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We propose a class of graphs G∗
D(n1, n2, . . . , nD+1), containing of

a chain of D + 1 cliques Kn1 , Kn2 , . . . , KnD+1
, where neighboring

cliques are fully-interconnected. The class of graphs has diameter

D and size N = ∑
1� i �D+1 ni. We prove that this class of graphs

can achieve the maximal number of links, the minimum average

hopcount, and more interestingly, the maximal of any Laplacian

eigenvalue among all graphs with N nodes and diameter D. The

algebraic connectivity is the eigenvalue of the Laplacian that has

been studiedmost, because it featuresmany interesting properties.

We determine the graph with the largest algebraic connectiv-

ity among graphs with N nodes and diameter D� 4. For other

diameters, numerically searching for the maximum of any eigen-

value is feasible, because (a) the searching space within the class

G∗
D(n1, n2, . . . , nD+1) is much smaller thanwithin all graphs with N

nodesanddiameterD; (b)we reduce thecalculationof theLaplacian

spectrum from a N × N to a (D + 1) × (D + 1) matrix.

The maximum of any Laplacian eigenvalue obtained either theo-

retically or by numerical searching is applied to (1) investigate the

topological features of graphs that maximize different Laplacian

eigenvalues; (2) study the correlation between themaximum alge-

braic connectivity amax(N, D) and N as well as D and (3) evaluate

two upper bounds of the algebraic connectivity that are proposed

in the literature.
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1. Introduction

Let G be a graph and let N denote the set of nodes and L the set of links, with N = |N | nodes
and L = |L| links, respectively. The Laplacian matrix of G with N nodes is a N × N matrix Q = � −
A, where � = diag(di) and di is the degree of node i ∈ N and A is the adjacency matrix of G. The

Laplacian eigenvalues are all real and nonnegative [1]. The set of all N Laplacian eigenvalues μN =
0� μN−1 � · · · � μ1 is called the Laplacian spectrum of G.

The second smallest eigenvalue μN−1, also called after Fiedler’s seminal paper [2], the algebraic

connectivity, can be denoted as μN−1 = a(G) for simplicity. The algebraic connectivity a(G) is widely

studied in the literaturedue to (a) its importance for theconnectivity, abasicmeasure for the robustness

of a graph. The larger the algebraic connectivity is, the larger the relative number of links required to be

cut-away to generate a bipartition [3]; (b) its correlationwith properties of dynamic processes, such as

synchronization of dynamic processes at the nodes of a network and random walks on graphs which

model, e.g. the dispersion phenomena or exploring graph properties [3]. A network has a more robust

synchronized state if the algebraic connectivity of the network is large [4,5]. Randomwalks move and

disseminate efficiently in topologies with large algebraic connectivity.

The diameter D of a graph is the maximum distance in terms of the number of hops or links over

all pairs of nodes in G. The diameter is one of the graph metrics that is not only of theoretical interest

but that also has many practical applications. In communication networks, the diameter plays a key

role in network design when the network performance, such as the delay or signal degradation, is

proportional to the number of links that a packet traverses. Numerous applications include circuit

design, data representation, and parallel and distributive computing [6]. The complete graph has the

maximal algebraic connectivity a(KN) = N. However, real-world networks are always far sparser and

their diameters aremostly larger. In order to construct a certain relative large diameter, links have to be

removed, but this reduces the algebraic connectivity. It is essential to understand how the maximum

algebraic connectivity amax(N, D) decreases while increasing the diameter D, at constant N.

In this work, we propose a class of graphs G∗
D(n1, n2, . . . , nD, nD+1) where D is the diameter and

the variables ni, with 1� i �D + 1, are the sizes of the cliques contained in G∗
D. This structure was

employed by van Dam [7] to determine the graphs with the maximal spectral radius (largest eigen-

value of the adjacency matrix) among those on N nodes and diameter D. Here, we claim that the

maximum algebraic connectivity of the class G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1) is also the maximum

amax(N, D)over all graphsG(N, D)withN nodesanddiameterD.Moregenerally,weprove thatG∗
D(n1 =

1, n2, . . . , nD, nD+1 = 1) can achieve the maximum of any Laplacian eigenvalue μi, 1� i �N − 1, the

maximum link density, the minimum average hopcount among all graphs G(N, D).
For D� 4, we determine rigorously the graph in the class G∗

D(n1 = 1, n2, . . . , nD, nD+1 = 1) that

achieves the maximum algebraic connectivity amax(N, D). For larger diameters, the maximum of any

Laplacian eigenvalue is searched numerically, which is feasible, because we search within the class

G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1) instead of all graphsG(N, D). And,we reduce the computation of the

Laplacian eigenvalue from a N × N to a (D + 1) × (D + 1) matrix. Numerical exhaustive searching

is applied in this paper to (1) examine the topological features of graphs that maximize different

Laplacian eigenvalues; (2) investigate the maximum algebraic connectivity amax(N, D) for various N

and D and (3) finally, we evaluate the upper bounds on the algebraic connectivity that are proposed in

the literature.

2. The class of graphs G∗
D(n1, n2, . . . , nD+1)

2.1. Definition

Definition 1. The class of graphs G∗
D(n1, n2, . . . , nD+1) is composed of D + 1 cliques1 Kn1 , Kn2 , . . . , KnD

and KnD+1
, where the variable ni � 1 with 1� i �D + 1 is the size or number of nodes of the ith clique.

1 A clique is a subset of nodes that every two nodes in the subset are connected by a link.
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Fig. 1. The graph (a) G∗
D=4(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) and (b) G∗

D=4(n1 = 1, n2 = 3, n3 = 2, n4 = 2, n5 = 1).

Each clique Kni is fully connected with its neighboring cliques Kni−1
and Kni+1

for 2� i �D. Two graphs

G1 and G2 are fully connected if each node in G1 is connected to all the nodes in G2.

Two examples, G∗
D=4(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) and G∗

D=4(n1 = 1, n2 = 3, n3 = 2,

n4 = 2, n5 = 1), are shown in Fig. 1. Obviously, the class of graphs G∗
D(n1, n2, . . . , nD+1) has diameter

D, which equals the distance between nodes in clique Kn1 and nodes in KnD+1
. The size of each clique

must be larger than or equal to 1, i.e. ni � 1 for 1� i �D + 1. The degree of a node is the number of

links that connects to the node. The degree of any node in Kni is ni − 1 + ni+1 + ni−1 for 2� i �D.

The degree is n1 − 1 + n2 for any node in Kn1 and is nD+1 − 1 + nD for nodes in clique KnD+1
.

2.2. Properties

Each node in the class of graphs G∗
D(n1, n2, . . . , nD+1) is fully connected within the clique and

with neighboring cliques. We now define a node shifting action performed on a graph of the class

G∗
D(n1, n2, . . . , nD+1). The resultant graph also belongs to this class and differs from the initial graph

in that one node is shifted to a neighboring clique.

Definition 2. Node shifting within the class G∗
D(n1, . . . , ni−1, ni, ni+1, . . . , nD+1): Any node in clique

Kni for 2� i �D can be shifted to its neighboring clique Kni+1
(or Kni−1

) by removing links between

this node and all the nodes in clique Kni−1
(or Kni+1

) and by adding links between this node and all
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Fig. 2. The graph (a)G∗
D=4(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) and (b)G∗

D=4(n1 = 3, n2 = 1, n3 = 1, n4 = 2, n5 = 2). The
line with cross mark is to be removed and the dotted blue links are added.

the nodes in clique Kni+2
(Kni−2

), if ni > 1. The resultant graph after one of such node shifting actions

is G∗
D(n1, . . . , ni−1, ni − 1, ni+1 + 1, . . . , nD+1) or G∗

D(n1, n2, . . . , ni−1 + 1, ni − 1, ni+1, . . . , nD+1). A
node in clique Kn1 (or KnD+1

) can only be shifted to clique Kn2 (or KnD ) by adding links between it

and all nodes in clique Kn3 (or KnD−1
), which results in G∗

D(n1 − 1, n2 + 1, . . . , nD−1, nD, nD+1) (or

G∗
D(n1, n2, . . . , nD−1, nD + 1, nD+1 − 1)).

Fig. 2 illustrates an example of node shifting. From (a) G∗
D=4(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 =

2) to (b) G∗
D=4(n1 = 3, n2 = 1, n3 = 1, n4 = 2, n5 = 2), a node (red2) in Kn3 is shifted to Kn4 by re-

moving the link (marked with cross) between that node and nodes in clique Kn2 and by adding links

(the blue dotted line) between the node and all nodes in Kn5 . In fact, any two graphs in the class

G∗
D(n1, n2, . . . , nD, nD+1) with the same number N of nodes can be transformed from one to the other

by a set of node shifting actions. For example, Fig. 1(b) can be obtained from Fig. 1(a) by shifting two

nodes from Kn1 to Kn2 and one node from Kn5 to Kn4 . When a node in clique Kni , where 2� i �D and

ni > 1, is shifted to clique Kni+1
, ni−1 links are removed and ni+2 links are added. Hence, if we shift

m < ni nodes from clique Kni to clique Kni+1
, ni−1 · m links are removed and ni+2 · m links are added.

This node shifting operationwill be frequently used to prove several interesting properties of the class

G∗
D(n1, n2, . . . , nD, nD+1).

2 For interpretation of color in Figs. 1-7, the reader is referred to the web version of this article.
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Based on the sizes of the first and last clique, the class of graphs G∗
D(n1, n2, . . . , nD, nD+1) can be

divided into two sets: (1) n1 = nD+1 = 1, e.g. Fig. 1(b), and (2) at least one of n1, nD+1 is larger than

1, e.g. Fig. 1(a). The set 1 is generally denser than the set 2, in the sense that

Lemma 3. A graph G∗
D(n1, n2, . . . , nD, nD+1), where at least one of n1 and nD+1 is larger than one, is a

subgraph of G∗
D(1, n1 − 1 + n2, . . . , nD−1, nD + nD+1 − 1, 1).

Proof. According to the definition of node shifting, links are only added and not removed,when a node

is shifted from Kn1 to Kn2 or from KnD+1
to KnD . G

∗
D(1, n1 − 1 + n2, . . . , nD−1, nD + nD+1 − 1, 1) can be

obtained from G∗
D(n1, n2, . . . , nD−1, nD, nD+1) by shifting n1 − 1 nodes from Kn1 to Kn2 and by shifting

nD+1 − 1 nodes from KnD+1
to KnD by purely adding links. Hence, G∗

D(n1, n2, . . . , nD−1, nD, nD+1) is a

subgraph of G∗
D(1, n1 − 1 + n2, . . . , nD−1, nD + nD+1 − 1, 1), when either n1 or nD+1 is larger than

one. �

Fig. 1 gives anexample of Lemma3, i.e.G∗
D=4(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) is a subgraph

ofG∗
D=4(n1 = 1, n2 = 3, n3 = 2, n4 = 2, n5 = 1). Both graphs contain the same set of nodes,while the

latter consists of more links, the blue dotted ones.

The motivation to study the set of graphs G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1) lies in the following

properties.

Theorem 4. Any graph G(N, D) with N nodes and diameter D is a subgraph of at least one graph in the

class G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1) with N = ∑D+1

i=1 ni.

Proof. There is at least one node pair in G(N, D) that is D hops away from each other, because the

diameter of G(N, D) is D. We select a node s from one such node pair and denote it as cluster C1 = s.

We define the set of clusters Ci (2� i �D + 1) as the set of |Ci| nodes that is i hops away from s or

cluster C1. There can bemore than one node that isD hops away from s, when |CD+1| � 1. First,G(N, D)
is a subgraph of the graph G∗

D(n1 = 1, n2, . . . , nD, nD+1) when ni = |Ci| for 1� i �D + 1, because of

two reasons: (a) within each cluster Ci of G(N, D), for 1� i �D + 1, these |Ci| nodes are at best fully

connected as in the corresponding cliqueKni with sizeni = |Ci| inG∗
D(n1 = 1, n2, . . . , nD, nD+1) and (b)

in G(N, D), nodes in cluster Ci(2� i �D) cannot be connected to nodes in other clusters except for Ci−1

andCi+1, or else, thedistancebetweenC1 = sandnodes inCD+1 is smaller thanD. Similarly, eachclique

Kni is onlybut fully connected to itsneighboringcliquesKni−1
andKni+1

inG∗
D(n1 = 1, n2, . . . , nD, nD+1).

Based on Lemma 3, G∗
D(n1 = 1, n2, . . . , nD, nD+1) is a subgraph of G∗

D(1, n2, . . . , nD−1, nD + nD+1 −
1, 1). Hence, any graph G(N, D) with N nodes and diameter D is a subgraph of at least one graph in the

class G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1). �

Since
∑D+1

i=1 ni = N and n1 = nD+1 = 1 always hold, the graph G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1)

contains D − 2 variables: the sizes of the cliques and ni > 0 for 1� i �D + 1.

Fiedler [2] showed that, if G1 is a subgraph of G with the same size, then a(G1) � a(G). Hence, by
virtue of Theorem 4, we have:

Corollary 5. Themaximumalgebraic connectivityof thegraphs in theclassG∗
D(n1 = 1, n2, . . . , nD, nD+1 =

1) is also the maximum among all the graphs with the same size N and diameter D, i.e. amax(G
∗
D(n1 =

1, n2, . . . , nD, nD+1 = 1)) = amax(N, D).

However, given size N and diameter D, the graph that has the maximum algebraic connectivity

amax(N, D)maynotbeunique. Forexample, thegraph inG∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1)maximizing

the algebraic connectivity amax(N, D) may possess the same algebraic connectivity after a set of links

is deleted. In other words, different graphs may have the same algebraic connectivity amax(N, D).

Theorem 6. The maximum of any eigenvalueμi(G1), i ∈ [1, N] achieved in the class G∗
D(n1 = 1, n2, . . . ,

nD, nD+1 = 1) is also the maximum among all the graphs with N nodes and diameter D.
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Proof. Our proof is based on the well-known interlacing property (see, e.g., [8]): Let G be a general

graph of N nodes. Let G + e be the graph obtained by adding a link e between two nodes that are not

directly connected in G. Then, the eigenvalues of G interlace with those of G + e, that is,

μN(G) � μN(G + e) � μN−1(G) � μN−1(G + e)

� μN−2(G) · · · � μ1 � μ1(G + e).

Therefore, if G1 is a subgraph of G with the same size N, μi(G1) � μi(G), for i ∈ [1, N]. Together with

Theorem 4, the proof can be completed. �

Theorem 7. The maximum number of links in a graph with given size N and diameter D is Lmax(N, D) =(
N − D + 2

2

)
+ D − 3, which can only be obtained by either G∗

D(1, . . . , 1, nj = N − D, 1, . . . , 1) with j ∈
[2, D], where only one clique has size larger than one, or by G∗

D(1, . . . , 1, nj > 1, nj+1 > 1, 1, . . . , 1) with

j ∈ [2, D − 1] where only two cliques have size larger than one and they are next to each other.

Proof. First, according to Theorem 4, the maximum number of links Lmax(N, D) can only be achieved

within the class G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1). Second, any other graph G∗

D(n1 = 1, n2, . . . ,
nD, nD+1 = 1),wheremore than one clique has size larger than one, can be transformed intoG∗

D(1, . . . ,
1, nj = N − D, 1, . . . , 1) by a set of node shifting operations. (a) When progressing from clique Kn2
to clique KnD−1

, we label the first encountered clique that has size larger than one as Knr such that

ni = 1 for i < r. (b) We shift all but one (i.e. nr − 1) nodes in clique Knr to clique Knr+1
by delet-

ing (nr − 1) · nr−1 = (nr − 1) links and by adding (nr − 1) · nr+2 links. The process (a and b) is

repeated until there is only one clique having size larger than 1. Since ni � 1 for i ∈ [1, D + 1] ac-

cording to the definition of the class G∗
D(n1, n2, . . . , nD, nD+1), (nr − 1) · nr+2 � nr − 1. The inequality

holds when nr+2 > 1, which happens at least one time during the recursive node shifting except

for G∗
D(1, . . . , 1, nj > 1, nj+1 > 1, 1, . . . , 1), j ∈ [1, D − 2] where only two cliques have size larger

than one and they are next to each other. Hence, G∗
D(1, . . . , 1, nj = N − D, 1, . . . , 1), j ∈ [2, D] and

G∗
D(1, . . . , 1, nj > 1, nj+1 > 1, 1, . . . , 1), j ∈ [2, D − 1] possess the maximum number of links among

graphs of size N and diameter D. The maximum number of links is Lmax(N, D) =
(
N − D

2

)
+ 2(N −

D) + D − 2 =
(
N − D + 2

2

)
+ D − 3. �

Theorem 8. The minimum average hopcount in graphs with given size N and diameter D can be only ob-

tainedbyG∗
D(1, . . . , 1, n D

2
+1 = N − D, 1, . . . , 1)whenD is even, orwhenD isodd, byG∗

D(1, . . . , 1, n� D
2
�+1

�
1, n� D

2
�+1

� 1, 1, . . . , 1), where only the two cliques in the middle can have size larger than one. The

minimum average hopcount is

min
G∈G(N,D)

E[H(G)] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N−D−1
N(N−1)

(
D2

2
+ N

)
+

∑D
i=1 i(D−i+1)(

N
2

) , when D is even,

N−D−1
N(N−1)

(
2
⌊
D
2

⌋2 + N + D

)
+

∑D
i=1 i(D−i+1)(

N
2

) , when D is odd.

Proof. See Appendix B.1. �

In summary, the classG∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1) can achieve themaximumof any Laplacian

eigenvalue μi, 1� i �N − 1, the maximum link density, the minimum average hopcount among all

graphs with given size N and diameter D. The graphs that possess the maximum link density and the

minimum average hopcount are rigorously determined in Theorems 7 and 8. In the sequel, we focus

on the Laplacian spectrum of the class G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1).
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3. Eigenvalues of the Laplacian of G∗
D(n1, n2, . . . , nD , nD+1)

The spectrum of both the Laplacian and adjacency matrix of G∗
D is computed in [9].

Theorem 9. The characteristic polynomial of the Laplacian QG∗
D

= �G∗
D

− AG∗
D

of G∗
D(n1, n2, . . . ,

nD−1, nD, nD+1) equals

det
(
QG∗

D
− μI

)
= pD(μ)

D+1∏
j=1

(
dj + 1 − μ

)nj−1
, (1)

where dj denotes the degree of a node in clique j. The polynomial pD(μ) = ∏D+1
j=1 θj is of degree D + 1 in

μ and the function θj = θj(D; μ) obeys the recursion

θj = (
dj + 1 − μ

)− (
nj−1

θj−1

+ 1

)
nj (2)

with initial condition θ0 = 1 and with the convention that n0 = nD+2 = 0.

Proof. See [9]. �

Theorem 9 shows that the Laplacian QG∗
D
has eigenvalues at nj−1 + nj + nj+1 = dj + 1 with mul-

tiplicity nj − 1 for 1� j �D + 1, with the convention that n0 = nD+2 = 0. The less trivial zeros are

solutions of the polynomial pD(μ) = ∏D+1
j=1 θj , where θj is recursively defined via (2). Since all the

explicit Laplacian eigenvalues μj = dj + 1 of G∗
D in (1) are larger than zero and since μ = 0 is an

eigenvalue of any Laplacian, the polynomial pD(μ) must have a zero at μ = 0. Thus, the polynomial

of interest is

pD(μ) =
D+1∏
j=1

θj(D; μ) =
D+1∑
k=0

ck (D) μk =
D+1∏
k=1

(zk − μ) , (3)

where the dependence of θj on the diameter D and on μ is explicitly written and where the product

with the zeros 0 = zD+1 � zD � · · · � z1 follows from the definition of the eigenvalue equation (see

[10, pp. 435–436]).

The general lower bound [11] for the algebraic connectivity in any graph is a� dmin wheredmin is the

minimal degree of a graph. Hence, a = zD, the algebraic connectivity is always a non-trivial eigenvalue

of QG∗
D
, i.e. the second smallest zero of the polynomial pD(μ). The largest Laplacian eigenvalue follows

μ1 � dmax + 1

the same as presented in [11–13]. Brouwer and Haemers [13] further show that the equality holds if

and only if there is a node connecting to all the other nodes in the graph. Hence, when the diameter

D > 2, the largest eigenvalue is always a nontrivial eigenvalue, i.e.μ1 = z1. When D = 2, the zeros of

pD(μ) = μ
(
μ2 − (N + n2) μ + Nn2

)
= μ (μ − N) (μ − n2)

are z3 = 0, z2 = n2 and z1 = N. Since the largest eigenvalue μ1 ∈ [0, N], μ1 = z1.

Furthermore, pD(μ) is shown in [9] to belong to a set of orthogonal polynomials. All the non-trivial

eigenvalues of QG∗
D
are also eigenvalues of the (much simpler and smaller) Jacobianmatrix – M̃, where

M̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
−n2

√
n1n2√

n1n2 − (n1 + n3)
√

n2n3
. . .

. . .
. . .√

nD−1nD − (nD−1 + nD+1)
√

nDnD+1√
nDnD+1 −nD

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Table 1

Graphs with D = 6 that optimize the ith largest Laplacian eigenvalue μi or the spacing μi − μi+1.

N = 50 N = 100

Value to optimize n2 n3 n4 n5 n6 Value to optimize n2 n3 n4 n5 n6

μN−1 = μN−1 − μN 6 11 14 11 6 μN−1 = μN−1 − μN 13 22 28 22 13

μN−2 16 15 1 1 15 μN−2 32 32 1 1 32

μN−2 − μN−1 16 15 1 1 15 μN−2 − μN−1 32 32 1 1 32

μN−3 1 22 1 1 23 μN−3 1 47 1 1 48

μN−3 − μN−2 1 22 1 1 23 μN−3 − μN−2 1 47 1 1 48

μN−4 1 22 1 23 1 μN−4 1 48 1 47 1

μN−4 − μN−3 1 22 1 23 1 μN−4 − μN−3 1 48 1 47 1

μN−5 1 1 44 1 1 μN−5 1 1 94 1 1

μN−5 − μN−4 1 1 44 1 1 μN−5 − μN−4 1 1 94 1 1

μN−6 1 1 1 30 15 μN−6 1 1 34 61 1

μN−6 − μN−5 1 1 43 1 2 μN−6 − μN−5 2 1 93 1 1

μN−7 1 1 1 35 10 μN−7 1 1 1 38 57

μN−7 − μN−6 2 1 42 1 2 μN−7 − μN−6 2 1 92 1 2

Therefore, exhaustively numerical searching for the maximum of any Laplacian eigenvalue is feasible

because of two reasons: (a) the searching space within G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1) is much

smaller than the searching within all graphs with N nodes and diameter D. (b) the calculation of the

Laplacian spectrum is reduced from a N × N matrix to a (D + 1) × (D + 1) tri-diagonal matrix.

4. The maximum of any Laplacian eigenvalue

Theorem6 shows that themaximumof any eigenvalue among all graphswith sizeN anddiameterD

canbe achievedwithin the classG∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1).What is the topological implication

when different eigenvalues are optimized? Table 1 presents the different topologies with D = 6 that

optimize the ith largest Laplacian eigenvalue μi and the spacing μi − μi+1, for i ∈ [N − 1, N − 7].
The graph in the class G∗

D(n1 = 1, n2, . . . , nD, nD+1 = 1) that optimizes μi for i �N − 5 possesses

the maximal number of links, i.e. only one or two adjacent cliques have size larger than one, ac-

cording to Theorem 7. In fact, μi for i = N − 6, N − 7 can be optimized by any graph in the class

G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1) that has the maximal number of links, not only the graph listed in

the table. Theorem 9 shows that the Laplacian QG∗
D
has eigenvalues at nj−1 + nj + nj+1 = dj + 1with

multiplicity nj − 1 for 1� j �D + 1. Graphs that maximize the number of links have the maximal

trivial eigenvalue N − D + 2 with the maximal multiplicity N − D − 1. Hence, a large set of eigen-

values, but not the largest one3 μ1, can be optimized by graphs possessing the maximal number of

links. Graph that optimizes the eigenvalueμi, at the same time, maximizes the corresponding spacing

μi − μi+1, for i �N − 5. However, when i < N − 5, the graph that optimizes the eigenvalue μi, has

spacing μi − μi+1 = 0, which is far from the maximal spacing.

The graph thatmaximizes the algebraic connectivityμN−1 has larger sizes for cliques in themiddle.

It is dense in the core and sparse at borders. Such structure is robust for information transportation in

the sense that traffic is more uniformly distributed, when traffic is injected between each node pair.

Contrary, graphs that maximize other eigenvalues or spacing, have cliques with small size (nj = 1)

around the middle, which have to carry much more traffic and become the bottleneck for transporta-

tion. Graphs with many cliques of size one are vulnerable, because removal of such clique – which

is in fact a node – disconnects the rest of the graph. Hence, the comparison of topologies in Table 1

provides us with an extra motivation to study the graphsmaximizing the algebraic connectivity. Since

G∗
D(n1, n2, . . . , nD, nD+1) has L = ∑D

i=2

(
ni
2

)
+∑D

i=1nini+1 links, the number of links in the graph that

maximizes the algebraic connectivity is far smaller than themaximumforD > 3 according to Theorem

3 The largest eigenvalue μ1 is always a nontrivial one according to Theorem 9. Hence, a lower bound for the maximal possible

μ1 follows μ1max �N − D + 2.
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7. Therefore, graphs that maximize the algebraic connectivity are robust for transportation, while, at

the same time, efficient in the number of links.

5. The maximum algebraic connectivity amax(N ,D)

5.1. Exact computation of amax(N, D) for diameter D = 2, 3, 4

Before we start the D = 2, 3 cases, it should be mentioned that the graph G(N, D = N − 1) with N

nodes and diameter N − 1 is unique: a path graph. The algebraic connectivity of a path graph [14] is

well-known: amax(N, D = N − 1) = 2
(
1 − cos π

N

)
.

The complete Laplacian spectrum of G∗
D=2(n1, n2, n3) follows from Theorem 9 and the polyno-

mial pD(μ), as the zeros at μ1 = n1 + n2 with multiplicity n1 − 1, μ2 = n1 + n2 + n3 = N with

multiplicity n2 − 1, μ3 = n2 + n3 with multiplicity n3 − 1 and the simple zeros of

pD(μ) = μ
(
μ2 − (N + n2) μ + Nn2

)
= μ (μ − N) (μ − n2) ,

which are z3 = 0, z2 = n2 and z1 = N. Clearly, since n1 + n2 + n3 = N, the largest possible algebraic

connectivity amax(N, D = 2) = n2 is N − 2.

This result is more directly found from Corollary 5. The maximum algebraic connectivity in graphs

with N nodes and diameter D can be achieved in the class G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1), which is

unique, i.e. G∗
D=2(n1 = 1, n2 = N − 2, n3 = 1) for D = 2. Hence, the graph G∗

D=2(n1 = 1, n2 = N −
2, n3 = 1), a clique of size N without one link KN − {(i, j)}, has the maximum algebraic connectivity

N − 2 among graphs with N nodes and diameter D = 2, i.e. amax(N, D = 2) = N − 2.

Theorem 10. For graphswithN nodes anddiameterD= 3, the graphG∗
D=3

(
1,
⌊
N−2
2

⌋
, N − 2 −

⌊
N−2
2

⌋
, 1
)

has the maximum algebraic connectivity with
⌊
N−2
2

⌋
− 1� amax(N, D = 3) �

⌊
N−2
2

⌋
.

Proof. See Appendix B.2. �

We will give the solution for the case D = 4 through a number of theorems.

Theorem 11. Among the graphs G∗
D=4(1, m, N − 2m − 2, m, 1), the algebraic connectivity is maximal

whenm =
⌊
N
3

− 5
9

− 1
18

√
6N − 8

⌋
orm =

⌈
N
3

− 5
9

− 1
18

√
6N − 8

⌉
andamax(N, D = 4) = N−1−m

2
−

1
2

√
N2 − 2N − 6Nm + 1 + 10m + 9m2.

Proof. See Appendix B.3. �

Theorem 12. The graph G∗
D=4(1, m + a, N − 2m − 2, m − a, 1), where 0 < a�m − 1, has algebraic

connectivity smaller than the graph G∗
D=4(1, m, N − 2m − 2, m, 1).

Proof. See Appendix B.4. �

Corollary 13. For graphs with N nodes and diameter D = 4, if we consider the graphs G∗
D=4(1, n2, N −

n2 − n4 − 2, n4, 1), where n2 and n4 are real numbers, then the maximum algebraic connectivity is

achieved for n2 = n4 = N
3

− 5
9

− 1
18

√
6N − 8 and amax(N, D = 4) = N

3
− 2

9
− 2

9

√
6N − 8.

Proof. The corollary follows directly from the proofs of Theorems 11 and 12. �

Theorem 14. For graphswithN nodes anddiameterD = 4, among thegraphsG∗
D=4(1, n2, N − n2 − n4 −

2, n4, 1), where n2 andn4 are integers, themaximumalgebraic connectivity is achieved for either (n2, n4) =
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(�m�, �m�), (n2, n4) = (�m�, �m�) or (n2, n4) = (�m�, �m�), where m = N
3

− 5
9

− 1
18

√
6N − 8.

Furthermore, amax(N, D = 4) � N
3

− 2
9

− 2
9

√
6N − 8.

Proof. See Appendix B.5. �

TheD = 4casedeservesmorediscussions. InAppendixAwereport the results of anumerical search

for graphs that maximize the algebraic connectivity for various values of the diameter D. In the con-

sidered examples (N = 26, 50, 100, 122) the graph with maximum algebraic connectivity is each time

unique and symmetric, namely G∗
D=4(1, m, N − 2m − 2, m, 1), where m is obtained by rounding N

3
−

5
9

− 1
18

√
6N − 8 to an integer. However, we also found a number of examples where the maximum

algebraic connectivity is realized for three different graphs, including the non-symmetric case men-

tioned in Theorem 14. For instance, the maximum algebraic connectivity for graphs on N = 48 nodes

with diameter 4, is realized byG∗
D=4(1, 14, 18, 14, 1),G

∗
D=4(1, 15, 16, 15, 1) and byG∗

D=4(1, 15, 17, 14, 1).
The algebraic connectivity for these graphs is an integer, namely12. In fact, it is straightforward toprove

that themaximum algebraic connectivity for graphs onN = 4 + 10s + 6s2 nodes (where s ∈ N) with

diameter 4, is realized by G∗
D=4(1, 2s

2 + 3s, 2s2 + 4s + 2, 2s2 + 3s, 1), G∗
D=4(1, 2s

2 + 3s + 1, 2s2 +
4s, 2s2 + 3s + 1, 1) and by G∗

D=4(1, 2s
2 + 3s + 1, 2s2 + 4s + 1, 2s2 + 3s, 1), with as algebraic con-

nectivity is the integer 2s2 + 2s. Note that the case N = 48 corresponds with s = 2. Whether or not

there exists a case where the non-symmetric graph G∗
D=4(1, �m�, N − �m� − �m� − 2, �m�, 1) is the

unique graph that realizes themaximum algebraic connectivity remains an interesting open problem.

5.2. amax(N, D) in relation to N and D

The maximum algebraic connectivity amax(N, D) used in this section is obtained via exhaustive

searching in G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1) forD� 4.We study first the amax(N, D) in relation toN.

As shown in Fig. 3, the maximal algebraic connectivity seems linear in N for constant D, i.e.

amax(N, D)∼=α + β · N. The slope β decreases fast from β = 1 to β = 0.12 when the diameter in-

creases from D = 2 to D = 6.When D = 2, amax(N, D = 2) = N − 2,which is determined in Section

5.1.WhenD = 3,wehave thatβ = 0.5,which follows fromTheorem10, i.e.
⌊
N−2
2

⌋
− 1� amax(N, D =

3) �
⌊
N−2
2

⌋
.Moreover, we have proved in [9, Section 3.3] that, for largeN, the highest possible achiev-

able algebraic connectivity amax(N, D) is a linear function ofN, provided the diameterD is independent

from N.

We start the investigation of the relation between amax(N, D) and diameter D by examining, in

general, μimax(G(N, D)), i ∈ [1, N], the maximum of the ith largest Laplacian eigenvalue among all

graphs G(N, D) with N nodes and diameter D. Later we will prove that the μimax(G(N, D)), i ∈ [1, N]
is non-increasing as the diameter D increases based on the following clique merging operation.

Definition 15. Clique merging: In any graph with diameter D of the class G∗
D(n1, n2, . . . , ni, ni+1, . . . ,

nD+1), any two adjacent cliques Kni and Kni+1
can be merged into one clique, resulting into a graph

with diameter D − 1, i.e. G∗
D−1(n1, n2, . . . , ni + ni+1, . . . , nD+1). The merging of clique Kni and Kni+1

is

obtained by adding nini+2 links such that clique Kni is fully meshed with clique Kni+2
(if i + 2�D +

1) and by adding ni−1ni+1 links such that the clique Kni+1
is fully meshed with clique Kni−1

(if

1� i − 1).

Fig. 4 presents an example of clique merging. Clique Kn3 and Kn4 in Fig. 4(a) G∗
D=4(n1 = 3, n2 =

1, n3 = 2, n4 = 1, n5 = 2) are merged into one clique, which results in Fig. 4(b) G∗
D=3(n1 = 3, n2 =

1, n3 + n4 = 3, n5 = 2). The clique merging consists of purely adding links (the blue dotted line).

Theorem 16. Given the network size N, the maximum of any eigenvalue μimax(G(N, D)), i ∈ [1, N] is

non-increasing as the diameter D increases, i.e. μimax(G(N, D + 1)) � μimax(G(N, D)).
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Fig. 3. The amax(N, D) (marker) for 2�D� 6 and the corresponding linear fitting (dotted line).

Proof. Assume that the graph G∗
D+1(n

′
1 = 1, n′

2, . . . , n
′
i , . . . , n

′
D+1, n

′
D+2 = 1) possesses themaximum

eigenvalue μimax(G(N, D + 1)), i ∈ [1, N] among all graphs with size N and diameter D + 1. Any
two adjacent cliques can be merged by only adding links, which results in G∗

D(n
′
1 = 1, n′

2, . . . , n
′
i +

n′
i+1, . . . , n

′
D+1, n

′
D+2 = 1). Hence, the graph G∗

D+1(n
′
1 = 1, n′

2, . . . , n
′
i , . . . , n

′
D+1, n

′
D+2 = 1) is a sub-

graph of G∗
D(n

′
1 = 1, n′

2, . . . , n
′
i + n′

i+1, . . . , n
′
D+1, n

′
D+2 = 1). According to the interlacing property in

the proof of Theorem 6, we have μimax(G(N, D + 1)) � μi(G
∗
D(n

′
1 = 1, n′

2, . . . , n
′
i + n′

i+1, . . . , n
′
D+1,

n′
D+2 = 1)). Furthermore, G∗

D(n
′
1 = 1, n′

2, . . . , n
′
i + n′

i+1, . . . , n
′
D+1, n

′
D+2 = 1) does not necessarily

possess the maximum eigenvalue μimax(G(N, D)), i.e. μi(G
∗
D(n

′
1 = 1, n′

2, . . . , n
′
i + n′

i+1, . . . , n
′
D+1,

n′
D+2 = 1)) � μimax(G(N, D)). Thus, μimax(G(N, D + 1)) � μimax(G(N, D)). �

In view of the linear relation between amax(N, D) and N, we present in Fig. 5 the scaled maximal

algebraic connectivity amax(G(N, D))/N in relation with the diameter D, when 10�N � 122. Themax-

imal algebraic connectivity amax(G(N, D)) is presented for all possible diameters, i.e. 1�D�N − 1

when 10�N � 35 and for D < 10 when N is large. The decrease of amax(G(N, D))/N as a function of D

is always slower than an exponential c exp(−γN) and close to (but faster than) a power law cN−γ . For

large N, the scaled algebraic connectivity amax(G(N, D))/N is expected to follow a universal function

of diameter D.

The corresponding clique sizes of G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1) that maximizes the algebraic

connectivity are partially given in Appendix A and completely documented in [15]. A symmetric clique

size (n1, n2, . . . , nD+1) or a symmetric structure seems to be necessary to maximize the algebraic

connectivity amax(N, D). The graphs that achieve the maximum algebraic connectivity in G∗
D(n1 =

1, n2, . . . , nD, nD+1 = 1) have relative large sizes for cliques close to the middle.

5.3. Two proposed upper bounds for a(N, D)

Here, we discuss two upper bounds that are proposed in the literature [16,17]. Based on the upper

bound
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3 2n =
4 1n = 5 2n =1 3n = 2 1n =

3 4 3n n+ = 5 2n =1 3n = 2 1n =

(a)

(b)

Fig. 4. (b) G∗
D=4(n1 = 3, n2 = 1, n3 + n4 = 3, n5 = 2) is obtained by merging clique Kn3 and Kn4 in (a)

G∗
D=3(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) via adding the blue dotted links.

D�

⎢⎢⎢⎣ cosh−1(N − 1)

cosh−1
(

μ1+a

μ1−a

)
⎥⎥⎥⎦+ 1

given by Chung et al. [6], where μ1 is the largest eigenvalue of the Laplacian Q and a is the algebraic

connectivity, Lin and Zhan [16] obtain an upper bound on a
μ1

a

μ1

�
cosh

(
cosh−1(N−1)

D−1

)
− 1

cosh

(
cosh−1(N−1)

D−1

)
+ 1

.

Combining a simple upper bound on μ1

μ1 �N. (4)

Lin and Zhan [16] arrive at an upper bound of the algebraic connectivity in relation to D and N

a(G(N, D)) � aup(N, D) = N

cosh

(
cosh−1(N−1)

D−1

)
− 1

cosh

(
cosh−1(N−1)

D−1

)
+ 1

. (5)

For D = 2, amax(N, D = 2) = N − 2, which is equal to the upper bound (5).
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Fig. 5. The scaled maximal algebraic connectivity amax(G(N, D))/N (marker) as a function of the diameter D in log-log scale.
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Fig. 6. Comparison of amax(N, D) and the upper bound of a(N, D) when 3�D� 6.
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Fig. 6 illustrates thataup(N, D) looselybounds the largest possible algebraic connectivityamax(N, D).
The upper bound aup(N, D) increases approximately linearly with N for 3�D� 6 and the corre-

sponding slope is much higher than that of amax(N, D). When D = 3, each node in clique Kn2 and

Kn3 of G∗
D=3(1, n2, n3, 1) possesses the maximum degree dmax = N − 2. When D = 4, the maximum

degree of G∗
D=4(1, n2, n3, n4, 1) is dmax = N − 3, which corresponds to a node in clique Kn3 . Since,

μ1 � dmax + 1 [12,11], the class G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1) has μ1 ≈ N, for D = 3, 4. There-

fore, the relative loose bound of (5) is not introduced by the μ1 ≈ N approximation of (4), when

D = 3, 4.
Alon and Milman [17] present another upper bound of the algebraic connectivity in relation to

diameter D and the maximum degree dmax

a(G) �
2dmax

D2

(
log2 N

2
)2

. (6)

Hence,

G∗
D=3(1, n2, n3, 1) �

2(N − 2)

9
(log2 N

2)2,

G∗
D=4(1, n2, n3, n4, 1) �

2(N − 3)

16
(log2 N

2)2,

which bounds the amax(N, D) even loser, especially for large N.

However, we should mention that the two upper bounds (5) and (6) may be tight in other cases.

In view of the relative loose upper bounds, at least for smaller diameter D� 6, the largest possible

algebraic connectivity amax(N, D) or its approximations derived from data fitting is of great interest.

We refer to [15], where amax(N, D) as well as its the corresponding topology are presented for a wide

range of diameter D and size N.

6. Conclusion

We propose a class of graphs G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1), within which the largest number

of links, the minimum average hopcount, and more interestingly, the maximum of any Laplacian

eigenvalue among all graphs with N nodes and diameter D can be achieved. The largest possible

algebraic connectivity amax(N, D) is rigorously determined for diameter D = 2, 3, 4 and D = N − 1.

For other diameters, the maximum of any Laplacian eigenvalue can be searched within G∗
D(n1 =

1, n2, . . . , nD, nD+1 = 1), which is feasible due to the reduction in size of the Laplacian from a N × N

to a (D + 1) × (D + 1) matrix.

Combining both the theoretical and numerical results, we have (1) illustrated the different

topological features of graphs that maximize different Laplacian eigenvalues, which provides an

extra motivation to investigate graphs maximizing the algebraic connectivity; (2) presented the re-

lation between the maximum algebraic connectivity amax(N, D) and the size N as well as the diam-

eter D; (3) compared two upper bounds of the algebraic connectivity proposed in literature with

the largest possible amax(N, D) for small diameter. This is a first step to explore the application of

these maximal possible Laplacian eigenvalues via the class G∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1). Rich

mathematical results related to the characteristic polynomial of both the Laplacian and adjacency

matrix are documented in [9], which is, however, still far from being able to analytically

determine the graph optimizing a given eigenvalue. More numerical results about the amax(N, D)
as well as the corresponding graph are being collected and updated in [15].
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A. The graph that maximizes the algebraic connectivity

amax(G(N = 26, D)) n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

D = 2 24 1 24 1
D = 3 11.1345 1 12 12 1
D = 4 5.6834 1 7 10 7 1
D = 5 3.1264 1 5 7 7 5 1
D = 6 1.8566 1 3 6 6 6 3 1
D = 7 1.1555 1 2 5 5 5 5 2 1
D = 8 0.781781 1 2 3 5 4 5 3 2 1
D = 9 0.517162 1 1 3 4 4 4 4 3 1 1

amax(G(N = 50, D)) n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

D = 2 48 1 48 1
D = 3 23.074278 1 24 24 1
D = 4 12.641101 1 15 18 15 1
D = 5 7.080889 1 9 15 15 9 1
D = 6 4.290025 1 6 11 14 11 6 1
D = 7 2.764758 1 5 8 11 11 8 5 1
D = 8 1.859022 1 3 7 9 10 9 7 3 1
D = 9 1.320825 1 3 5 7 9 9 7 5 3 1

amax(G(N = 100, D)) n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

D = 2 98 1 98 1
D = 3 48.0385 1 49 49 1
D = 4 27.6754 1 31 36 31 1
D = 5 15.8799 1 19 30 30 19 1
D = 6 9.7886 1 13 22 28 22 13 1
D = 7 6.3833 1 9 17 23 23 17 9 1
D = 8 4.358863 1 7 13 19 20 19 13 7 1
D = 9 3.098801 1 5 10 16 18 18 16 10 5 1

amax(G(N = 122, D)) n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

D = 2 120 1 120 1
D = 3 59.031762 1 60 60 1
D = 4 34.442561 1 39 42 39 1
D = 5 19.858188 1 24 36 36 24 1
D = 6 12.266200 1 16 27 34 27 16 1
D = 7 8.021537 1 11 20 29 28 21 11 1
D = 8 5.499296 1 8 16 23 26 23 16 8 1
D = 9 3.910465 1 6 13 18 23 22 19 13 6 1

B. Proofs

B.1. Proof of Theorem 8

First, according to Theorem 4 and the fact that adding links can always reduce the average hop-

count, the minimum average hopcount in graphs with given size N and diameter D can be only be

achievedwithin the classG∗
D(n1 = 1, n2, . . . , nD, nD+1 = 1). Second,within the setG∗

D(n1 = 1, n2, . . . ,
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nD, nD+1 = 1), any graph can be transformed into G∗
D(1, . . . , 1, n D

2
+1 = N − D, 1, . . . , 1) for even D,

or into G∗
D(1, . . . , 1, n� D

2
�+1

� 1, n� D
2
�+1

� 1, 1, . . . , 1) for odd D via the following node shifting, where

the average hopcount can always be reduced. We consider first the case that D is odd. We repeat the

node shifting process (a) and (b) in the proof of Theorem 7 for r �
⌊
D
2

⌋
, until ni = 1 for i <

⌊
D
2

⌋
+ 1

and all the remaining nodes are shifted into clique
⌊
D
2

⌋
+ 1. When a node is shifted from Knr to

Knr+1
, its distance to any node in clique i < r is increased by one, while its distance to any node in

clique i > r + 1 is reduced by one. Hence, via such a node shifting operation, the sum of the hop-

counts between all nodes pairs is reduced by
∑D+1

j=r+2 nj −
∑r−1

j=1 nj �
∑D+1

j=� D
2
�+1

nj −∑� D
2
�−1

j=1 1 > 0,

because r �
⌊
D
2

⌋
and nj � 1 for j ∈ [1, D + 1]. Similarly, from clique KnD to clique K� D

2
�+2, we de-

note the first encountered clique that has size larger than one as Knr . The nr − 1 nodes in clique

Knr are shifted to clique Knr−1. This shifting process is recursively carried out until ni = 1 for i >⌈
D
2

⌉
+ 1 and all other nodes are shifted to the clique K� D

2
�+1. Shifting one node from clique Knr to

clique Knr−1
, where

⌈
D
2

⌉
+ 1 < r �D, reduces the sum of the hopcounts between all node pairs by∑r−2

j=1 nj −∑D+1
j=r+1 nj �

∑� D
2
�

j=1 nj −∑D+1

j=� D
2
�+2

1 > 0. The average hopcount can always be reduced as

long as a node is shifted. Therefore, G∗
D(1, . . . , 1, n� D

2
�+1

� 1, n� D
2
�+1

� 1, 1, . . . , 1) has the minimum

average hopcount. The size of clique
⌊
D
2

⌋
+ 1 and clique

⌈
D
2

⌉
+ 1 have no effect on the average

hopcount due to the symmetry of G∗
D. Taking n� D

2
�+1 = N − D and n� D

2
�+1 = 1, we have

min
G∈G(N,D)

E[H(G)] =
(N − D − 1)

(∑⌊
D
2

⌋
i=1 i +∑⌈

D
2

⌉
i=1 i

)
+
(
N − D

2

)
+∑D

i=1 i(D − i + 1)(
N

2

)

= N − D − 1

N(N − 1)

(
2

⌊
D

2

⌋2
+ N + D

)
+
∑D

i=1 i(D − i + 1)(
N

2

) .

When D is even, the clique K� D
2
�+1 = K� D

2
�+1 are the same. Similarly, any other graph G∗

D(n1 =
1, n2, . . . , nD, nD+1 = 1) canbe transformed intoG∗

D(1, . . . , 1, n D
2
+1 = N − D, 1, . . . , 1)bynodes shift-

ing, which can only decrease the average hopcount. When D is even, we have

min
G∈G(N,D)

E[H(G)] =
2 (N − D − 1)

∑ D
2

i=1 i +
(
N − D

2

)
+∑D

i=1 i(D − i + 1)(
N

2

)

= N − D − 1

N(N − 1)

(
D2

2
+ N

)
+
∑D

i=1 i(D − i + 1)(
N

2

) .

B.2. Proof of Theorem 10

Theorem 9 shows that the characteristic polynomial of the corresponding Laplacian matrix of

G∗
D=3(n1 = 1, n2, n3, n4 = 1) satisfies (1). The algebraic connectivity of G∗

D=3(n1 = 1, n2, n3, n4 = 1)
is the smallest zero z3 of the polynomial,

q3(μ) = p3(μ)/μ = μ3 − (2N − n1 − n4) μ2

+
(
n22 + n23 + n1n2 + n1n3 + n1n4 + 3n2n3 + n2n4 + n3n4

)
μ − Nn2n3
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that, here with n1 = n4 = 1, n2 = m and n3 = N − 2 − m reduces to

q3(μ) = μ3 − 2(N − 1)μ2 + ((N − 2)(N + 1) + (m − 1)(N − m − 3))μ

−Nm(N − m − 2). (7)

Second, we only need to consider the case m�
⌊
N−2
2

⌋
because the m >

⌊
N−2
2

⌋
can be reduced to

the case m�
⌊
N−2
2

⌋
by swapping the clique Kn1 and Kn4 . We will now show that, for m�

⌊
N−2
2

⌋
, the

smallest zero z3 of (7) satisfiesm − 1 < z3 < m.

All zeros of the orthogonal polynomial pD(μ) are simple and non-negative. The sign of q3(μ) for

μ = m, μ = N − 1 and for μ = N follows from

q3(m) = −m < 0, (8)

q3(N − 1) = m(N − 2 − m) > 0, (9)

q3(N) = −N < 0. (10)

Likewise, we find that

q3(m − 1) = −2m + 2m2 − 3Nm + N2, (11)

which obtains, as a function ofm, aminimumatm0 = 2+3N
4

. Thus, for 0�m�m0, the function q3(m −
1) is decreasing inm. Becausem�

⌊
N−2
2

⌋
, it followsm� N−2

2
= m∗ and that q3(m

∗ − 1) = 4. Finally,

becausem�m∗ < m0 it follows that

q3(m − 1) > 0. (12)

From (8), (12), (9) and (10), it follows that q3(μ) has simple zeros z3 < z2 < z1 satisfyingm − 1 <
z3 < m, m < z2 < N − 1 and N − 1 < z1 < N. Hence, among the class G∗

D(1, n2, n3, 1), the largest

algebraic connectivity can be obtained by G∗
D=3

(
1,
⌊
N−2
2

⌋
, N − 2 −

⌊
N−2
2

⌋
, 1
)
, where m is maxi-

mized.

Finally, according to Corollary 5, the algebraic connectivity ofG∗
D=3

(
1,
⌊
N−2
2

⌋
, N − 2 −

⌊
N−2
2

⌋
, 1
)

is also themaximum amax(N, D = 3) of all the graphswithN nodes and diameterD = 3, and
⌊
N−2
2

⌋
−

1� amax(N, D = 3) �
⌊
N−2
2

⌋
.

B.3. Proof of Theorem 11

Note that the graph G∗
D=4(1, m, N − 2m − 2, m, 1) represents the symmetric case n2 = n4 = m,

where m satisfies m� N−3
2

, which follows from the assumption that n3 � 1. If follows from Theorem

9 that the algebraic connectivity of G∗
D=4(1, m, N − 2m − 2, m, 1) corresponds to the smallest zero z4

of the following polynomial:

q4(μ) = (μ2 + (1 + m − N) μ + Nm − 2m2 − 2m)(μ2 + (1 − m − N) μ + Nm).

Astraightforward calculation reveals that z4 is the smallest root of thefirst quadratic factor in q4(μ),
i.e.

z4 = N − 1 − m

2
− 1

2

√
N2 − 2N − 6Nm + 1 + 10m + 9m2.

In addition, it is easy to verify that z4 is maximized form = N
3

− 5
9

− 1
18

√
6N − 8. Finally, because

z4 is a concave function of m, it follows that, for integer values of m, z4 is maximized for either m =⌊
N
3

− 5
9

− 1
18

√
6N − 8

⌋
or m =

⌈
N
3

− 5
9

− 1
18

√
6N − 8

⌉
.

Because q4(0) = Nm2(N − 2 − 2m) > 0 and q4(m) = −m2, the following inequality, which will

be used later on, holds

z4 < m. (13)
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B.4. Proof of Theorem 12

Note that the graph G∗
D=4(1, m + a, N − 2m − 2, m − a, 1) represents the non-symmetric case

n2 = m + a, n4 = m − a, where m satisfies m� N−3
2

. For the time being we will treat both m and

a as real numbers. We can restrict ourselves to the case a > 0 because the case a < 0 can be changed

to the case a > 0 by swapping the order of the five cliques.

If follows from Theorem 9 that the algebraic connectivity of G∗
D=4(1, m + a, N − 2m − 2, m − a, 1)

corresponds to the smallest zero w4 of the following polynomial:

pa(μ) = μ4 − (2N − 2)μ3 + (1 + N2 − a2 − 2N + 2Nm − 2m − 3m2)μ2

+ (2m3 + 2Nm2 − 2N2m − 4a2 + 2Na2 − 2ma2 + 4Nm − 2m)μ

+ N(m2 − a2)(N − 2 − 2m).

For a = 0 the polynomial p0(μ) reduces to q4(μ) which has smallest root z4 = N−1−m
2

−
1
2

√
N2 − 2N − 6Nm + 1 + 10m + 9m2 according to Theorem 11. We will now show that for 0 <

a�m − 1, the inequality pa(z4) < 0 holds.

Plugging μ = z4 into pa(μ) we obtain

pa(z4) = −1

2
a2
(
N2 − 4Nm + 3m2 − 3 + (N − m − 3)

√
N2 − 2N − 6Nm + 1 + 10m + 9m2

)
.

Because N � 2m + 3 it follows that N − m − 3 > 0. Therefore, if N2 − 4Nm + 3m2 − 3� 0 then

if follows directly that pa(z4) < 0 for a > 0. Next we consider the case N2 − 4Nm + 3m2 − 3 < 0.

Note that this condition implies that N < 4m. Let us first rewrite pa(z4) as follows:

p4(z4; a) = −1

2
a2
(
r1 + r2

√
r3
)

with r1 = N2 − 4Nm + 3m2 − 3 < 0, r2 = N − m − 3 > 0and r3 = N2 − 2N − 6Nm + 1 + 10m +
9m2 > 0. Then it readily can be verified that

pa(z4)(−r1 + r2
√

r3) = 1

2
a2(r21 − r22r3) = 2a2(2N − 2m − 3)(N − 2m − 2)(N − 4m) < 0.

Therefore, also for the caseN2 − 4Nm + 3m2 − 3 < 0 it follows that pa(z4) < 0 for a > 0. Because

pa(0) > 0 it follows from pa(z4) < 0 that the smallest rootw4 of pa(μ) always satisfiesw4 < z4. This

completes the proof of Theorem 12.

B.5. Proof of Theorem 14

We only need to consider the case n2 � n4 because the n2 � n4 can be reduced to the case n2 � n4
by swapping the order of the five cliques. First consider the points (n2, n4) = (�m� + k, �m� − k),
with k = 1, . . . , �m� − 1. Then the algebraic connectivity of the corresponding graph G∗

D=4(1, n2, N −
n2 − n4 − 2, n4, 1) is smaller than that of G∗

D=4(1, �m�, N − 2�m� − 2, �m�, 1) according to Theo-

rem 12 with a = k. Note that the points (n2, n4) = (�m� + k, �m� − k), with k = 1, . . . , �m� − 1

are situated on the line n2 + n4 = 2�m�. All grid points (n2, n4) situated below this line also have

a corresponding graph G∗
D=4(1, n2, N − n2 − n4 − 2, n4, 1) with algebraic connectivity smaller than

that of G∗
D=4(1, �m�, N − 2�m� − 2, �m�, 1). This follows from applying Theorems 12 and 11.

The same reasoning holds for the points (n2, n4) = (�m� + k, �m� − k), with k = 1, . . . , �m� − 1,

and grid points above the line that contains these points. The only points on the grid that we have

not covered yet are those satisfyingΓ : (n2, n4) = (�m� + k, �m� − k), with k = 0, . . . , �m� − 1.We

will now show that among the graphs G∗
D=4(1, n2, N − n2 − n4 − 2, n4, 1), where (n2, n4) belongs to

Γ , the highest algebraic connectivity is achieved for k = 0.

According to Theorem 12 the algebraic connectivity of the graph G∗
D=4(1, m + a, N − 2m − 2, m −

a, 1) corresponds to the smallest root of pa(μ).
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Fig. 7. Sketch of the proof of Theorem 14.

Then pa+1(z4) < pa(z4) < 0 because pa+1(z4) − pa(z4) = 2a+1

a2
pa(z4) < 0, where the latter in-

equality follows from the proof of Theorem 12. In the same manner we can show that 0 < pa+1(0) <
pa(0). Denote the smallest root of pa(μ)by μa and the smallest root of pa+1(μ)by μa+1. Assume

that μa+1 > μa, then pa(μ) and pa+1(μ) intersect at least twice on the interval [0, z4]. This implies

that the function h(μ) = pa(μ) − pa+1(μ) has at least two zeros on the interval [0, z4]. Because
h(μ) = (1 + 2a)(μ2 − 2(N − m − 2)μ + N(N − 2m − 2) it follows that the zeros of h(μ) will be

situated around μ∗ = N − m − 2. However, because N � 2m + 3 and z4 < m (according to (13))

it follows μ∗ > m > z4. Therefore only one zero of h(μ) could be situated in [0, z4]. Therefore we

conclude that μa+1 �μa.

The possibility thatμa+1 = μa can be excluded in the sameway. Therefore it follows that μa+1 <
μa.

This implies that the algebraic connectivity of G∗
D=4(1, �m�, N − �m� − �m� − 2, �m�, 1) is larger

than that of G∗
D=4(1, �m� + 1, N − �m� − �m� − 2, �m� − 1, 1), which itself has a larger algebraic

connectivity than G∗
D=4(1, �m� + 2, N − �m� − �m� − 2, �m� − 2, 1). Repeating this argument, until

thegraphG∗
D=4(1, �m� + �m� − 1, N − �m� − �m� − 2, 1, 1), shows that for (n2, n4) inΓ , thehighest

algebraic connectivity is achieved for G∗
D=4(1, �m�, N − �m� − �m� − 2, �m�, 1).

This completes the proof of the first part of the theorem. The used argumentation is visualized in

Fig. 7. The upperbound on amax(N, D = 4) follows from Corollary 13.
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