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Abstract— The union of all shortest path trees G∪spt is the
maximally observable part of a network when traffic follows
shortest paths. Overlay networks such as peer to peer networks
or virtual private networks can be regarded as a subgraph of
G∪spt. We investigate properties of G∪spt in different underlying
topologies with regular i.i.d. link weights. In particular, we show
that the overlay G∪spt in an Erdös-Rényi random graph Gp (N)
is a connected Gpc (N) where pc ∼ logN

N
is the critical link

density, an observation with potential for ad-hoc networks.
Shortest paths and, thus also the overlay G∪spt, can be

controlled by link weights. By tuning the power exponent α of
polynomial link weights in different underlying graphs, the phase
transitions in the structure of G∪spt are shown by simulations to
follow a same universal curve FT (α) = Pr[G∪spt is a tree]. The
existence of a controllable phase transition in networks may allow
network operators to steer and balance flows in their network.
The structure of G∪spt in terms of the extreme value index α is
further examined together with its spectrum, the eigenvalues of
the corresponding adjacency matrix of G∪spt.

Index Terms— Overlay, observability, union of shortest paths

I. INTRODUCTION

In this paper, we study the subgraph formed by the union of
all possible shortest paths in a graph G (N,L) with N nodes
and L links. The motivation to consider shortest paths, defined
in Section II, is that, in most real world networks, transport is
mainly carried along shortest paths. Even for the Internet, it
is a reasonable assumption, since roughly 80% of the routes
seem to correspond to shortest paths.

The shortest path tree (SPT ) rooted at some node is the
union of the shortest paths from that node to all the other
nodes. The union of all shortest path trees G∪spt, which is
also the union of the shortest paths between all possible pairs
of nodes, can be regarded as the "transport overlay network"
on top of the network topology or substrate. Also, G∪spt can
be regarded as the maximally observable part of a network. In
the Internet, for example, the traffic is carried along the overlay
G∪spt, a fraction of the links in the underlying network, which
is just the maximal part of the Internet that we can actually
observe by traceroute measurements. In the remainder of this
introductory section, we discuss three potential applications
that motivate a study of G∪spt: overlay networks, traffic
engineering and Internet topology interference.

The importance of overlay networks is only believed to
grow in the future. One example of an overlay network are
peer to peer networks [5] with n distributed systems sharing
resources such as content, CPU cycles and storage, where n
is smaller than the number of nodes N in the underlying
network. The peer to peer overlay network can be regarded
as a union of paths connecting these n nodes. Another type of
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overlay network is a virtual private network (VPN), a private
network that uses a public network (usually the Internet or the
telephone network) to connect remote sites or users together.
The physical networks traversed by both the peer to peer
and the VPN overlay networks are a subgraph of G∪spt. The
robustness in overlay networks, the persistence of epidemics
[7] and the vulnerability to node failures and attacks [8] are
depending on structural properties of G∪spt that are studied
in this paper.

The overlay G∪spt, not the substrate, determines the net-
work’s performance: any link removed in G∪spt will definitely
impact at least those flows of traffic that pass over that link.
Here we show that, instead of changing the infrastructure of
a network [6], the overlay network G∪spt can be controlled
by tuning the link weight structure [3], especially by changing
the extreme value index α, defined as

α = lim
x↓0

logFw (x)

log x

of a link weight distribution Fw (x) = Pr [w ≤ x], for exam-
ple, the polynomial distribution

Fw(x) = xα1x∈[0,1] + 1x∈(1,∞), α > 0 (1)

where the indicator function 1y is 1 if the event y is true
else it is zero. If α → ∞, it follows from (1) that w = 1
almost surely for all links. The α → ∞ regime is entirely
determined by the topology of the graph because the link
weight structure does not differentiate between links. Here,
the α → ∞ regime is not further considered. In the α → 0
regime, all flows are transported over the minimum possible
fraction of links in the network and each shortest path tree
coincides with the minimum spanning tree (MST). Any failure
in a node or link disconnects the MST into two parts and
may result in obstruction of transport in the network. The
α → 0 regime may constitute a weak regime although it is
highly efficient: only N−1 links are used which means that a
minimum of links need to be controlled and/or secured. From
a traffic engineering point of view, choosing α around 1 will
lead to the use of more paths and, hence, a more balanced
overall network load than in the α→ 0 regime.

The final motivation applies to interfering the Internet
topology. Recently, Lakhina et al. [18] have pointed to the
effect of biases when trying to construct the Internet topol-
ogy from a few source trees that span a huge number of
destinations, basically because the links close to the source
have a substantially higher probability to be detected than
links close to the destination. The potential dramatic effect
of biases was recently rigorously analyzed in a mathematical
analysis first by Clauset and Moore [33], and later extended
by Achlioptas et al. [32]. They showed that, irrespective of
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the degree distribution of the substrate, the inferred topology
deduced from only a few source trees to many destinations is
likely to possess a power law degree distribution. For example,
a random network with a Poisson degree distribution and a
regular graph (with constant degrees) all lead to an observed
power law degree distribution. These analyses place doubt
on the believed power law degree structure of the Internet.
Biases can be circumvented if sources and destinations are
regarded as equally important. By constructing the union of
all paths between m < N testboxes, an overlay network
G∪mspt that is a subgraph of G∪spt is obtained. An interesting,
still open question is, how large needs m to be such that
G∪mspt sufficiently resembles properties of G∪spt in which
m = N . In this paper, we shed some light on how different
G∪spt can be compared to the underlying substrate and also
show measurement results in Section VII of a partial overlay
G∪mspt.

The paper is outlined as follows. First, in Section II, we
explain the notation. The general properties of the G∪spt are
analyzed in Section III. In Section IV, basic notions related
to the link weight structure and three fundamentally differ-
ent classes of underlying topologies are proposed. In these
underlying topologies equipped with different link weight
structures, Section V presents simulation results of (a) the
number of links, (b) the degree distribution, and (c) the
spectrum. Furthermore, in Section VI, by varying the extreme
value index of the link weight distribution, the phase transition
in G∪spt is analyzed and compared among the three classes
of topologies. Finally, our results are summarized in Section
VII.

II. TERMINOLOGY AND NOTATION

A network is represented by a graph G (N,L), in short
G, which consists of a set N of N nodes and a set L of
L links. Following the notation in [11], a path from node A
to node B with k − 1 hops or links is the node list PA→B

= n1 → n2 → · · ·nk−1 → nk where n1 = A and nk = B
and where nj 6= ni ∈ N for each index i and j. We confine
to connected graphs in which there is always a path between
any pair of nodes in G.

To each link l (i→ j) ∈ L, in short i → j, from node
i ∈ N to node j ∈ N in the network, we assign a link weight
w(i → j), a non-negative real number, which quantifies a
property of that link such as the delay incurred when traveling
over that link, the distance, the capacity, etc. The set of all link
weights is called the link weight structure of G. We consider
only additive link weights such that the weight of a path P
is w(P ) =

P
(i→j)∈P w(i→ j), i.e. w(P ) equals the sum of

the weights of the constituent links of P . The shortest path
P ∗A→B from A to B is the path with minimal link weight,
thus, w (P ∗A→B) ≤ w (PA→B) for all PA→B .

A tree is a subgraph without cycles. Similarly as for a path,
the weight of a tree T is w(T ) =

P
(i→j)∈T w(i → j).

A spanning tree TG is a tree that contains or spans all N
nodes of the graph G. A minimum spanning tree (MST) T ∗G
is a minimum weight spanning tree in G such that w (T ∗G) ≤
w (TG) for all TG in G. In general, there can be more than

one shortest path and more than one minimum spanning tree.
In particular, if w(i→ j) = 1 for all links l (i→ j) ∈ L, the
number of MSTs equals the complexity ξ (G) = 1

N

QN−1
j=1 μj

of the graph which is the product of all positive eigenvalues
μj of the Laplacian of G divided by N (see e.g. [34],[11,
Appendix B]). The complexity ξ (G) can be as high as NN−2

(Caley’s Theorem). Algorithms to compute a shortest path
(such as Dijkstra’s) and a MST (such as Prim’s and Krushkal’s)
are nicely explained in [35] and applied to data communication
networks in [36]. If the MST does not exist, the graph is
disconnected.

Both the topology and the link weight structure of the
graph are key determinants. A further discussion is deferred
to Section IV.

III. THE UNION OF THE SHORTEST PATH TREES: THEORY

Any set of links l (i→ j), l (j → k) and l (i→ k) between
three nodes i, j and k in the union G∪spt of the shortest path
trees obeys the triangle inequality,

w (i→ k) ≤ w (i→ j) + w (j → k)

otherwise the link l (i→ k) is not the shortest path from i
to k and, consequently, does not belong to G∪spt. Hence, if
l (i→ j), l (j → k), l (i→ k) ∈ LGUspt where LGUspt is the
set of links of the graph G∪spt, then

Pr [w (i→ j) + w (j → k) ≥ w (i→ k)] = 1

Theorem 1: A minimum spanning tree belongs to G∪spt.
Proof: The proof is by contradiction. Suppose that a MST

does not belong to G∪spt. This means that there is at least
one link l (i→ j) ∈ MST which does not belong to the
union of shortest path trees, l (i→ j) /∈ G∪spt. Hence, the
link l (i→ j) is not the shortest path P ∗i→j from node i to
node j implying that

w
¡
P ∗i→j

¢
< w (i→ j)

In that case, we can lower the weight of the MST which equals

wMST =
X

(k→l)∈MST

w (k → l)

= w (i→ j) +
X

k→l∈MST ;k→l 6=i→j

w (k → l)

by changing1 w (i→ j) for w
¡
P ∗i→j

¢
. However, this is im-

possible since wMST is, by definition, the tree that minimizes
the above sum. This proves the theorem. ¤

In case there are several MSTs, it is possible that there
is more than one subgraph G∪spt. In the sequel, we con-
fine ourselves to real link weights w and undirected links
l (i→ j) = l (j → i). The uncertainty about the underlying
topology of complex networks leads us to consider both the
underlying topologies and each of the link weights as random
variables. If we assume in addition identically and indepen-
dently distributed (i.i.d.) link weights then the probability to

1Actually, since P∗i→j must consist of at least two links, only those that
are necessary to obtain a tree are needed in the MST such that we can further
lower wMST .



3

have more than one shortest path or more than one MST is
negligibly small.

Any link l (i→ j) with link weight w(i→ j) in the G∪spt
must be the shortest path P ∗i→j between i and j because a link
in the G∪spt must belong to a shortest path and a subsection
of a shortest path is also a shortest path. Conversely, if a
link l (i→ j) is the shortest path P ∗i→j between i and j, it
must belong to the G∪spt, because the G∪spt is the union
of shortest paths between all possible source and destination
nodes. Therefore, the event that a link l (i→ j) is observed
in the G∪spt is equivalent to the event {P ∗i→j = l (i→ j)}
that the link l (i→ j) is the shortest path P ∗i→j between i and
j. Hence, Pr[P ∗i→j = l (i→ j)] is also the probability that a
link can be observed.

Theorem 2: In any graph with positive i.i.d. link weights
w specified by the probability density function fw (x), the
probability that a link l (i→ j) between node i and j is the
shortest path P ∗i→j between i and j is

Pr[P ∗i→j = l (i→ j)] =

Z ∞
0

fw(x) Pr[w(P
∗
i→j) > x]

Pr[w(i→ j) > x] +
1−pij
pij

dx

(2)
where pij = Pr[l (i→ j) exists].

Proof: See Section A. ¤
Since Pr[P ∗i→j = l (i→ j)] ≤ 1 and

R∞
0

fw(x)dx = 1,
we see in (2) that Pr[w(P∗i→j)>x]

Pr[w(i→j)>x]+
1−pij
pij

≤ 1. A slightly tighter

bound follows from the probability Pc in (18) and the left
hand side of (21), that is bounded by pij , such that

Pr[w(P ∗i→j) > x] ≤ pij Pr[w(i→ j) > x] + 1− pij (3)

In words, the probability that the weight of the shortest path
exceeds x is always less than or equal to the probability that
an arbitrary link weight exceeds x (because of the assumption
of i.i.d. link weights) multiplied by the probability of the
existence of the link plus the probability 1− pij . The bound
(3) is sharpest in case pij = 1, thus, in case the direct link
i→ j exists surely.

Corollary 1: In any graph with N nodes and with positive
i.i.d. link weights, we can write

Pr[P ∗i→j = l (i→ j)] = Pr [HN = 1]

= −
Z ∞
0

fw(P∗i→j)
(x) log (1− pijFw (x)) dx (4)

where HN denotes the hopcount (or the number of links) of
a shortest path and Fw (x) = Pr[w(i → j) ≤ x] is the link
weight distribution.

Proof: See Section B. ¤
Corollary 1 establishes a relation between the probability

that the hopcount of the shortest path equals 1 in terms of
the distribution of the link weights and of the weight of the
shortest path.

When multiplying all the link weights by a factor 1
b where

b > 0, relation (2) remains unchanged. For, since fw
b
(x) =

bfw (bx), we have

Z ∞
0

fw
b
(x)

Pr
h
w(P∗i→j)

b > x
i

Pr
h
w(i→j)

b > x
i
+A

dx

=

Z ∞
0

fw (bx)
Pr
£
w(P ∗i→j) > bx

¤
Pr [w(i→ j) > bx] +A

d (bx)

and substitution of u = bx leads to (2). This fact is, of
course, natural because the shortest path does not change in
structure and in the number of hops when all links are scaled
or expressed in a different unit.

A. Example

If link weights are exponentially distributed,

Pr[w(i→ j) > x] = exp(−αx)

where E [w] = 1
α and Pr[l (i→ j) exists] = pij is the link

density, then (4) gives with WN = w(P ∗i→j)

Pr [HN = 1] = −
Z ∞
0

fWN (x) log
¡
1− pij + pije

−αx¢ dx
(5)

Applied to the complete graph KN where pij = 1 leads to

Pr [HN = 1] = α

Z ∞
0

xfWN
(x) dx = αE [WN ]

Invoking [11, Chapter 15]

E [WN ] =
1

α(N − 1)

N−1X
n=1

1

n

we find that

Pr[P ∗i→j = l (i→ j)] =
E [WN ]

E [w]
=

1

N − 1

N−1X
n=1

1

n
(6)

Alternatively, the probability density function of hopcount of
the shortest path in KN with exponential link weights is [11,
Chapter 15]

Pr[HN = k] =
N

N − 1
(−1)N−(k+1)S(k+1)N

N !

where S
(k)
N is the Stirling number of the first kind [14]. The

second Stirling number of the first kind can be explicitly
written as

S
(2)
N = (−1)N (N − 1)!

N−1X
n=1

1

n

we obtain

Pr[P ∗i→j = l (i→ j)] = Pr[HN = 1] =
1

N − 1

N−1X
n=1

1

n

which is, indeed, the same as (6).
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B. The number of observable links in a network
The number of observable links, or the number of links in

G∪spt, denoted by Lo, in any network G is, by definition,

Lo =
X

(i→j)∈L
1{l(i→j)=P∗i→j} (7)

By taking the expectation in (7), the average number of
observable links is

E [Lo] =
X

(i→j)∈L
Pr[P ∗i→j = l (i→ j)]

and, if all links in G have equal probability to exist (pij = p),

E [Lo] = LPr[P ∗i→j = l(i→ j)] = LPr[HN = 1] (8)

Hence, the probability of link observability, Pr[P ∗i→j = l(i→
j)], is equal to the average number of links in G∪spt divided
by the total number of links L in the substrate network G.

Clearly, since G∪spt is connecting all nodes and the number
of links in a tree – which is the minimum number of links to
connect all nodes – is N − 1, we have

N − 1 ≤ Lo ≤ L (9)

The total number of links in a square two dimensional lattice
with N nodes is L = 2(N −

√
N). Applying the bounds (9)

for Lo to a 2D-lattice,

N − 1 ≤ Lo ≤ 2N − 2
√
N (10)

which shows that Lo = cN is linear to first order in N . An
estimate of c is given in Section V-A.

For exponential link weights, the average number of observ-
able links in the complete graph KN equals

E [Lo] =
N

2

N−1X
n=1

1

n
' N

2
(γ + lnN) (11)

which follows from (6), (8), and L = N(N−1)
2 . For a polyno-

mial link weight distribution (1), we have approximately [4]
to highest order in N and for α around 1 only, that

Pr[HN = k] ' 1

N

(lnαN)αk

Γ(αk + 1)

and, hence, for α around 1 and large N ,

E [Lo (α)] '
N

2

(lnαN)α

Γ(α+ 1)

If α → ∞, all link weights are the same and equal to 1,
Lo = L, which shows that equality in (9) can occur. For
that extreme case, (8) tells us that any link is a shortest path
between its end nodes.

C. The degree distribution and beyond
Theorem 3: The degree distribution of a node in the overlay

G∪spt is equal to its degree distribution when that node is the
root of a SPT .

Proof: We construct G∪spt in two steps. First, the SPT
rooted at a particular node, say node 1, is calculated. Second,
the SPT rooted at each other node is computed. Since G∪spt

is the union of the SPT s rooted at all the nodes, the union
of shortest paths obtained in these two steps is just G∪spt.
All the links in G∪spt connected to node 1 are found in the
first step. For, assume that the link 1 → j is only found in
the second step. Since 1→ j ∈ G∪spt, it must be the shortest
path between 1 and j. Thus, it must belong to the SPT rooted
at 1 in the first step. Hence, the degree of a node in G∪spt is
equal to its degree when it is the root of a SPT . ¤

A direct consequence of this proof is
Corollary 2: A link l (i→ j) ∈ G∪spt if and only if

l (i→ j) is a first hop link in the SPT rooted at node i ∈
G∪spt.

Theorem 4: The degree distribution in the overlay G∪spt
on top of the complete graph KN equipped with exponentially
distributed link weights is

Pr[DG∪spt = k] =
(−1)N−1−kS(k)N−1

(N − 1)! (12)

Proof: In [11, Section 16.6.3], it is shown that the degree
distribution of the root in the SPT in the complete graph with
exponential link weights is given by the right hand side of (12).
Application of Theorem 3 proves this Theorem 4. ¤

Before extending Theorem 4, we review the following
definition [11, Chapter 16]. A regular link weight distribution
Fw(x) = Pr[w ≤ x] has a Taylor series expansion around
x = 0,

Fw(x) = fw(0)x+O(x2)

since Fw(0) = 0 and F 0w(0) = fw(0) exists. A regular link
weight distribution is thus linear around zero. The uniform
and exponential distributions belong to the regular link weight
distribution with fw(0) = 1.

Corollary 3: For large N , the degree distribution in the
overlay G∪spt on top of the Erdös-Rényi random graph Gp(N)
with link density p above the disconnectivity threshold pc and
equipped with i.i.d. regular link weights is

Pr[DG∪spt = k] ∼
(−1)N−1−kS(k)N−1

(N − 1)! (13)

Proof: In [11, Chapter 16], it is shown that the SPT in the
complete graph KN with exponential link weights is precisely
a uniform recursive tree2 URT for any N . In [10], a URT
is shown to be asymptotically the SPT in the Erdös-Rényi
random graph Gp(N) (see e.g. [15]) with any link density
p above the disconnectivity threshold pc ∼ logN

N and with
exponential links weights. The exponential distribution is a
regular distribution and the shortest path is mainly determined
by small link weights in the substrate graph. For sufficiently
large and dense, connected graphs, and in view of the i.i.d.
assumption, there are enough small link weights very near
zero. Hence, under these assumptions, any regular link weight
distribution will lead asymptotically to the same SPT. In
conclusion, with regular link weights and large N , we have,
structurally, that SPTKN ' SPTGp(N) ' URT . Therefore,
the degree distribution of G∪spt in KN or Gp(N) with regular

2A URT of size N is a random tree rooted at some source node and where
at each stage a new node is attached uniformly to one of the existing nodes
until the total number of nodes is equal to N .
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link weights, is asymptotically equal to the degree distribution
of the root in the URT [11], which is equal to (12). ¤

Conjecture 1: For large N , the overlay G∪spt on top of a
connected Erdös-Rényi random graph Gp(N) with link density
p ∈ (pc, 1] and equipped with i.i.d. regular link weights is a
connected Erdös-Rényi random graph Gpc(N) where pc the
disconnectivity threshold.

Arguments: First, relation (6) states that each link in the
underlying complete graph KN has a probability to appear in
the overlay G∪spt equal to 1

N−1
PN−1

n=1
1
n ∼ pc, for large N .

Second, for large N and p = logN
N , the binomial degree

distribution of the Erdös-Rényi random graph Gp(N) tends to
a Poisson distribution with mean logN . Hence, for large N ,

Pr

∙
DG logN

N

= k

¸
=

µ
N − 1
k

¶
pk (1− p)N−1−k

¯̄̄̄
p= logN

N

∼ (logN)
k

Nk!

In addition, in [11, Section 16.3.1], it is shown that also (12)
tends to a same Poisson distribution,

Pr[DG∪spt = k] =
(−1)N−1−kS(k)N−1

(N − 1)! ∼ (logN)
k

Nk!

In summary, for large N , the URT is also asymptotically the
shortest path tree in a connected Erdös-Rényi random graph
Gp(N) with link density p ∈ (pc, 1]. Thus, since G∪spt is
surely connected3, for large N , each link in the substrate
Gp(N) has a same probability of appearing in G∪spt equal
to p ∼ pc and the degree distribution of G∪spt equals that of
Gpc(N).

In contrast to the Erdös-Rényi random graph Gp(N) where
all links are independent for any N , the links in G∪spt on top
of the complete graph KN are not independent because each
of them is a shortest path link, a fact that correlates all these
links. It still remains to prove that links in the overlay G∪spt
are asymptotically independent. Lemma’s 1, 2, and 3 on the
uncorrelation of links in G∪URT are presented in Appendix C as
partial arguments. If the asymptotic independence of links can
be proved (which would turn the conjecture into a theorem),
then, for large N , the three properties (a link density pc, a
Poissonean degree distribution and asymptotic independence
of the links) together with the connectedness of G∪spt will
demonstrate that G∪spt is a connected Erdös-Rényi random
graph with p = pc. ¤

Simulations in Section VI further illustrate this Conjecture.
We expect that Conjecture 1 may hold for a broader class than
Erdös-Rényi random graphs: namely all substrate topologies
that are homogeneous (i.e. the SPT rooted at any node has
a same structure or any node perceives, views the network
in a same way) and dense (i.e. "enough" link). Conjecture
1 explains why the role of the simple Erdös-Rényi random
graph Gp(N) is more important in overlay networks, such
as e.g. peer-to-peer networks (see also Figures 11, 12), than
in substrate topologies, where only a few complex networks

3By definition, Pr [Gpc is connected] = 1
2

when N →∞. Hence, roughly
half of the Erdös-Rényi random graphs Gp(N) are connected if p ∼ pc for
large N .

belong to the class of Erdös-Rényi random graphs. Finally, the
asymptotic results in this section motivate why a confinement
to the complete graph (in later sections) is much less restrictive
than it appears at first glance.

IV. BASIC NOTIONS AND SIMULATION SCENARIOS

Three different classes of topologies are considered: the
complete graphs KN , lattices and power law graphs. An
example of a two-dimensional lattice is shown in Figure 2. In
D-dimensional lattices, all interior nodes have the same degree
2D, where D is the dimension. Here, we confine ourselves to
hyper-cube D-lattices in which each edge is of equal size.
Power law graphs are random graphs specified by a degree
distribution Pr[d = i] = ci−τ , where c is a constant such thatPN−1

i=1 ci−τ = 1. Beside the degree distribution, power law
graphs are generated according to the Havel-Hakimi algorithm
[12][17] and the Barabási-Albert model [1]. A Havel-Hakimi
graph is constructed by successively connecting the node of
highest degree to other nodes of highest degree, resorting
remaining nodes by degree, and repeating the process. The
resulting graph has a high degree-associativity. Hence, the
Havel-Hakimi power law graph has a "dense core" and is more
tree-like compared to KN and D-lattice. The main difference
between the Havel-Hakimi algorithm and the Barabási-Albert
model is that the first can also be applied to other degree
distributions (with different exponent τ , while τBA = 3).
Moreover, it shows already power law behavior for small N ,
while power law behavior in the Barabási-Albert model is only
observed for large N . Furthermore, large bias occurs mainly
in graphs with high average degree [32]. For a same number
of a nodes N , the Havel-Hakimi graph for τ < 3 has, on
average more links (or higher E [D]) than the Barabási-Albert
power law graph, which makes the former more attractive to
study the effects of link weight tuning.

The link weights are chosen independently of the topology.
Although in some biological networks, the link weight or
strength of a link is coupled to the structure of the underlying
topology, in many man-made large infrastructures such as the
Internet and WWW, the link weight structure can be chosen
independently. The latter allows us to control or steer transport
in the network as shown in [3]. As assumed before, these
undirected link weights are i.i.d. and additive which we deem
a reasonable approximation in many large networks, with
the exceptions of wireless networks4. As mentioned before,
the SPT is mainly sensitive to the smaller, non-negative
link weights. The probability distribution of the link weights
around zero will dominantly influence the properties of the
resulting shortest path tree as well as that of G∪spt. The
simplest distribution of the link weight w with a distinct
different behavior for small values is the polynomial distri-
bution (1). The motivation to select a polynomial distribution
is given earlier [2]. The exponent α is called the extreme value
index of the probability distribution of w. When α → ∞, it
follows from (1) that w = 1 almost surely for all links. When

4All nodes in the radio-range of some sending node (or base-station) are
correlated by (a) the nature of electromagnetic waves and (b) wireless MAC
protocols.
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α→ 0, all links will be close to 0, but, relatively, they differ
significantly with each other. When α = 1, the polynomial
distribution (1) becomes a uniform distribution where link
weights are regular as explained in Section III-C. By varying
the exponent α over all non-negative real values, any extreme
value index can be attained and a large class of corresponding
SPT and G∪spt can be generated.

For each simulation, 104 iterations are carried out. Within
each iteration, the specified underlying topology is generated
randomly and the polynomial link weights with parameter α
are assigned independently to each link in the graph. The
G∪spt is found by calculating the shortest paths between all
pairs of nodes with Dijkstra’s algorithm [9] and with the high
precision Dijkstra algorithm [3].

V. PROPERTIES OF G∪spt WITH α = 1

For α = 1 in (1), we obtain the uniform distribution on
[0, 1]. Three classes of topologies are considered: the complete
graph KN , for which exact results exist, the 2D-lattice and the
power law graph. In both the simulation and the analysis, the
average number of links E[Lo] and the degree distribution of
G∪spt is examined.

A. The average number of links
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800600400200
Number of nodes

 KN (simulation)
 KN (theory)
 power law (simulation)
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 2D-lattice (simulation)
 -11.36+1.79x

Fig. 1. Average number of links in the G∪spt.

Figure 1 shows that the simulation and the theory (6) of
the average number of links E[Lo] in G∪spt of the complete
graph KN nicely match.

Simulations in Figure 1 also show that, in 2D-lattices, the
average number of the observed links via G∪spt is linear with
the number of nodes N . Hence, with (8)

Pr[P ∗i→j = l (i→ j)] · L = cN (14)

where fitting the simulations yields c = 1.79, while (10)
implies that 1 ≤ c ≤ 2.

We will further determine the constant c in (14). As shown
in Figure 2 (thick line), the link l((x3, y2), (x3, y3)) can be
observed via G∪spt, if it is the shortest path between node
(x3, y2) and node (x3, y3). The link l can be dominated by a

y1

y2

y3

y4

x1 x2 x3 x4 x5

Fig. 2. Link Observability in a 2D-lattice.

shorter path such as P 1h=3 = P(x3,y2)→(x2,y2)→(x2,y3)→(x3,y3)
or P 2h=3 = P(x3,y2)→(x4,y2)→(x4,y3)→(x3,y3) which are the
only three hops paths between (x3, y2) and (x3, y3). Further-
more, each link in these two paths can again be dominated by
a three hops path, which is shown in bold line in Figure 2.
Recursively, these links can also be dominated further. Each
level of domination results in a longer hopcount of the shortest
path between two adjacent nodes. If we define w (Ph=3) as
the weight of a three hops path, then w (Ph=3) is the sum of
three independent uniform random variables and its pdf [11]
is

fw(Ph=3)(x) =
3X

j=0

µ
3

j

¶
· (−1)j · (x− j)2

2
1(x−j)≥0

and

Pr[w (Ph=3) ≤ x] =

Z x

0

fw(Ph=3)(y)dy =
x3

6

Since the two 3 hops paths are independent, the probability
that one of these two three hops paths is smaller than x is

Pr[ min
1≤k≤2

w
¡
P k
h=3

¢
≤ x] = 1− (1− Pr[w (Ph=3) ≤ x])

2

=
x3

3
− x6

36

For any link, the probability that there exists a three hops path
shorter than this direct link w(l) ∈ [0, 1] is

Pr[ min
1≤k≤2

w
¡
P k
h=3

¢
≤ w(l)]

=

Z 1

0

Pr[ min
1≤k≤2

w
¡
P k
h=3

¢
≤ x]dx = 0.08

If there exists a three hops path shorter than the direct link, the
direct link is definitely not observed. However, the hopcount
of the shortest path between these two adjacent nodes can
be longer than 3, since links in the three hops path can be
dominated on their turn. When both the three hops paths are
longer than the direct link, the direct link is not necessary the
shortest, because paths with hopcount larger than 3 can be
even shorter, which is, however, very unlikely to happen for
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uniform i.i.d. link weights. Hence, the probability that a link
can be observed can be approximated by the upper bound:

lim
N→∞

Pr[P ∗i→j= l(i→ j)] ≤ 1−Pr[ min
1≤k≤2

w
¡
P k
h=3

¢
≤ w(l)]=0.92

(15)
where N →∞ means that each node has four neighbors and
links at the border are not taken into account. Combining (15)
and (14) results in

lim
N→∞

Pr[P ∗i→j = l(i→ j)] = lim
N→∞

c ·N
L

= lim
N→∞

c

2
·
√
N√

N − 1
=

c

2

and, in c = 1.84 which is close to the simulation result
c = 1.79. In addition, (15) also shows that Lo ' L. In other
words, the observable 2D-lattice is very near to the substrate,
in contrast to KN as observed from (11).

In Figure 1, the underlying power law graph with τ = 2.4
is shown to be sparse and E[Lo] of the corresponding G∪spt
approaches N − 1. It is natural that the G∪spt is close to a
tree, because the sparse underlying power law graph is already
tree-like as explained in Section IV.

B. The degree distribution
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Fig. 3. Degree distribution of G∪spt in KN and degree distribution of the
root of the corresponding URT .

The simulation result of the degree distribution of G∪spt in
KN is shown in Figure 3 together with the result calculated by
Theorem 4. As N increases, the degree distribution of G∪spt
tends to that of the URT root. These simulations support that
SPTKN ' URT with any regular link weights as explained
in Section III-C.

The degree distribution of G∪spt in 2D-lattices is shown
in Figure 4. The good approximation (15) encourages us to
further simplify the analysis for the degree distribution in a
finite 2D-lattice. There are three kinds of nodes in a lattice:
n2 = 4 nodes with degree d = 2; n3 = 4 ∗ (

√
N − 2) nodes

with degree d = 3; n4 = N − 4 ∗ (
√
N − 1) nodes with

degree d = 4. Two kinds of links exist: (a) links at the border,
that have a probability p2 ≈ 1 −

R 1
0
Pr[Ph=3 ≤ x]dx = 0.96

0.5
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0.3
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0.1

Pr
[D

 =
 k
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4321
degree (k)

 N = 25
 N = 49
 N = 100
 N = 196
 N = 400

Fig. 4. Degree distribution of GUspt in 2D-lattices.

to be observed via G∪spt and (b) central links, that have a
probability p1 ≈ 0.92 to be the shortest path between its end
nodes. We assume that the observation of one link via G∪spt
will not influence the probability of other links being observed,
since the hopcount of the shortest path in a 2D-lattice is usually
large and a link with small link weight is unlikely to attract
the other shortest paths to pass through it. Then the following
can be obtained:
Pr[d = 1] = 1− Pr[d = 2]− Pr[d = 3]− Pr[d = 4]
Pr[d = 2] = 1

N

¡
4
2

¢
· n4 · p21(1− p1)

2+
1
N

¡
n3 ·

¡
p22(1− p1) + 2p1p2(1− p2)

¢
+ n2 · p22

¢
Pr[d = 3] = 1

N

¡
n3 · p1p22 +

¡
4
1

¢
· n4 · p31(1− p1)

¢
Pr[d = 4] = 1

N · n4 · p41
(16)

We explain Pr[d = 3]. A node with degree 3 in the G∪spt is
either a node with degree 3 in the 2D-lattice with all three links
being observed, or a node with degree 4 in the 2D-lattice with
three of its four links being observed. With the set (16), we
calculate the degree distribution of G∪spt in a 2D-lattice with
N = 400 nodes and compare those values with the simulation
result in the table below,

Pr[d = 1] Pr[d = 2] Pr[d = 3] Pr[d = 4]
Simulation 0.003 0.063 0.36 0.57
theory 0.004 0.062 0.354 0.580

which, again, shows a good agreement.
The degree distribution of G∪spt in Havel-Hakimi power

law graph substrates with τ = 2.4 is shown in Figure 5. The
degree distribution of a power law graph is Pr[d = i] = ci−τ

(by definition) which is shown in bold line in the figure for
N = 100. Nodes with degree 1 in the underlying graph must
remain the same in the G∪spt in order for G∪spt to be con-
nected. A node with higher degree in the underlying graph may
have only one link in G∪spt, thus, degree 1 in G∪spt. Hence, as
shown in Figure 5, compared to the degree distribution of the
underlying topology, Pr[d = 1] in the G∪spt increases while
Pr[d = i] for i > 1 decreases. However, such difference is not
substantial. The overlay network exhibits a degree distribution
visually similar to the underlying graph, because as shown in
Section V-A, the underlying topology is sparse and already
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Fig. 5. Degree distribution of G∪spt in Havel-Hakimi power law graphs
with τ = 2.4.

tree-like. A similar conclusion is reached for the Barabási-
Albert preferential attachment model as illustrated in Figure
6, where we have chosen a larger number of m = 4 links
that is attached at each time which is equivalently to a large
link density. This demonstrates that the overlay on top of a
power law graph is very close to the substrate in terms of
degree distribution, even for m = 4. These observations are
consistent with results in [18], where even a subgraph of G∪spt
has similar degree distribution as that of the underlying power
law graph with w = 1 or α→∞ [23].
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Pr
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100
degree (k)
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Fig. 6. Degree distribution in Barabási-Albert power law graphs where N =
800 and the initial number to start the preferential growth is m0 = m = 4

VI. PROPERTIES OF G∪spt WITH VARYING α

Van Mieghem and Magdalena [3] have found that, by tuning
the extreme value index α of a link weight distribution, a phase
transition occurs around a critical extreme value index αc. The
critical extreme value index αc is defined as FT (αc) =

1
2

where FT (α) = Pr
£
G∪spt(α) =MST

¤
. When α > αc, the

overlay G∪spt(α) contains more than N − 1 links whereas for
α < αc, all transport traverses a critical backbone consisting

of N−1 links, which is the minimum spanning tree MST , as
follows from Theorem 1. Here, we extend the analysis of [3]
in two ways: (a) we include, besides the complete graphs KN

and 2D-lattices, also 3-lattices and Havel-Hakimi power law
graphs; (b) by a spectral analysis, we further obtain insights
in the structure of the overlay G∪spt(α).

A. Phase transition in the G∪spt(α) structure
Instead of the number of links in G∪spt(α), when α is small,

we study the probability that the overlay G∪spt(α) is a tree. As
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Fig. 7. The probability distribution FT (α) as a function of the normalized
α/αc.

shown in Figure 7, normalized by αc, the same phase transition
curve is observed for all these three topologies. As α increases,
the transport is more likely to traverse over more links and
the overlay G∪spt(α) will less likely become a tree. These
additional simulations over those reported in [3] strengthen
the belief that the curve FT (α) ≈ 2−(

α
αc
)2 is universal for all

graphs that are not trees.
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Fig. 8. The critical extreme value αc as a function of N.

For each substrate topology, the critical extreme value αc
is shown in Figure 8 as a function of N on a log-log scale.
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Fig. 9. The spectrum of the G∪spt(α) in the complete graph K50: (a)
α ∈ [0.01, 0.3]; (b) α = 0.4, 0.6; (c) α = 1, 2;(d) α = 3, 5.

Each curve is fitted with a line and indicates that αc ' bN−β

where b and β depend on the underlying substrate. In spite of
the fact that this phase transition is constructed, the exponent
β seems to lie in the interval [12 ,

2
3 ], which agrees surprisingly

well with critical exponents observed in nature (see e.g. [31]).
As explained in [3], it is computationally difficult to determine
αc for large N . This limits the extent to which a seemingly
power law can be observed. It may also explain why, in
Figure 8, the value of αc at higher N are likely less accurate
such that the apparent deviation of a power law may be
due to numerical inaccuracies. However, we do not have any
theoretical argument why αc should obey a strict power law.

The higher the αc-curve in Figure 8, the faster G∪spt(α)
tends to a tree if α decreases. The power law graphs seem
to possess the highest αc because the power law graph is
already tree-like. Although when α = 1, the overlay G∪spt(α)
of the complete graph KN contains more links than that of the
2D-lattice (compare (11) with (10)), Figure 8 illustrates that,
since αc (KN ) > αc (2D-lattice), the overlay G∪spt(α) of the
complete graph KN will tend faster to a tree if α decreases.
We can only give a speculative explanation. When α is very
small around the αc, link weights are small, but they differ
significantly from each other. In fact, if α → 0, the ratio√

Var[w]
E[w] ∼ 1√

α
diverges which means that, in this limit, the

link weights possess extremely strong fluctuations. Since the
number of possible trees in KN is much larger than that in
the 2D-lattice, it is more probable to find a spanning tree only
composed of these extremely small links and that tree is the
MST.

B. The spectrum of the adjacency matrix of G∪spt(α)
The spectrum, the eigenvalues of the adjacency matrix, of

G∪spt(α) in the complete graph K50 are displayed in Figure
9. For K50, the critical extreme value index is αc = 0.09.
Figure 7 shows that the onset of the phase transition is
somewhere between 3αc and 4αc. Figure 9 (a) shows that,

for α ∈ [0.01, 0.3], the corresponding G∪spt(α) have almost
the same spectrum, except that, the peaks at ±1.4 diminish
as α increases. The nodes with small degrees are most likely
responsible [24] for the delta peak at5 λ = 0. For example,
the local configurations with two and more dead-end nodes
produce eigenvalues λ = 0, where the dead-end node is a
node with degree 1. The corresponding eigenvectors have non-
zero components only at the dead-end nodes [25][26]. The
spectrum of a tree is symmetric [27], because any tree is a
bi-partite graph and any bi-partite graph is symmetric around
λ = 0. In Figure 9 (b) when α = 0.4, these two peaks at
±1.4 are smoothed out and the spectrum is not symmetric.
It indicates that when α is smaller than the onset value of
the phase transition (case (a) in Figure 9), the G∪spt(α) seem
to possess similar topological, tree-like structure. Since very
few trees can be uniquely specified by their spectrum [28], the
spectrum is not well suited to reveal the specifics of the MST.
The spectrum of the G∪spt(1) in K50 with regular link weights
α = 1 illustrated in Figure 9 (c) is close to the spectrum of
a random graph according to the Wigner’s Semicircle Law
[16][11, Appendix B]. This correspondence is an additional
illustration of Conjecture 1. When α is large, link weights are
ineffective in that limα→∞G∪spt(α) = Gsubstrate. The spectrum
of G∪spt(α) in Figure 9 (d) is, indeed, close to the spectrum
of substrate KN , that has N − 1 eigenvalues at −1 and 1
eigenvalue at N−1. While peaks in the spectrum reflect struc-
ture and regularity in the graph, a bulk almost symmetrical
around zero, which ultimately tends to a semicircle, points to
uncorrelated randomness. The latter is a characteristic property
of an Erdös-Rényi random graph. Figure 9 thus shows, as
a function of α, transitions of G∪spt(α) between two graph
types, a tree and the complete graph, with apparent maximum
randomness for regular link weights (α = 1).

The spectrum of the G∪spt(α) in a 2D-lattice with 49
nodes are displayed in Figure 10. When α is small, as shown
in Figure 10 (a) and (b), the transition of the spectrum of
G∪spt(α) is similar to that in the complete graph. As studied
in Section V-A, on average, 92% of the links in the underlying
2D-lattice can be observed via the overlay G∪spt when α = 1.
The spectrum of a 2D-lattice with N nodes [27] comprises the
eigenvalues

λij = 2 cos
2π√
N
i+ 2cos

2π√
N
j i, j ∈ {1, . . . ,

√
N}

which correspond to the peaks in the spectrum of G∪spt(α)
with α ≥ 2. Compared to the complete graph, in a 2D-lattice,
the overlay G∪spt approaches the underlying topology at a
smaller α-values, α ≥ 2 for the 2D-lattice while α ≥ 5 for
KN .

The spectrum of the G∪spt(α) in a Havel-Hakimi power law
graph is almost the same as that of the underlying graph for
any α, because the underlying graph is already close to a tree.
For the spectrum of a Barabási-Albert power law graph, we

5In general, each time when two rows in the adjacency matrix A are the
same, the rank of A decreases with 1, which is equivalent to an increase in

the multiplicity of the eigenvalue λ = 0, since detA =
N

j=1

λj .
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Fig. 10. The spectrum of the G∪spt(α) in a 2D-lattice with 49 nodes: (a)
α ∈ [0.01, 0.3]; (b) α = 0.4, 0.6; (c) α = 1, 2; (d) α = 3, 5.

refer to [29]. As mentioned before, since the spectrum for most
trees is not unique [28], a spectral analysis of tree-like graphs
is not the best way to deduce specific properties.

VII. CONCLUSION

The union of all shortest path trees G∪spt constitutes the
observable part of a network provided traffic flows follow
shortest paths. In this paper, we have studied two properties of
the G∪spt, the average number of links E[Lo] and the degree
distribution, and simulated the spectrum of the adjacency
matrix of G∪spt(α) as a function of the extreme value index
of the link weight structure. Different underlying topologies
and the link weight structure were treated independently.
The minimum spanning tree belongs to the G∪spt. Any link
l (i→ j) with link weight w(i→ j) in the G∪spt must be the
shortest path between i and j and if a link is the shortest
path between its end nodes, it must belong to the G∪spt.
Most of the theory is based on these two points. Apart from
the Theorems and Corollaries presented, the Conjecture 1 and
the seemingly universality of FT (α) ≈ 2−(

α
αc
)2 in the phase

transition appearing in the structure of G∪spt are considered
important new findings. For example, Conjecture 1 which has
assumed an i.i.d. link weight structure, claims the appearance
of the random graph Gp(N) in many application such as, for
example, peer to peer networks [20] and ad-hoc networks [19].
The universality of FT (α) in the phase transition points to
the possibility to control the network structure or to steer or
balance transport by tuning the link weight structure.

The overlay G∪spt is, actually, the maximally measurable
part of the substrate topology. For example, the RIPE tracer-
oute measurement configuration [21] only measures the union
G∪mspt of shortest paths between each pair of a small group
of m << N nodes, while the number of nodes in the
underlying graph N is much larger. Considerable attention has
been devoted to the properties of graphs derived from Internet
measurements. But how accurate does the measured subgraph
reflect the underlying graph [18]?

0.4

0.3

0.2

0.1

0.0

ƒ λ(
x)

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
eigenvalue x

0.0001

2

4

6

8
0.001

2

4

6

8
0.01

2

4

6

8
0.1

ƒ λ
(x

)

131211109876543
eigenvalue x

Fig. 11. The spectrum of GRIPE measured by RIPE. The insert graph is the
tail part, fitted with fλ(x) ' 0.8e−x. The theory of [24] is not applicable to
exponentially decaying tails in fλ(x).

The spectrum of the topology GRIPE measured by RIPE [22]
is shown in Figure 11, and is very akin to that measured on
Planet lab in Figure 12. More details are in the table below

RIPE PlanetLab
date 9-18-2005 11-10-2004
m 70 79
#spts in union 67 76
N 4058 4214
L 6151 6994
Pr [D = k] ∼ e−0.39k ∼ e−0.44k

Each of the m testboxes acts as a source and sends traffic
to other testboxes. After removing error measurements in the
trace-routes, the overlay GRIPE and GPlanetLab are constructed
as the union of (only) #spts trees. Both GRIPE and GPlanetLab are
subgraphs of G∪spt on top of the underlying Internet topology.
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Fig. 12. The spectrum of the overlay measured on PlanetLab. The deep tail
region can be fitted both by an exponential (fλ(x) ' 2.5e−1.3x) and a power
law (fλ(x) ' 1.5λ−5.2). Applying the conversion fλ(x) ' 2xfD x2

from [24] to the power law results in a degree pdf fD (x) ∼ x−3.1. The
power law exponent γ = 3.1 exceeds the commonly accepted γInternet ∈
[2, 2, 2.5].
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The spectra of GRIPE and GPlanetLab seem to give support for
the Conjecture 1, since the partial overlay G∪mspt (m << N )
seems approximately close to G∪spt (see Figure 9 (c)) and
reveals more features of the overlay than that of the underlying
topology, which is overwhelmingly shown in the literature to
belong to the class of power law or scale free graphs. The
spectrum of scale-free networks exhibit a power law tail in
the region of large eigenvalues [29][24]. The spectra of GRIPE
and GPlanetLab, however, may possess an exponential tail, most
likely because the value of m is still not large enough to
cover G∪spt sufficiently and to observe the power law behavior
[30]. The relationship between a partial overlay G∪mspt, the
complete overlay G∪Nspt and the underlying topology or
substrate stands on the agenda for future work. In view of
the potentially strong biases in current measurements of the
Internet topology as mentioned in Section I, we deem it crucial
to understand how accurately G∪spt can be approximated
by G∪mspt. In particular, given a property P of a graph G
and an accuracy �, what is the threshold mc (�) such that
|P (G∪spt)− P (G∪mspt)| < � for all m > mc (�).

As a final remark, Conjecture 1 implies that the observed
network will have a low maximum degree and a Poisson
degree distribution, contrary to the view, promoted by some
papers [18][33][32], claiming that the bias may lead to an
observed power law degree distribution irrespective of the
degree distribution of the substrate. Most published work on
sampling bias focuses on unweighted graphs and the bias
originates purely from the sampling methods (such as the
union of paths from a small set of sources to a relatively
larger set of destinations). Here, we study the "bias" introduced
by the link weight structure of the substrate. The overlay
constructed as the union of shortest paths between all node
pairs is exactly the same as the substrate if the substrate is
unweighted (α → ∞ case). In weighted graphs, links with
high weight rarely appear in the observed network.
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APPENDIX

A. Proof of Theorem 2
By the law of total probability, we can write

Pr[P ∗i→j = l (i→ j)] =

Z ∞
0

fw(i→j)(x)×

Pr[P ∗i→j = l(i→ j)|w(i→ j) = x]dx

(17)

where fw(i→j)(x) is the pdf of the weight of a link in the
graph.

Let us assume that P ∗i→j,h>1 is the shortest path among
paths with more than 1 hop and let us denote the path weight

by w(P ∗i→j,h>1). Provided that the direct link between i and
j exists, then the shortest path equals the direct link if its
weight is smaller than any path with more than one hop and
vice versa,

P ∗i→j = P ∗i→j,h>1 · 1{w(i→j)≥w(P∗i→j,h>1)}

+ l(i→ j) · 1{w(i→j)<w(P∗i→j,h>1)}

from which the conditional probability

lim
∆x→0

Pr[P ∗i→j = l(i→ j)|{x ≤ w(i→ j) ≤ x+∆x}

∩{l(i→ j) exists}] = Pr[w(P ∗i→j,h>1) > x]

is immediate. Since the link weights are i.i.d. and also inde-
pendent of a specific link, the conditional probability Pc is

Pc = Pr[P
∗
i→j = l(i→ j)|{x ≤ w(i→ j) ≤ x+∆x}

∩{l(i→ j) exists}]
=

Pr[P∗i→j=l(i→j)|{x≤w(i→j)≤x+∆x}]
Pr[l(i→j) exists]

(18)
where the last step follows from the fact that the event
{P ∗i→j = i → j} is contained in the event {l(i→ j) exists}.
Hence,

lim
∆x→0

Pr
£
P ∗i→j = l(i→ j)|{x ≤ w(i→ j) ≤ x+∆x}

¤
= Pr [l(i→ j) exists] Pr[w(P ∗i→j,h>1) > x] (19)

The sample space Ω consists of four mutually exclusive events:

{w(P ∗i→j,h>1) ≤ x,w(i→ j) ≤ x ∩ l(i→ j) exists}
{w(P ∗i→j,h>1) > x,w(i→ j) ≤ x ∩ l(i→ j) exists}
{{w(i→ j) > x ∩ l(i→ j) exists} ∪ {l(i→ j) does not exist},
w(P ∗i→j,h>1) ≤ x}
{{w(i→ j) > x ∩ l(i→ j) exists} ∪ {l(i→ j) does not exist},
w(P ∗i→j,h>1) > x}

Therefore, the related probability measure is

Pr[w(P ∗i→j) ≤ x]

=Pr[w(P ∗i→j,h>1) ≤ x, {{w(i→ j) > x ∩ l(i→ j) exists}
∪ {l(i→ j) does not exist}]

+Pr[w(P ∗i→j,h>1) ≤ x,w(i→ j) ≤ x ∩ l(i→ j) exists]
+Pr[w(P ∗i→j,h>1) > x,w(i→ j) ≤ x ∩ l(i→ j) exists]
=Pr[w(P ∗i→j,h>1) ≤ x, {{w(i→ j) > x ∩ l(i→ j) exists}
∪ {l(i→ j) does not exist}]

+Pr[w(i→ j) ≤ x] Pr[l(i→ j) exists] (20)

where in the last step, we have again used the law of total
probability. Further, the event

{{w(i→ j) > x ∩ l(i→ j) exists}
∪ {l(i→ j) does not exist}, w(P ∗i→j,h>1) ≤ x}

={w(P ∗i→j,h>1) ≤ x} ∩ {{w(i→ j) > x ∩ l(i→ j) exists}
∪ {l(i→ j) does not exist}}

and the first two events are independent because link weights
are independently and identically distributed and l(i → j) is
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different from P ∗i→j,h>1. Hence, (20) reduces to

Pr[w(P ∗i→j) ≤ x]

=(Pr[w(i→ j) > x] · Pr[l(i→ j) exists]
+ Pr[l(i→ j) does not exist]) · Pr[w(P ∗i→j,h>1) ≤ x]

+ Pr[w(i→ j) ≤ x] Pr[l(i→ j) exists]

from which

Pr[w(P ∗i→j,h>1) ≤ x]

=
Pr[w(P ∗i→j) ≤ x]− Pr[w(i→ j) ≤ x] · pij

Pr[w(i→ j) > x] · pij + 1− pij

where pij = Pr[l(i → j) exists]. Finally, the conditional
probability (19) becomes

lim
∆x→0

Pr
£
P ∗i→j = l(i→ j)|{x ≤ w(i→ j) ≤ x+∆x}

¤
=

pij · Pr[w(P ∗i→j) > x]

Pr[w(i→ j) > x] · pij + 1− pij
(21)

and substituted into (17) leads to (2). ¤

B. Proof of Corollary 1
The event {P ∗i→j = l(i → j)} is equivalent to the event

{HN = 1} because the direct link corresponds to a one hop
shortest path. The second equality is demonstrated as follows.
Since d

dx Pr[w(i→ j) > x] = −fw(i→j)(x), we can write (2)
as

Pr[P ∗i→j = l(i→ j)]

= −
Z ∞
0

Pr[w(P ∗i→j) > x]

Pr[w(i→ j) > x] +A
d(Pr[w(i→ j) > x] +A)

where A =
1−pij
pij

. Partial integration yields,

Pr[P ∗i→j = l(i→ j)]

=− Pr[w(P ∗i→j) > x] log(Pr[w(i→ j) > x] +A)
¯̄x=∞
x=0

−
Z ∞
0

fw(P∗i→j)
(x) log(Pr[w(i→ j) > x] +A)dx

The limit x→ 0 gives log(1 +A) = − log pij and it remains
to show that the limit x →∞ vanishes. Since for any x and
any probability distribution w holds that

− log(Pr[w > x] +A) =

Z x

0

fw (u) du

Pr[w > u] +A

≤ 1

Pr[w > x] +A

Z x

0

fw (u) du

=
Pr[w ≤ x]

Pr[w > x] +A

we observe that

− log(Pr[w(i→ j) > x] +A) ≤ 1 +A

Pr[w(i→ j) > x] +A
− 1

such that

Pr[w(P ∗i→j) > x] log Pr[w(i→ j) > x] · (−1)

≤
(1 +A) Pr[w(P ∗i→j) > x]

Pr[w(i→ j) > x] +A
− Pr[w(P ∗i→j) > x]

Using (21), we have

−Pr[w(P ∗i→j) > x] log Pr[w(i→ j) > x]

≤ lim
∆x→0

Pr
£
P ∗i→j = l(i→ j)|{x ≤ w(i→ j) ≤ x+∆x}

¤
·

(1 +A)− Pr[w(P ∗i→j) > x]

For x → ∞, the both probabilities at right hand side tend to
zero. Hence,

Pr[P ∗i→j = l(i→ j)]

=−
Z ∞
0

fw(P∗i→j)
(x) log

µ
−Pr[w(i→ j) ≤ x] +

1

pij

¶
dx

− log pij

After writing

log

µ
−Pr[w(i→ j) ≤ x] +

1

pij

¶
= − log pij + log (1− pijFw (x))

we arrive at (4). ¤

C. Asymptotic uncorrelation of links in G∪URT

Lemma 1: All first hop links in a same URT are indepen-
dent.

Proof: see [11, p. 371]. ¤
This independence in the URT is only true for the first hop

nodes, and not for higher hop nodes since the latter depend
on the specific structure of the URT.

Lemma 2: Two links in a same URT, of which only one is
a first hop link, are asymptotically (for large N ) uncorrelated.

Proof: Drmota and Hwang [37] have, for large N , computed
the asymptotic correlation coefficient ρ

³
X
(k)
N ,X

(j)
N

´
of the

number of nodes X
(k)
N at hopcount k (called the k-th level

set of the URT) from the root in a URT, based on the exact
probability generating function E

h
xX

(k)
N yX

(j)
N

i
derived by van

der Hofstad et al. in [38]. For large N and small hopcounts
k = o (logN) and k = o (j) where j can range over all
levels, ρ

³
X
(k)
N ,X

(j)
N

´
tends to zero, which implies that the

level set k and j are asymptotically uncorrelated6. Since there
is a one-to-one correspondence between nodes and links in a
tree because each node (apart from the root) has precisely
one ancestor, the correlation between nodes transfers to a
correlation between links. Hence, all higher hop links in the
URT are asymptotically independent from the first hop links.
This proves the Lemma. ¤

The proof actually demonstrates more than necessary: in-
stead of uncorrelation between two links, it shows uncorrela-
tion between all higher hop links.

6The correlation coefficient ρ X
(k)
N ,X

(j)
N → 1 if k = O (logN) and

j = O (logN), implying that levels around the average hopcount E [HN ] ∼
logN (containing most of the nodes) are strongly correlated, and this is
mainly a consequence of the growth rule of the URT [11, Sec. 16.2.2.] and of
the "conservation of nodes over the levels", N−1

k=0 X
(k)
N = N . Each URT

of G∪spt thus contains highly correlated level sets, but the individual links
(not paths) in G∪spt seem far less correlated as suggested by Conjecture 1.
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Lemma 3: Two different arbitrary links in the overlay
G∪spt on top of the complete graph KN are asymptotically
(for large N ) pairwise uncorrelated.

Proof: We denote two arbitrary links of G∪spt by l1 =
l (n1 → x) and l2 = l (n2 → y) where node x 6= y. We
distinguish between two cases, n1 = n2 and n1 6= n2.

If n1 = n2, then both l1 and l2 are first hop links in the
same URT and, by Lemma 1, independent.

If n1 6= n2, the links l1 and l2 do not share a common
node and there are two cases: (1) l2 does not belong to the
URT rooted at n1 (and vice versa), in which case l1 and l2
are either independent or at most asymptotically uncorrelated
(see proof Lemma 2) because both links l1 and l2 may appear
in a URT rooted at another node n3. (2) l2 ∈ URTn1 , the
URT rooted at node n1. Lemma 2 then shows that l2 and l1
are asymptotically independent. ¤

Recall that pairwise uncorrelation is weaker than pairwise
independence, which in turn does not necessarily imply inde-
pendence.
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