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Abstract Social dynamic opinion models have been widely studied to understand how in-
teractions among individuals cause opinions to evolve. Most opinion models that utilize
spin interaction models usually produce a consensus steady state in which only one opin-
ion exists. Because in reality different opinions usually coexist, we focus on non-consensus
opinion models in which above a certain threshold two opinions coexist in a stable relation-
ship. We revisit and extend the non-consensus opinion (NCO) model introduced by Shao
et al. (Phys. Rev. Lett. 103:01870, 2009). The NCO model in random networks displays a
second order phase transition that belongs to regular mean field percolation and is character-
ized by the appearance (above a certain threshold) of a large spanning cluster of the minority
opinion. We generalize the NCO model by adding a weight factor W to each individual’s
original opinion when determining their future opinion (NCOW model). We find that as
W increases the minority opinion holders tend to form stable clusters with a smaller initial
minority fraction than in the NCO model. We also revisit another non-consensus opinion
model based on the NCO model, the inflexible contrarian opinion (ICO) model (Li et al. in
Phys. Rev. E 84:066101, 2011), which introduces inflexible contrarians to model the compe-
tition between two opinions in a steady state. Inflexible contrarians are individuals that never
change their original opinion but may influence the opinions of others. To place the inflexi-
ble contrarians in the ICO model we use two different strategies, random placement and one
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in which high-degree nodes are targeted. The inflexible contrarians effectively decrease the
size of the largest rival-opinion cluster in both strategies, but the effect is more pronounced
under the targeted method. All of the above models have previously been explored in terms
of a single network, but human communities are usually interconnected, not isolated. Be-
cause opinions propagate not only within single networks but also between networks, and
because the rules of opinion formation within a network may differ from those between net-
works, we study here the opinion dynamics in coupled networks. Each network represents
a social group or community and the interdependent links joining individuals from different
networks may be social ties that are unusually strong, e.g., married couples. We apply the
non-consensus opinion (NCO) rule on each individual network and the global majority rule
on interdependent pairs such that two interdependent agents with different opinions will,
due to the influence of mass media, follow the majority opinion of the entire population.
The opinion interactions within each network and the interdependent links across networks
interlace periodically until a steady state is reached. We find that the interdependent links
effectively force the system from a second order phase transition, which is characteristic of
the NCO model on a single network, to a hybrid phase transition, i.e., a mix of second-order
and abrupt jump-like transitions that ultimately becomes, as we increase the percentage of
interdependent agents, a pure abrupt transition. We conclude that for the NCO model on
coupled networks, interactions through interdependent links could push the non-consensus
opinion model to a consensus opinion model, which mimics the reality that increased mass
communication causes people to hold opinions that are increasingly similar. We also find
that the effect of interdependent links is more pronounced in interdependent scale free net-
works than in interdependent Erdős Rényi networks.

Keywords Non-consensus · Opinion model · Percolation · Coupled networks · Complex
networks

1 Introduction

Statistical physics methods have been successfully applied to understand the cooperative
behavior of complex interactions between microscopic entities at a macroscopic level. In
recent decades many research fields, such as biology, ecology, economics, and sociology,
have used concepts and tools from statistical mechanics to better understand the collective
behavior of different systems either in individual scientific fields or in some combination of
interdisciplinary fields. Recently the application of statistical physics to social phenomena,
and opinion dynamics in particular, has attracted the attention of an increasing number of
physicists. Statistical physics can be used to explore an important question in opinion dy-
namics: how can interactions between individuals create order in a situation that is initially
disordered? Order in this social science context means agreement, and disorder means dis-
agreement. The transition from a disordered state to a macroscopic ordered state is a familiar
territory in traditional statistical physics, and tools such as Ising spin models are often used
to explore this kind of transition. Another significant aspect present in social dynamics is the
topology of the substrate in which a process evolves. This topology describes the relation-
ships between individuals by identifying, e.g., friendship pairs and interaction frequencies.
Researchers have mapped the topology of social connections onto complex networks in
which the nodes represent agents and the links represent the interactions between agents
[3–15]. Various versions of opinion models based on spin models have been proposed and
studied, such as the Sznajd model [16], the voter model [17, 18], the majority rule model
[19, 20], and the social impact model [21, 22].
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Almost all spin-like opinion models mentioned above are based on short-range interac-
tions that reach an ordered steady state, with a consensus opinion that can be described as a
consensus opinion model. In real life, however, different opinions coexist. In a presidential
election in a country with two political parties in which each party has its own candidate, for
example, a majority opinion and a minority opinion coexist. The opinions among the voters
differ, with one fraction of the voters supporting one candidate and the rest supporting the
other, and rarely will the two opinions reach consensus. This reality has motivated scientists
to explore opinion models that are more realistic, ones in which two opinions can stably
coexist. Shao et al. [1] have proposed a nonconsensus opinion (NCO) model that achieves
a steady state with two opinions coexisting. Unlike the majority rule model and the voter
model in which the dynamic of an agent’s opinion is not influenced by the agent’s own
current opinion but only by its neighbors, the NCO model assumes that during the opinion
formation process an agent’s opinion is influenced by both its own current opinion and the
opinions of friends, modeled as nearest-neighbors in a network. This NCO model begins
with a disordered state with a fraction f of σ+ opinion and a fraction 1 − f of σ− opin-
ion distributed randomly on the nodes of a network. Through interactions the two opinions
compete and reach a non-consensus stable state with clusters of σ+ and σ− opinions. In the
NCO model, at each time step each node adopts the majority opinion of its “neighborhood,”
which consists of the node’s nearest neighbors and itself. When there is a tie, the node does
not change its opinion. The NCO model takes each node’s own current opinion into consid-
eration, and this is a critical condition for reaching a nonconsensus steady state. Beginning
with a random initial condition, this novel nontrivial stable state in which both majority and
minority opinions coexist is achieved after a relatively short sequence of time steps in the
dynamic process. The NCO model has a smooth phase transition with the control parame-
ter f . Below a critical threshold fc , only the majority opinion exists. Above fc , minorities
can form large spanning clusters across the total population of size N . Using simulations,
Shao et al. [1] suggested that the smooth phase transition in the NCO model in random
networks is of the same universality class as regular mean field (MF) percolation. But sim-
ulations of the NCO model in Euclidean lattices suggest that the process might belong to
the universality class of invasion percolation with trapping (TIP) [1, 23]. Apparently this is
the first time, to the best of our knowledge, that a social dynamic model has been mapped
to percolation, an important tool in statistical physics. The nature of this percolation on a
2D lattice, however, is still under debate [23, 24]. Exact solutions of the NCO model in
one dimension and in a Cayley tree have been developed by Ben-Avraham [25]. Recently
Borghesi et al. [26] studied a spin-like non-consensus opinion model that is able to explain
the distribution of voters in several elections.

Here we present simulations suggesting that the behavior of the NCO model, in which
two opinions coexist, disappears when the average network degree increases. When the
average degree of a network is high, the agent’s own opinion becomes less effective and
the NCO model converges to the majority voter model. This was argued analytically by
Roca [27] and also claimed by Sattari et al. [24]. In this paper we also generalize the NCO
model and create a nonconsensus opinion model by adding a weight (the NCOW model) to
each agent’s original opinion. The weight W ≥ 1 represents the strength of an individual’s
opinion. Note that in the NCO model, W = 1 is assumed, i.e., the weights of all the agents’
opinions in the system are treated as equal. The NCOW model retains all the features of the
NCO model, except that the critical threshold fc of the NCOW model with W > 1 decreases
when W increases. This means that strengthening one’s own opinion helps smaller minority
opinion groups to survive.
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The NCO model reaches a steady state in which the two opinions coexist. This is only
partially realistic. In real life, two opinions do not simply coexist—they continue to com-
pete. Real-world examples include the decades-long competition between the Windows and
Macintosh operating systems and between Republicans and Democrats in US presidential
politics. All the participants in these competitions have the same goal: winning. In order to
increase their prospects of winning, they need as many supporters (or customers) as possi-
ble. Thus, it is interesting to study how two opinions continue to compete after they have
reached a steady state. In order to consider both aspects, the nonconsensus steady state and
the competition, Li et al. [2] proposed an inflexible contrarian opinion (ICO) model in which
a fraction φ of inflexible contrarians are introduced into the final steady state of the NCO
model and two different competition strategies are then applied. The concept “contrarian
agents” was introduced by Galam [28] in his work on opinion models. There have also been
a number of works on complex networks, addressing the same or closely related phenomena,
namely the role and impact of inflexible agents in social dynamics and influences. While the
specific underlying opinion models and the corresponding terminologies for the inflexible
agents vary from paper to paper, e.g., inflexible agents [29], true believers [30], zealots [31],
committed agents [32, 33], and committed believers [34], the common characteristic of these
special agents is that they cannot change their states. In the ICO model, an inflexible contrar-
ian is an agent that holds an opinion contrary to that held by the majority of its surrounding
group and its opinion is not influenced by its surrounding group—it never changes. Inflex-
ible contrarians have one goal: to change the opinion of the current supporters in the rival
group. We see this strategy when, for example, companies send a free product to potential
customers in order to convince them to adopt the product and influence their friends to do
the same. We study the ICO model in order to determine, for example, whether these free
products actually help beat the competition, how many free products need to be sent, and
who the best candidates are to receive the free product. Reference [2] presents two strategies
for introducing inflexible contrarians into the steady state of the σ+ opinion groups: (i) the
random strategy and (ii) the targeted (high degree) strategy. Using these strategies, we find
that the relative size of the largest cluster in state σ+ undergoes a second-order phase tran-
sition when a critical fraction of inflexible contrarians φc is reached in the system. Below
that critical fraction the two opinions can coexist and above it only σ− exists. Thus the ICO
is also a nonconsensus opinion model. The results also indicate that the largest cluster in
state σ+ undergoes a second order phase transition that can be mapped into MF percolation
similar to the NCO model.

All opinion models described above have been studied on a single network. In real-world
social opinion dynamics, however, individuals belonging to different social communities
communicate with each other. In a traditional agrarian village, for example, two separate
working relationship networks often form. Men work in the fields with other men and
women work in their homes with other women. Marriages between men and women in
this setting create interdependencies between the two working relationship networks. As far
as we know, there has been no modeling study of how this kind of strong social connec-
tion between two such different groups influences the exchange of opinions. In studying the
opinion dynamics across different groups we utilize a concept that has recently gained wide
attention: the resilience of interdependent networks to cascading failures [35–42]. Connect-
ing two networks together with interdependent links allows individuals to exchange opinions
between networks. In our model, two nodes from different networks that are connected by
interdependent links represent a pair of nodes that have strong social relations. In inter-
dependent networks we usually distinguish between the connectivity links between agents
within each network or community and interdependent links between agents from different
networks.
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To study the effect of interdependent links on opinion dynamics, we propose a non-
consensus opinion (NCO) model on coupled networks in which we assume different opinion
formation rules for internal connectivity and interdependent links. We assume that during
the dynamic process of opinion formation the agents that are connected with interdepen-
dent links will have the same opinion, this being the case because their social relationship
is strong. In our model, the NCO rules are applied in each individual network. For the cou-
pled pairs the following rule is applied: if two interdependent nodes have the same opinion,
they will keep this opinion, but if they have different opinions, they will follow the majority
opinion of the interdependent network system (global majority rule). Many other possible
rules could be tested for the interdependent pairs, but we adopt here, for simplicity, the ma-
jority rule. When an opinion is shared by two interdependent individuals, such as a married
couple, because their social relationship is strong and close, they will tend to maintain their
opinion against outside influence. If their opinions differ initially, they tend to eventually
resolve their differences and share the same opinion. In the process of resolving their differ-
ences, however, they can be significantly influenced by outside forces, e.g., mass media, and
thus we assume that they often end up sharing the majority opinion. When we increase the
number of interdependent links between the coupled networks, the transition changes from
a pure second order phase transition to a hybrid phase transition and finally to a seemingly
abrupt transition. The hybrid transition contains both a second order and an abrupt transi-
tion. Note that also, Schwämmle et al. [43] reported that a first or a second order transition is
observed depending on the number of competing opinions and the topology of the network.
The model type of the NCO model on coupled networks also changes as the number of in-
terdependent links increases, and thus the system goes from being a form of nonconsensus
opinion model to being a form of consensus opinion model. This suggests that strong inter-
actions between different social groups is pushing our world in the direction of becoming
more uniform in their opinions.

The paper is organized as follows, in Sect. 2 we revisit some important concepts on the
topology of opinion clusters and percolation. We then present the results and discussions on
NCO and NCOW model in Sect. 3, on ICO model in Sect. 4 and on NCO model on coupled
networks in Sect. 5. Finally, we present our summary in Sect. 6.

2 Topology of Opinion Clusters and Percolation

In recent decades many researchers have studied how network topology affects the pro-
cesses that evolve in them. Examples of such processes are percolation and the spreading of
rumors, opinions, and diseases [4–6, 13, 44–50]. Classical percolation processes deal with
the random failure of nodes (or links) and present a geometrical second order phase tran-
sition with a control parameter p that represents the fraction of nodes (or links) remaining
after a random failure of a fraction 1 − p of nodes (or links).

There exists a critical probability pc above which a “giant component” (GC) appears.
The number of nodes in the GC, S1, is called the order parameter of the phase transition.
Below criticality there is no GC and only finite clusters exist. For p < pc the size distribution
of the clusters is ns ∼ s−τ with a cutoff that diverges when approaching pc . At criticality,
in the thermodynamic limit, the size of the second largest component S2 diverges at pc

as S2 ∼ |p − pc|−γ just as the susceptibility with the distance to the critical temperature.
For large networks (N → ∞), pc = 1/(κ − 1), where κ is the branching factor given by
κ = 〈k2〉/〈k〉, where 〈k〉 and 〈k2〉 are the first and second moments of the degree distribution
P (k) of the network respectively [11]. We perform all our simulations on both Erdős-Rényi
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(ER) networks [7–9] and scale-free (SF) networks [10]. ER networks are characterized by
a Poisson degree distribution, P (k) = e−〈k〉〈k〉k/k!. In SF networks the degree distribution
is given by a power law, P (k) ∼ k−λ, for kmin ≤ k ≤ kmax, where kmin is the lowest degree
of the network and kmax is the highest degree of the network. For random SF networks
kmax ∼ N1/(λ−1) is the degree cutoff [11], where N is the system size and λ is the broadness
of the distribution.

We begin by examining percolation in ER networks. At criticality, percolation in ER
networks is equivalent to percolation on a Cayley tree or percolation at the upper critical
dimension dc = 6 where all the exponents have mean field (MF) values with τ = 5/2 and
γ = 1. Note that in the ER case, the mass of the incipient infinite cluster S1 scales as N2/3

at criticality. We can understand this result by using the framework of percolation theory for
the upper critical dimension dc = 6. Since S1 ∼ Rdf and N ∼ Rd (where d is the dimension
of the initial lattice, df the fractal dimension, and R the spatial diameter of the cluster), it
follows that S1 ∼ Ndf /dc and since dc = 6 and df = 4 we obtain S1 ∼ N2/3 [48].

For SF networks, the GC at criticality is S1 ∼ N2/3 for λ > 4, and S1 ∼ N(λ−2)/(λ−1) for
3 < λ ≤ 4 [51]. For SF networks, with λ < 3, 〈k2〉 → ∞ when N → ∞ because kmax → ∞
and thus pc = 0, making these networks extremely robust against random failures [11].

However if we decrease kmax by targeting and removing the highest degree nodes (hubs),
pc is finite [52] and we recover a second order phase transition with MF exponents as in ER
networks. We will show below that this is also true for our model here. A similar MF be-
havior in SF networks with λ < 3 was found also by Valdez et al. [53] for the percolation of
susceptible clusters during the spread of an epidemic. In our simulations we always choose
kmin = 2 for SF networks in order to ensure that they are almost fully connected [11].

3 The NCO Model

In the NCO model [1] on a single network with N nodes, opinion σ+ and σ− are initially
randomly assigned to each node with a fraction of f and 1 − f respectively. The basic
assumption of the NCO model is that the opinion of an agent is influenced by both its
own opinion and the opinions of its nearest neighbors (the agent’s friends). The opinion
formation rule states that at each time step, each node adopts the majority opinion, which
includes both the opinions of its neighbors and itself. If there is a tie, the node’s opinion
will remain unchanged. Using this rule, each node is tested at each simulation step to see
whether its opinion has changed. All these updates are performed simultaneously and in
parallel until no more changes occur and a steady state is reached.

Figure 1 demonstrates the dynamic behavior of the NCO model on a small network with
nine nodes. At time t = 0, five nodes are randomly assigned opinion σ+ (empty circle), and
the remaining four, opinion σ− (solid circle). After checking the status of each node, we find
that only node A belongs to a local minority with opinion σ+, so at the end of this time step,
node A changes its opinion to σ−. At time t = 1 only node B belongs to a local minority,
so at the end of this time step, the opinion of node B will be updated to σ−. At time t = 3,
every node has the same opinion as its local majority, where the final nonconsensus steady
state is reached.

3.1 Simulation Results

In the steady state s1 = S1/N is the normalized size of the largest opinion σ+ cluster, s2 =
S2/N is the normalized size of the second largest opinion σ+ cluster, and F is the normalized
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Fig. 1 Dynamics of the NCO model showing the approach to a stable state on a network with N = 9 nodes.
(a) At t = 0, five nodes are randomly assigned to be σ+ (empty circle), and the remaining four nodes are
assigned with σ− (solid circle). In the set comprising of node A and its 4 neighbors (dashed box), node A

is in a local minority opinion, while the remaining nodes are not. Thus at the end of this simulation step,
node A is converted into σ− opinion. (b) At t = 1, in the set of nodes comprising node B and its 6 neighbors
(dashed box), node B becomes in a local minority opinion, while the remaining nodes are not. Thus, node B

is converted into σ− at the end of simulation step t = 1. (c) At, t = 2, the nine nodes system reaches a stable
state

Fig. 2 Plots of s1, s2 and F of opinion σ+ as a function of f with network size N = 10 000, for (a) ER
networks with 〈k〉 = 4 and (b) SF networks with λ = 2.5 and kmin = 2. All simulations were done for 104

networks realizations

fraction of opinion σ+ nodes. Figure 2 shows plots of s1, s2, and F as a function of the initial
fraction f of the opinion σ+ nodes for both ER and SF networks. We find that due to the
symmetrical status of both opinions, F is a monotonically increasing function of f with
symmetry around f = 0.5. Figure 2 also shows the emergence of a second order phase
transition. Note that there is a critical threshold fc , which is characterized by the sharp
peak of s2. Below fc , s1 approaches zero, where only the majority opinion can form steady
clusters, and above fc , s1 increases as f increases and a state with stable coexistence of
both majority and minority opinion clusters appears. Although for both ER and SF networks
fc < 0.5 as expected, ER networks have smaller values of fc than SF networks for the same
average degree 〈k〉. For example for SF networks with kmin = 2 and λ = 2.5 where 〈k〉 ≈ 5.5,
fc ≈ 0.45, while for the same average degree 〈k〉 = 5.5, for ER networks, fc ≈ 0.4. These
differences in fc indicate that the minorities in SF networks need more initial supports to
form final steady state clusters, than minorities in ER networks. This might be understood
due to the high degree nodes (hubs) of a SF network. In the NCO model a hub, because
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Fig. 3 (a) Plots of ns as a function of s at criticality for ER networks with 〈k〉 = 4 and SF networks with
λ = 2.5 and kmin = 2. The dashed line is a guide to show that the slope obtained is τ = 2.5. (b) Plots
of S1 as a function of N at criticality for ER networks with 〈k〉 = 4 and SF networks with λ = 2.5 and
kmin = 2. The dashed lines are guides to show that the slope obtained is θ ≈ 2/3. All simulations were done
for N = 10 000 and over 104 networks realizations

of its large number of connections, is strongly influenced by its neighbors which are with
high probability of the majority opinion, and puts the minority opinion at a disadvantage.
Reference [1] presents also studies of the NCO model in a two-dimensional Euclidean lattice
and of the NCO model on real-world networks.

We next present numerical simulations indicating that the phase transition observed in
the NCO model is in the same universality class as regular MF percolation. Percolation in
random networks (e.g., ER and SF networks with λ > 4 for random failures or all λ for
targeted attacks) [13, 49, 50] is obtained by MF theory, which predicts that at criticality the
cluster size distribution is ns ∼ s−τ with τ = 2.5 and S1 ∼ Nθ , where θ = df /dc with df = 4
and dc = 6 represent the fractal and the upper critical dimension of percolation respectively
and thus θ = 2/3 (see Sect. 2). Figure 3(a) shows the finite cluster size distribution ns of the
σ+ opinion cluster as a function of s at criticality (f = fc). Figure 3(b) shows S1 at criticality
fc as a function of N for ER and SF networks with 〈k〉 = 4 and λ = 2.5, respectively. Note
that in both networks τ ≈ 2.5 and θ ≈ 2/3. These two exponents strongly indicate that the
NCO model in random networks behaves like a second order phase transition that belongs
to the same universality class as regular MF percolation.

In our above results we focus on networks that have a relatively low average degree 〈k〉.
We test the model for networks with higher average degrees. In SF networks we increase
〈k〉 by increasing the value of kmin. Figure 4 shows s1 and s2 as a function of f for different
values of 〈k〉 for ER networks and SF networks. As the values of 〈k〉 increase, i.e., as the
network becomes increasingly condensed and the number of interactions between agents
increases, a sharper change of s1 at a critical threshold is observed. This may suggest (but
can not be proved by simulations) the existence of a critical value 〈k〉 = kc that is strongly
affected by the topology of the network. Below kc , as 〈k〉 increases, fc shifts to the right,
as can be seen from the shift of the peak of s2. Above fc two opinions can continue to
coexist and remain stable. Above kc the smooth second order phase transition is replaced by
a sharp jump of s1 at approximately f = 0.5 that is accompanied by the disappearance of
the peaks of s2. Note also that as the values of 〈k〉 increase, the region in which two opinions
coexist becomes increasingly smaller and approach zero for very large values of 〈k〉 possibly
above kc . In terms of the NCO model, as the number of connections between individuals
increase, the opinion of each individual becomes less important and each individual becomes
increasingly susceptible to the influence of the majority opinion across the entire system.
Thus the majority opinion can easily overwhelm the minority opinion, causing the critical
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Fig. 4 Plots of (a) s1 and (b) s2 of opinion σ+ as a function of f for ER networks with different values of
〈k〉 for N = 10 000. (c) s1 and (d) s2 of opinion σ+ as a function of f for SF networks with different values
of 〈k〉 for N = 10 000 and λ = 2.5. The solid lines are guides for the eyes. All simulations were done for 104

networks realizations

behavior of the NCO model, the second-order phase transition, to disappear at large 〈k〉 and
the NCO model to converge to the majority voter model yielding a possible global consensus
throughout the system. Note that analytical arguments for an abrupt transition of the NCO
model at large 〈k〉 are given in Ref. [27].

How can one help the minority opinions to survive? As we have seen, as the number
of friends of an agent increases, the importance of the agent’s own opinion decreases. In
this way the majority opinion gradually eliminates the minority opinion. If we generalize
the NCO model by adding a weight value W to each agent’s own opinion, as W of an
agent increases, the influence of the opinion of the agent’s neighbors decreases. We call this
generalization of the NCO model the NCOW model. As in the NCO model, in the NCOW

model we change an agent’s opinion if he is in a local minority but we also weight the
agent’s own opinion W times more than its nearest neighbors. The NCO model is actually
a special case of the NCOW model in which W = 1. Figure 5 shows plots of s1 and s2 as
a function of f for both W = 1 and W = 4. Note that as W increases, the second-order
phase transition becomes flatter and the peak of the s2 shifts to the left, which indicates
a smaller critical threshold fc . The smaller value of fc for larger values of W means that
from the minority point of view, it needs fewer initial supporters to form and maintain stable
finite clusters. When weight is added to the agents own opinion (indicating stubbornness)
they become less susceptible to outside influence. Thus in the NCOW model the majority is
aided when the agents make more friends, but the minority in turn is aided when the agents
treat their own opinion as more important than their friends’ opinions.
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Fig. 5 Plots of (a) s1 and (b) s2 of opinion σ+ as a function of f , for ER networks with different values of
W for 〈k〉 = 4. The solid lines are guides for the eyes. All simulations were done with N = 10 000 and for
104 networks realizations

4 The ICO Model

The initial configuration of the inflexible contrarian opinion (ICO) model corresponds to the
final steady state of the NCO model in which two opinions σ+ and σ− coexist. At t = 0 a
fraction φ of inflexible contrarians of opinion σ− are introduced into clusters of σ+ by re-
placing nodes of σ+. The inflexible contrarians are agents that hold a strong and unchange-
able σ− opinion, that theoretically could influence the σ+ opinion of their neighbors as the
system evolves with NCO dynamics. Because the opinion held by the inflexible contrarians
is unchanging, they function as a quenched noise in the network. The system evolves ac-
cording to NCO dynamics until a new steady state is reached. In this steady state the agents
form clusters of two different opinions above a new threshold fc ≡ fc(φ). Because the con-
trarians hold the σ− opinion, the size of the σ+ clusters decreases as φ increases. Figure 6
demonstrates the dynamic of the ICO model. We use two different strategies to introduce a
fraction φ of inflexible contrarians. In strategy I we chose the fraction φ of nodes with σ+
opinion at random. In strategy II the inflexible contrarians are chosen from the agents with
σ+ opinion in decreasing order of their connectivity. Strategy II is thus a targeted strategy.

4.1 Simulation Results

We present our simulation results for ER networks with 〈k〉 = 4 and N = 105. For simulation
results of ICO model for SF networks see Ref. [2]. Figure 7 shows plots of s1 and s2 as a
function of f for different values of φ for strategies I and II, respectively. Note that the ICO
model inherits some of the properties of the NCO model. This is the case because there is a
smooth phase transition with a critical threshold fc , where fc is characterized by the sharp
peak of s2. However, for the ICO model, fc is also a function of φ. Thus we denote the
new fc in the ICO model by fc(φ). We find that, as φ increases, the critical value fc(φ)

increases, which means that the largest cluster composed of σ+ agents becomes less robust
due to the increase in the number of inflexible contrarians of opinion σ−. Note also that for
f > fc(φ), s1 decreases as φ increases. Thus, we conclude that inflexible contrarians with
opinion σ− have two effects: (i) they increase the value of fc(φ) and thus the σ+ opinion
needs more initial support in order to survive, and (ii) they decrease the size of the largest
σ+ opinion cluster at f > fc(φ). Note also that in the ICO model when φ is large the largest
σ+ cluster is fully destroyed and the second-order phase transition is lost. This is probably
due to the fact that when φ is large, minority groups do not have high degree nodes and thus
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Fig. 6 Schematic plot of the dynamics of the ICO model showing the approach to a stable state on a network
with N = 9 nodes. (a) At t = 0, we have a stable state where opinion σ+ (open circle) and opinion σ− (filled
circle) coexist. (b) At t = 1, we change node 1 into a inflexible contrarian (filled square), which will hold σ−
opinion. Node 2 is now in a local minority opinion while the remaining nodes are not. Notice that node 1 is an
inflexible contrarian and even if he is in the local minority he will not change his opinion. At the end of this
simulation step, node 2 is converted into σ− opinion. (c) At t = 2, node 3 is in a local minority opinion and
therefore will be converted into σ− opinion. (d) At t = 3, the system reaches a stable state where the system
breaks into four disconnected clusters, one of them composed of six σ− nodes and the other three with one
σ+ node

their average connectivity becomes smaller than 1 and, as a consequence, will no longer
be able to form stable clusters [7]. As expected (see Fig. 7) strategy II is more efficient in
destroying the largest minority component. This is plausible because, when selecting the
initial fraction φ of inflexible contrarians using a targeted strategy, almost all the inflexible
contrarians will be in the largest initial σ+ cluster since this cluster includes most of the high
degree nodes. Figure 8 tests this hypothesis and shows at the final stage of the NCO the ratio
F(k), which is the number of nodes within the GC of σ+ opinion with degree k divided
by the total number of nodes of opinion σ+ with degree k in the entire network system, for
different values of f . We find that for large values of k, F(k) → 1. These results support
our previous hypothesis that almost all the high degree nodes belong to the largest cluster,
and this explains why strategy II is more efficient than strategy I.

We next test whether the ICO model undergoes a phase transition as a function of φ and
what it its type. Figures 9(a) and 9(c) show plots of s1 as a function of φ for different values
of f for strategy I and strategy II, respectively. Figures 9(b)(top) and 9(d)(top) show plots
of s2 as a function of φ for different values of f for strategy I and strategy II, respectively.
We can see that in both strategies s2 has a peak at φ = φc(f ), which is a characteristic of
a second-order phase transition. Figures 9(b)(bottom) and 9(d)(bottom) further support the
presence of a second order phase transition by showing plots of the derivative of s1 with
respect to φ for different values of f . Note that there is an abrupt change with φ in 	s1/	φ

at the same position of the peak of s2, suggesting that the transition is of second order. We
next show that the second order phase transition has the same exponents as MF percolation.
Figure 10 plots the finite cluster size distribution of σ+ agents, ns as a function of s at
f = fc(φ), from where we obtain τ = 5/2. From s2 we also compute the exponent γ and
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Fig. 7 For ER networks with 〈k〉 = 4, plots of (a) s1 and (b) s2 as a function of f for different values of
φ under strategy I. Plots of (c) s1 and (d) s2 as a function for f for different values of φ under strategy II.
The solid lines in s2 are guides for the eyes. All simulations were done with N = 10 000 and 104 network
realizations

Fig. 8 F(k) as a function of k

for different values of f for ER
networks with 〈k〉 = 4. We can
see that as f increases F(k) → 1
for smaller values of k.
All simulations were done with
N = 10 000 and 104 network
realizations

obtain γ ≈ 1 (not shown). These two exponents indicate that the ICO model on random
graphs belongs to the same universality class as MF percolation.

5 The NCO on Coupled Networks Model

Figure 11 demonstrates the dynamics of the NCO model on coupled networks. In coupled
networks, the two networks represent two groups of people. The links within each network
denote the relationships between nodes. For simplicity, we assume that the two networks
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Fig. 9 For ER networks with 〈k〉 = 4, plots of (a) s1 (b) (top) s2 and (b) (bottom) 	S1/	φ as a function of
φ for different values of f under strategy I. Plot of (c) s1, (d) (top) s2 and (d) (bottom) 	S1/	φ as a function
of φ for different values of f under strategy II. The solid lines in s2 and 	S1/	φ are guides for the eyes.
All simulations were done with N = 10 000 and 104 network realizations

Fig. 10 Plots of ns as a function
of s for both strategies at fc(φ).
For the random strategy,
fc(φ) = 0.36 and for the targeted
strategy, fc(φ) = 0.45 when
φ = 0.2. The dashed line is a
guide to show that the slope
obtained is τ ≈ 5/2.
All simulations were done with
N = 10 000 and 104 network
realizations

have the same number of nodes N and the same degree distribution. We also assign these
two networks the same initial opinion condition, i.e., in both networks there is initially a
fraction f of nodes holding the σ+ opinion, and a fraction 1 − f holding the σ− opinion. To
represent the strong social coupling between the two groups, we randomly choose a fraction
q of the nodes from both networks to form qN pairs of one-to-one interdependent pairs
regardless of their original opinions. At time t = 0, in both networks we apply the same
opinion formation rule, the NCO model, to decide whether an agent will change its opinion
regardless of the interdependent links. This means that at this stage opinions propagate in
each single network independently—as though the other network does not exist. All opinion
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Fig. 11 Schematic plot of the dynamics of the NCO on coupled networks showing the approach to a stable
state on a system of interdependent networks A and B with N = 6 nodes in each network. Open circles
represent opinion σ+ and solid circles represent opinion σ− . The solid lines connecting nodes in each network
are connectivity links within the networks, and the dashed lines connecting nodes from two networks are
interdependent links. In the initial state, each node is randomly assigned with opinion σ+ or σ− . (a) At t = 0,
opinion dynamics evolve within each single network. In networks A and B , nodes A1, A2, A3, A4 and B1 are
in a local minority opinion within their network, so at the end of this time step these nodes will change their
opinions. The remaining nodes will keep their opinions. (b) At t = 1, the two networks interact through the
interdependent links. Notice that the global majority opinion is σ+ now. Thus, the pairs A1–B1 and A5–B5
where two nodes have different opinions, will follow the global majority opinion. So at the end of this time
step nodes A1 and A5 will change their opinions. The pair A3–B3, remains as σ− since both nodes share
the same opinion. (c) At t = 2, in network A, node A3 is in a local minority, so at the end of the time step it
will change opinion. (d) At t = 3, the two networks interact through the interdependent links. Notice that the
global majority opinion is still σ+ , the only pair with different opinion is A3–B3, so at the end of this time
step, B3 will change its opinion. (d) At t = 4, the interdependent networks reach a stable state and no more
changes will happen (Color figure online)

updates are made simultaneously and in parallel. At t = 1, if two nodes with an interde-
pendent link have the same opinion they keep that opinion. If they do not, they follow the
majority opinion of the coupled networks (global majority rule). All interdependent agents
update their opinions simultaneously at the end of this time step. We repeat these two steps
until the system reaches a steady state.

5.1 Simulation Results

We perform simulations of the NCO on coupled networks where both of the interdependent
networks are either ER networks with 〈k〉 = 4 or SF networks with kmin = 2 and λ = 2.5.
For an initial fraction f of opinion σ+ and a fraction q of interdependent links, the NCO on
coupled networks is simulated on 104 network realizations to explore how interdependent
links affect opinion dynamics.

5.1.1 NCO on Coupled ER Networks

We first investigate s1 as a function of f for different values of q . Figure 12(a) shows that
when q = 0, which corresponds to the NCO model on a single network, the system under-
goes a second order phase transition with a critical threshold fc [1]. When q > 0, there are
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Fig. 12 Plots of NCO on coupled ER networks, with 〈kA〉 = 〈kB 〉 = 4 and for each network N = 10 000.
(a) Plot of s1 of opinion σ+ as a function of f for several values of q . As seen, when q = 0, the system under-
goes a smooth second order phase transition (regular NCO model). As q increases until q = 0.5, it becomes
a hybrid phase transition, which contains both a smooth second order type and a seemingly abrupt jump, i.e.,
s1 changes smoothly close to fc(q) and followed by a sharp jump at f = 0.5. When q is further increased
(q > 0.5), the smooth phase transition disappears, the system undergoes a pure abrupt phase transition. In the
inset of (a) we plot fc as a function of q . (b) Plot of s2 as a function of f for different values of q . As seen,
when q increases, the peaks of the s2, which characterize the critical threshold value of the second order
phase transition, shift to the right. We can see that beyond q = 0.5, the peak of s2 disappears, which indicates
that there is no second order phase transition. (c) Plot of the change of S1 around f = 0.5, 	S1, as a function
of system size N for different values of q > 0. In the inset of (c), we plot 	S1/N as a function of N for
different values of q . The linear relationship between 	S1 and N suggests that for q > 0, around f = 0.5,
there exists a discontinuous transition. (d) Plot of the number of cascading steps (NOI) of the networks as
a function of f for different values of q . As seen there are two peaks for each q value for q < 0.5, and for
q ≥ 0.5 there is only one peak at f = 0.5. In the inset of (d), plot of the location of NOI peak as a function
of q . The solid lines are guides for the eyes

two regions 0 < q ≤ 0.5 and q > 0.5. For the region 0 < q ≤ 0.5, as in the NCO model on a
single network, the second order phase transition still exists, but the critical value f ≡ fc(q)

is increasing with q . The value of fc(q) can be determined by the location of the peak of
s2, which is shown in Fig. 12(b), where we plot s2 as a function of f for different values of
q . The inset of Fig. 12(a) shows a plot of fc(q) as a function of q . We find that the peak
of s2 shifts to the right for q ≤ 0.5 as q increases, which means that fc(q) increases as
q increases. This suggests that if we add more interdependent links between the two net-
works, the minority opinion will need a larger initial fraction in order to exist. In the region
0 < q ≤ 0.5 we also find that, unlike the NCO model on a single ER network, there is an
abrupt change of s1 at f = 0.5, indicating that in addition to the smooth second order phase
transition at fc(q), there may also be a discontinuous transition at f = 0.5. Our results sug-
gest that when 0 < q ≤ 0.5 the system may undergo a hybrid phase transition [54], which
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is a mixture of both an abrupt and a second order phase transition. We also find that as q

increases the discontinuity around f = 0.5 becomes more pronounced. Although the system
possesses a seemingly discontinuous phase transition for 0 < q ≤ 0.5, the model itself is still
a non-consensus model, i.e., when f is above the critical value fc(q) the two opinions coex-
ist in a steady state. When q > 0.5 the smooth second order phase transition of s1 disappears
and is replaced by an abrupt transition at f = 0.5. When q > 0.5 the peak of s2 disappears,
supporting the loss of the second order phase transition [see Fig. 12(b)], and the system
undergoes a pure abrupt transition. This suggests that when interactions between networks
are sufficiently strong the hybrid phase transition is replaced by a pure abrupt transition. For
all values of q , the region where two opinions can coexist decreases as q increases, and the
NCO coupled networks model moves at large q toward the consensus type opinion model.
To further support our finding of the existence of a discontinuous transition when q > 0,
in Fig. 12(c) and its inset we plot respectively the jump of S1, 	S1 = S1(0.51) − S1(0.49),
and 	S1/N , around f = 0.5 as a function of the system size N for different values of q .
The linear relationship between 	S1 and N supports our assumption of the existence of a
discontinuous transition around f = 0.5 for all values of q > 0. Note that, as the value of q

increases, the value of 	S1 increases, which means that as we increase the value of q the
abrupt transition becomes more pronounced.

To further support our conclusions, we investigate the number of iterations (NOI), which
is the number of time steps needed to reach the steady state, as a function of f for different
values of q . Figure 12(d) shows a plot of the NOI as a function of f for different values of q .
As described in Ref. [55], in a pure first order phase transition due to cascading failures the
location of the peak of the NOI determines the critical threshold of the transition, which is
the case for q > 0.5 in our model. Figure 12(d) shows that there is only one peak for the NOI
curves for q > 0.5 at f = 0.5, which is the position of the critical threshold of the abrupt
transition. In the hybrid phase transition for q ≤ 0.5, the relation between the peak of the
NOI and the critical threshold is unclear because there are two critical thresholds, one for
the discontinuous transition at f = 0.5 and the other for the second order phase transition
at fc(q). Figure 12(d) shows that when q < 0.5 the NOI exhibits two symmetric peaks. The
inset of Fig. 12(d) shows a plot of the location of the left peaks of the NOI as a function
of q . Comparing the insets in Fig. 12(a) and Fig. 12(d), we find that the curve of the peak
locations of the NOI is always above the fc(q) curve, which suggests that for a hybrid phase
transition the peak of the NOI is located between the critical thresholds of the second order
phase transition and the abrupt transition.

Figure 13 shows a log-log plot of the NOI at f = 0.5 as a function of the system size
N for different values of q , and the inset of Fig. 13 shows the same in a log-linear plot.
The accuracy of the simulations is such that we cannot distinguish the relationship between
exponential and logarithmic. However, the increase of NOI with system size indicates that
there is a real jump at approximately f = 0.5 rather than a finite size effect. This supports
our previous conjecture that for all values of q > 0, the NCO on coupled networks exhibits
an abrupt transition at f = 0.5.

We next present results indicating that, when q ≤ 0.5 and when f is close to fc(q), our
model is in the same universality class as regular MF percolation, even though a disconti-
nuity appears at larger f . For regular percolation on random graphs at criticality, the cluster
sizes follow a power law distribution, ns ∼ s−τ with τ = 2.5 [13, 49, 50]. Figure 14 shows
a plot of ns as a function of s for finite σ+ clusters at criticality, fc(q). We see that for
q ≤ 0.5, τ ≈ 2.5, and for q > 0.5, the power law no longer holds. The exponent values we
obtain strongly indicate that, for small value of q , the NCO model on coupled ER networks
close to fc is in the same universality class as mean field percolation in random networks.
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Fig. 13 Plot of the number of
cascading steps between the
networks (ER with
〈kA〉 = 〈kB 〉 = 〈k〉 = 4) at
f = 0.5 as a function of system
size for different values of q in
log-log scale and in log-linear
scale in the inset respectively.
The dashed lines are the power
law and logarithmic fittings
respectively

Fig. 14 Plot of ns as a function
of s at criticality, fc , for different
values of q for the NCO model
on coupled ER networks, with
〈kA〉 = 〈kB 〉 = 〈k〉 = 4 and
N = 10 000. For each network
the results are averaged over 104

realizations. As q increases,
ns losses the power law shape
indicating that the second order
phase transition is lost. The
dashed line is a guide to show the
slope τ = 2.5

The power law for the cluster size distribution at q > 0.5 disappears, so we conclude that the
NCO coupled networks model changes the phase transition type as q increases from q ≤ 0.5
to q > 0.5.

5.1.2 NCO on Coupled SF Networks

Empirical studies show that many real-world social networks are not ER. They instead ex-
hibit a SF degree distribution [10] in which P (k) ∼ k−λ and λ characterize the broadness of
the distribution. A feature of SF is the existence of hubs, i.e., very high degree nodes. These
large hubs make the opinion dynamic processes in SF networks much more efficient than in
ER networks [56–61].

Because of its large number of connections, a hub in the NCO model tends to follow
the opinion of the majority and effectively influence the opinions of its neighbors. In a SF
network the hubs help the majority dominate the minority, and thus the NCO model on
a single SF network has a larger fc and exhibits a much sharper jump around fc than in
ER networks with the same average degree [1]. This is also the case in interdependent SF
networks. Figures 15(a), 15(b), and 15(c) depict s1, s2, and NOI as a functions of f for
different values of q , respectively. The results of the NCO model on coupled SF networks
are similar to those of coupled ER networks, except that the region of the hybrid phase
transition is much smaller in coupled SF networks. This is confirmed by the fact that the
peak of s2 drops much faster for small q values and that the single peak of NOI shows up
at smaller q values for coupled SF networks in contrast to the case of coupled ER networks.
This indicates that the pure abrupt phase transition occurs at smaller q values in coupled SF
networks compared to coupled ER networks, which suggests that in coupled SF networks a



Non-consensus Opinion Models on Complex Networks 109

Fig. 15 Study of NCO model on coupled SF networks, with kmin = 2, λ = 2.5 and N = 10 000 for each
network. (a) Plot of s1 of opinion σ+ as a function f for different values of q . (b) Plot of s2 as a function
of f for different values of q . (c) Plot of the number of cascading steps, NOI, of the coupled networks as a
function of f for different values of q . The solid lines are guides for the eyes

Fig. 16 Plot of ns as a function
of s at criticality for different
value of q for the NCO model on
coupled SF networks, with
kmin = 2, λ = 2.5 and
N = 10 000. For each case the
results are averaged over 104

realizations. As q increases,
ns losses the power law shape
indicating that the second order
phase transition is lost. The
dashed line is a guide to show the
slope τ = 2.5

smaller number of interdependent agents are needed to achieve a consensus state compared
to coupled ER networks. Figure 16 shows a plot of ns as a function of s for finite σ+ clusters
at criticality. Note that in SF networks when q ≤ 0.1 the ns decays as a power law with τ =
2.5, and when q > 0.1 the power law decay of ns no longer holds. This suggests that only for
small values of q our NCO model on coupled SF networks is in the same universality class
as regular MF percolation. Comparing Fig. 16 with Fig. 14, we find that the power law decay
disappears at smaller q values in coupled SF networks compared to coupled ER networks.
This supports our hypothesis that interdependent links push the entire system to an abrupt
phase transition more effectively in coupled SF networks than in coupled ER networks.



110 Q. Li et al.

In both coupled ER and SF networks, our non-consensus opinion second order phase
transition model is transformed into a consensus opinion type abrupt transition model when
the number of interdependent links is increased. This suggests that increasing the interac-
tions between different groups in our world will push humanity to become increasingly
homogeneous, i.e., interdependent pairs in the NCO coupled networks model helps the ma-
jority opinions supporters to eliminate the minority opinion, making uniformity (consensus)
a possible final result.

6 Summary

In this paper we revisit and extended the non-consensus opinion (NCO) model, introduced
by Shao et al. [1]. We introduce the NCOW model in which each node’s opinion is given
a weight W to represent the nodes’ resistance to opinion changes. We find that in both the
NCO and the NCOW models the size of the largest minority cluster with σ+ opinion un-
dergoes a second order MF percolation transition in which the control parameter is f . The
NCOW model is more robust than the NCO model because the weighted nodes reinforce the
largest σ+ minority cluster, and shift the critical value fc to values lower than those found in
the NCO model. We also show that when the average network degree 〈k〉 in the NCO model
is increased, the second order phase transition is replaced by an abrupt transition, transform-
ing the NCO model into a consensus opinion model. We also review another non-consensus
opinion model, the ICO model [2], which introduces into the system, using both random
and targeted strategies, a fraction φ of inflexible contrarians (which act as quenched noise).
As φ increases, both random and targeted strategies reduce the size of the largest σ+ cluster
and, above a critical threshold φ = φc , the largest σ+ cluster disappears and the second order
phase transition is also lost. The targeted strategy is more efficient in eliminating the largest
σ+ cluster or decreasing its size. This is due to the fact that most of the contrarians are intro-
duced (targeted) into the largest cluster, which contains most of the high degree nodes. Thus
a smaller φc value is needed to eliminate the largest cluster of minority opinion in the tar-
geted strategy than in to the random strategy. We also study an opinion model in which two
interdependent networks are coupled by a fraction q of interdependent links. The internal
dynamics within each network obey the NCO rules, but the cross-network interdependent
nodes, when their opinions differ, obey the global majority rule. These interdependent links
force the system from a second order phase transition, characteristic of the NCO model on
a single network, to a hybrid phase transition, i.e., a mix of a second order transition and
an abrupt transition. As the fraction of interdependent links increases, the system evolves
to a pure abrupt phase transition. Above a certain value of q , which is strongly dependent
on network topology, the interdependent link interactions push the non-consensus opinion
model to a consensus opinion model. Because scale free networks have large hubs, the ef-
fect of interdependent links is more pronounced in interdependent scale free networks than
in interdependent Erdős Rényi networks. We are investigating whether the same effect ap-
pears in other opinion models of interdependent networks. The results will be presented in
a future paper.
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7. Erdős, P., Rényi, A.: Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960)
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