB), where

uA = vA = e
[µAy+2y(1−y)µA](uA−1)+νAp2(v2A−1),

uB = vB = e
[µBx+2x(1−x)µB ](uB−1)+νBp2(v2B−1).

If the two networks have the same clustering, µ≡ µA = µB
and ν ≡ νA = νB, p∞ is then

p∞ = p(1− eνp2∞−(µ+2ν)p∞)2. (16)

The giant component, p∞, for interdependent clustered
networks can thus be obtained by solving eq. (16).
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p c
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Fig. 3: (Color online) (a) Size of the mutually connected
giant component as a function of cascading failure steps n.
Results are for c= 0.1, p= 0.64 (below pc), p= 0.66 (at pc)
and p= 0.7 (above pc). Lines represent theory (eqs. (11) and
(12)) and symbols are from simulations. Note that at pc
there are large fluctuations. (b) Size of the giant component,
p∞, in interdependent networks with both networks having
clustering via the degree distribution, eq. (7), and average
degree 〈k〉= 4, as a function of p. Dashed lines are the
number of interactions (NOI) before cascading failure stops
obtained by simulation [34]. The mauve dashed curve is
for shuffled c= 0.2 network, which keeps the same degree
distribution but without clustering and without degree-degree
correlation. Inset: green squares and solid line represents
critical thresholds, pc, of interdependent networks as a function
of the clustering coefficient c. The red dashed line represents
the critical threshold of shuffled interdependent networks which
originally has clustering coefficient c. The shuffled networks
have zero clustering and degree-degree correlation, but has the
same degree distribution as the original clustered networks. In
all figures, symbols and dashed lines represent simulation, solid
curves represent theoretical results.

Note that when ν = 0 we obtain from eq. (16) the
result obtained in ref. [17] for random interdependent
ER networks. Figure 3(a), using numerical simulations,
compares the size of the giant component after n stages
of cascading failure with the theoretical prediction of
eq. (11). When p= 0.7 and p= 0.64, which are not near
the critical threshold (pc = 0.6609), the agreement with
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Fig. 4: (Color online) (a) Size of the giant component as a
function of p for fixed clustering coefficient c= 0.1 and different
average degrees. From right to left 〈k〉= 3, 4, 5, . . . , 9. (b) Criti-
cal threshold pc as a function of the average degree for different
clustering coefficients. The solid curves are for interdependent
networks and the dashed curve is for single networks. Symbols
and curves represent simulations and theoretical predictions,
respectively.

simulation is perfect. Below and near the critical thresh-
old, the simulation initially agrees with the theoretical
prediction but then deviates for large n due to the random
fluctuations of the structure in different realizations [17].
By solving eq. (16), we have p∞ as a function of p in
fig. 3(b) for a given average degree and several values
of clustering coefficients and in fig. 4(a) for a given
clustering and for different average degree values. As the
figure shows, when higher clustering within a network
is introduced, the percolation transition yields a higher
value of pc (see inset of fig. 3(b)).
When clustering changes in this doubly Poisson distrib-

ution model, degree distribution and degree-degree corre-
lation also change. First, to address the influence of the
degree distribution, we study the critical thresholds of
shuffled clustered networks. Shuffled clustered networks
have neither clustering nor degree-degree distribution but
keep the same degree distribution as the original clustered
networks. The mauve dashed curve in fig. 3(b) represents

the giant component of interdependent shuffled clustered
networks with original clustering c= 0.2. The figure shows
that the difference in pc between the c= 0 network and
the shuffled c= 0.2 network is only 0.01, while the differ-
ence between the c= 0 and the c= 0.2 networks is 0.12. In
addtion, c= 0.2 clustered networks has no degree-degree
correlation (fig. 2), which means the 0.12 shift of pc is
due to clustering and not to a change in degree distribu-
tion. We also show the critical thresholds of interdepen-
dent shuffled clustered networks as the red dashed line
in the inset of fig. 3(b). Note that the change of degree
distribution barely shifts the critical threshold. We next
discuss the effect of the degree-degree correlation on the
change of critical threshold. From ref. [35], the degree
assortativity alone monotonically increases the percola-
tion critical threshold of interdependent networks. Since
in our case the degree-degree correlation first increases
and then decreases (see fig. 2), while the critical thresh-
old of interdependent networks increases monotonously as
clustering increases (see inset of fig. 3(b)), we conclude
that clustering alone increases the value of pc. Thus,
clustering within networks reduces the robustness of inter-
dependent networks. This probably occurs because clus-
tered networks contain some links in triangles that do not
contribute to the giant component, and in each stage of
cascading failure the giant component will be smaller than
in the unclustered case.
We also study the effect of the mean degree 〈k〉 on

the percolation critical point. Figures 4(a) and (b) both
show that, when clustering is fixed, the percolation critical
point of interdependent networks decreases as the average
degree 〈k〉 of the network increases, making the system
more robust. Figure 4(b) also shows that a larger mini-
mum average degree is needed to maintain the network
against collapse without any node removal as clustering
increases.

Conclusion and summary. – To conclude, based on
Newman’s single network clustering model, we present a
generating-function formalism solution for site percola-
tion on both single and interdependent clustered networks.
We also derive an analytical expression, eq. (10), for the
degree-degree correlation as a function of the clustering
coefficient for a doubly Poisson network. Our results help
us better understand the effect of clustering on the perco-
lation of interdependent networks. We discuss the influ-
ence of a change of degree distribution and of the degree-
degree correlation associated with clustering in the model
on the critical threshold of interdependent networks and
conclude that pc for interdependent networks increases
when networks are more highly clustered. In the cluster-
ing model we are using, high clustering is hard to reach,
because of the lack of higher-order cliques than triangles.
Recently, models which can have higher clustering and
are analytically solvable were proposed [32,36], which
are important complements to the clustering model in
this letter. We believe that with very high clustering,
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the relationship between the robustness of interdepen-
dent networks and clustering would be similar: keeping
the degree distribution the same, interdependent networks
would be easier to break down under random failure when
the clustering of the networks is higher.
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