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Abstract. In biology, similarity in structure or sequence between mo-
lecules is often used as evidence of functional similarity. In protein in-
teraction networks, structural similarity of nodes (i.e., proteins) is often
captured by comparing node signatures (vectors of topological properties
of neighborhoods surrounding the nodes).

In this paper, we ask how well such topological signatures predict pro-
tein function, using protein interaction networks of the organism Saccha-
romyces cerevisiae. To this end, we compare two node signatures from
the literature — the graphlet degree vector and a signature based on the
graph spectrum — and our own simple node signature based on basic
topological properties.

We find the connection between topology and protein function to be
weak but statistically significant. Surprisingly, our node signature, de-
spite its simplicity, performs on par with the other more sophisticated
node signatures. In fact, we show that just two metrics, the link count
and transitivity, are enough to classify protein function at a level on par
with the other signatures suggesting that detailed topological character-
istics are unlikely to aid in protein function prediction based on protein
interaction networks.

1 Introduction

To what extent does structure determine function in biology? Evolutionary prin-
ciples have shown function and structure to be well correlated in genes with
common evolutionary ancestors, allowing biologists to infer functions of proteins
or genes based on their sequence homology (i.e., similarity) with other proteins
or genes. With the arrival of network biology [1], homology was extended to
take not only sequence similarity into account but also similarity of molecular



interactions. These interactions can be either direct (physical) or indirect (func-
tional). In other words, the manner in which a protein (or gene) is connected to
other proteins in interaction networks matters. These other connecting proteins
can be chosen in many ways, although the most common approach is to con-
sider a network neighborhood centered around a protein in question, including
all proteins and links within a fixed number of hops. Structural similarity of
network neighborhoods is determined by comparing their topological properties.
Typically, these properties are represented as a vector, known as a topological
stgnature.

Topological signature similarity has been used as a measure of functional
similarity between proteins in several algorithms aimed at the discovery of ho-
mology relations between proteins [2-4]. Although topological similarity and
amino acid sequence similarity are typically both used to determine homology
[2, 4], some of these algorithms perform well using only topological similarity [3,
4]. Researchers have also used topological similarity to predict relations other
than homology, in effect assuming that structural similarity implies similarity
of biological traits in proteins not necessarily related by evolution. Involvement
in cancer (a phenotype) was found to be encoded in topological similarity [5]
and even general protein function appears to be encoded in topology [6]. Given
this predictive quality, the key question is thus: how exactly does local topology
reflect function, and what signatures best capture local topology?

In this paper, we set out to answer these questions in a specific context, i.e.
the prediction of protein function by means of node signatures in various pro-
tein interaction networks of the organism Saccharomyces cerevisiae. Topological
signatures in the literature capture a lot of topological detail; in this paper we
investigate the extent to which this detail improves protein function prediction
(if at all). To this end, we study two such signatures — the graphlet signature
of Milenkovi¢ and Przulj [6] and a signature based on the normalized Laplacian
spectrum of a network [4] — as well as a simple node signature of our design.
Predictive power of the signatures is determined by how well they discriminate
between proteins with a given biological function and those without the function.
To this end we use support vector machines, treating topological signatures as
feature vectors and biological labels as classifier labels. Note that our aim is not
the construction of an optimal protein function classifier, as for that purpose
one would include many other types of data; rather, we use prediction accuracy
as a measure to explore the relation between local topology and function.

2 Methods

2.1 Topological signatures

In the remainder of the text, G refers to a network (usually an interaction net-
work), n to an arbitrary node of G and N the number of nodes in G. A k-
neighborhood G¥ of a node n is an induced subnetwork of G on the set of nodes
encompassing n and all nodes within & hops of n (a subnetwork is induced when
two nodes in the subnetwork are connected by a link if, and only if they are



connected in G). The subnetwork G spanned by the gray nodes and bold links
in Figure 1(a) is a 1-neighborhood of n, whilst the subnetwork G2 spanned by
the gray nodes and bold lines in Figure 1(b) is a 2-neighborhood of n.

(a) GL. (b) G

Fig. 1. Two neighborhoods of n: (a) G5, and (b) GZ.

Graphlet signature: Graphlets are small, connected, induced subnetworks, as
illustrated in Figure 2. The graphlet degree of a node n can be regarded as a gen-
eralization of its degree: the number of graphlets of a specific type (X1, Xo,...)
that contains n (the degree is the number of X; subgraphs containing n). A
graphlet signature (also graphlet degree sequence [6]) generalizes the graphlet
degree by including counts for all of the subnetworks in Figure 2.

To simplify exposition, we first construct a graphlet signature containing only
the numbers of subnetworks X;, X5 and X3 (Figure 2) that contain n. Such a
signature can be represented as a vector of three integers. However, X5 is not
symmetrical, as the white node is structurally different from the two black nodes
(which are interchangeable). We distinguish cases in which n takes the role of
the white node from cases in which n takes the role of the black nodes. Thus, two
counts for X5 are maintained (one for each kind of node), leading to a signature
vector of four integer components: one for X7, two for X5 and one for X3 (vector
indices are shown next to one node of each color).

The full graphlet signature is constructed by extending the construction
above to the rest of the subnetworks in Figure 2. In total, the signature vector has
73 components (vector indices appear next to nodes). The largest subnetworks
in Figure 2 have five nodes and therefore the graphlet signature is computed on
4-neighborhoods. The larger subnetworks in Figure 2 contain induced copies of
smaller subnetworks (e.g., X309 contains X9, X3 and X;), so that the compo-
nents of the graphlet signature are not independent. Milenkovi¢ and Przulj [6]
devised a weighting scheme to reduce this effect. We reweigh graphlets according
to their method. Graphlet signatures were computed using code adapted from
the original version of GraphCrunch [7].

Spectral signature: We assume that the nodes in GG are labeled with numbers
1 through N. The adjacency matriz A of G is an N x N matrix in which a; ; =1
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Fig. 2. All non-isomorphic undirected networks (graphlets) with up to five nodes. For
a given node n in a network G, Milenkovi¢ & Przulj [6] count how many times each
of these networks includes n and appears as an induced subnetwork in GG in order to
construct a graphlet signature for n.

if the nodes ¢ and j are connected by a link and a; ; = 0 otherwise. The degree
matrix A of G is a matrix in which a; ; equals the degree of node ¢ and a; ; =0
if i # j. The normalized Laplacian is defined as Qnorm = I — A™/2AA71/2,
The spectrum of Qnorm is its set of N eigenvalues. All eigenvalues of Qnorm
fall within the range of [0, 2].

In general, two different neighborhoods have different numbers of nodes and
therefore spectra of different sizes, making spectra unsuitable as feature vectors.
We derive feature vectors by computing histograms of the spectra [4]. Histograms
with 20 bins are computed on the range [0,2], showing why the normalized
Laplacian spectrum is preferred over the non-normalized version.

Simple metric signature: Our own simple metric signature serves as a base-
line. It contains four very simple topological properties of neighborhoods: 1)
number of nodes, 2) number of links, 3) link density and 4) transitivity (the
ratio of triangles to connected node triplets).

Multi-resolution signatures: One way to compute the spectral and simple
metric signatures is to choose a fixed k and to compute the signatures on all k-
neighborhoods. By focusing on fixed k, one may miss topologically distinguishing
features at other “resolutions”, i.e., other values of k. We construct “multi-
resolution” versions of the spectral and simple metric signatures respectively
by concatenating signatures of G, G2 and G3 for a given node n; henceforth
we shall only consider these “multi-resolution” versions of the signatures. The



graphlet signature is already “multi-resolution” in the sense that its component
graphlets span G, G2, G2 and G2.

A combined signature: Finally, we consider a signature that combines the
previous signatures by simply concatenating the 1) graphlet signature, 2) the
multi-resolution spectral signature and 3) the multi-resolution simple metric
signature.

2.2 Datasets

Molecular networks: All of the networks considered in this paper are protein
interaction networks for the organism Saccharomyces cerevisiae. We have col-
lected seven such networks, derived from four primary sources. Kim & Marcotte
[8] provide two protein interaction networks, the first a high-quality literature-
curated network and the second a high-throughput network. Yeastnet [9] pro-
vides several datasets with yeast protein interactions of which we downloaded the
literature-curated dataset (denoted “LC” on the website) and the yeast 2-hybrid
high-throughput dataset (“HC”). These two pairs of networks were selected be-
cause each pair contains a literature curated network and a high-throughput
network, thereby providing insight into the impact of network quality on classi-
fication performance.

Our remaining two datasets are due to Krogan [10] and von Mering [11]. Both
of these were used by Milenkovi¢ & Przulj [6] to test how well their graphlet
signature approach fared in predicting protein function. We used the same two
subsets of the von Mering dataset: “von Mering” contains the first 11000 protein
interactions (of high-, medium- and low-confidence), whilst “von Mering core”
contains all high-confidence interactions of the original dataset.

Biological labels: Like Milenkovié¢ and Przulj [6], we used the MIPS protein
annotations [12] as biological labels. MIPS annotations are hierarchical and have
the form “xx.yy.zz...” where the letters denote two-digit biological categories.
A protein may be annotated with multiple such annotations. The left-most cate-
gory (“xx”) gives the general protein function; each following two-digit category
is a refinement (“yy” and “zz”). In this paper, we consider only general protein
functions, of which there are 27 in the MIPS database.

2.3 Classification

Classification is performed using support vector machines (SVMs). There are
numerous biological categories in the MIPS database and a protein may be
annotated with any number of these categories. Since SVMs are binary classifiers,
we use a one-versus-all strategy whereby we train a classifier for each biological
category. Classifier performance is measured using the area under the curve
(AUC) of the receiver operator curve (ROC) of a classifier. All classifier-related
work was performed using Scikit-learn [13].



The radial basis function (RBF) kernel was used to train all SVMs. To reduce
the impact of experimental omissions and noise, we only compute signatures on
nodes whose degrees are at least 3 and that have at least one MIPS annotation.
Furthermore, to ensure the presence of enough positive instances in both testing
and training sets, biological labels that appear in less than 20 nodes are not
considered for classification training.

Training regime: For each topological signature type, for each network, for
each biological function, a double cross validation training loop is performed
[14]. The “outer” loop is a four-fold loop in which the training set contains 75%
of the dataset whilst the testing set contains 25% of the dataset. For a given
network and biological function, the folds are fixed, meaning that classifiers are
trained on the same training samples for all topological signatures. Classifier
performance is expressed as a combination of the mean and standard deviation
of the four AUC values associated with the four outer folds.

The “inner” loop is responsible for finding the classifier with the best clas-
sification performance on the training set received from the “outer” loop. SVM
classifiers using the RBF kernel require two parameters: a cost C' (for penalizing
incorrectly classified instances) and the RBF radius 5. These are optimized by
walking along a grid of parameter pairs and training a classifier for each pair.
Each grid point (i.e., parameter pair) is evaluated using the average AUC of a
five-fold cross-validation loop. The parameters with the best AUC score are thus
considered optimal. At the start of the “inner” loop, both the training and test-
ing sets are centered and scaled using the center and variance of the training set.
The graphlet signature is reweighed after this point using the weighting scheme
of Milenkovi¢ and Przulj [6] as mentioned earlier in the paper (if reweighing is
applied beforehand, it would be removed by the scaling step).

As grid searches are expensive, we first perform a parameter search on a
coarse grid, followed by a second search on a fine grid around the optimal pa-
rameters found in the first search. The coarse grid is given by the Cartesian
product C x I" of costs C = {275,273, 271 ... 21} and RBF radii I' = {2715,
2713 9711 [ 23}, The optimal parameter pair (C,+) discovered on C x I is
then used to specify a fine grid C’ x I where C’ = {2!°82C=2+1/2 | € {0,1,...8}}
and I = {2l°e27=241/2 | € {0,1,...8}}.

3 Results and Discussion

Using the training regime described in the Methods section, we have computed,
for each topological signature, for each network, for each biological function, the
average classifier performance as well as its standard deviation. As this is a large
amount of data, we have condensed the results into Figure 3(a) which shows, for
a given topological signature and biological function, classification performance
averaged over all networks, except for the high-throughput Yeastnet network.
This dataset proved to be too small and gave poor, noisy classification results
for all topological signatures. Figure 3(a) contains only those biological functions



that appear in all the datasets. We also plotted the classification results for one
high-quality dataset, the literature-curated Yeastnet dataset, in Figure 3(b).
The trends in Figure 3(a) are broadly similar in all of the networks although
classification performance is generally lower than in Figure 3(b).

What stands out most from both Figure 3(a) and Figure 3(b), is that topology
is, in general, a weak predictor of biological function. However, the mean AUC
values are all above 0.5, showing that topology does encode a certain amount
of information about biological function (the statistical significance of the mean
AUC values being larger than 0.5 was tested using the ¢-test; in the majority of
cases — and in all cases involving the biological categories “metabolism”, “tran-
scription”, “protein synthesis” and “protein fate” — the associated p-values are
below 0.05). The overall differences between Figure 3(a) and Figure 3(b) can
be explained by differences in network quality and network size: quality affects
classifier performance whilst network size affects its variance (network sizes are
given in Table 1). The high-throughput networks contain the most noise and are
therefore associated with worse classification performance.

At the level of biological categories both Figure 3(a) and Figure 3(b) show
big differences in classification performance. The number of positive instances
associated with a biological category (see Table 1) is weakly correlated with
classifier performance, partly explaining the differences. Biology offers a possible
explanation for the high AUC values associated with the labels “Transcription”
and “Protein Synthesis”: transcription and synthesis are both processes driven
by permanent protein complexes rather than temporary groups of proteins (as
found in many other processes). Thus, nodes with these functions tend to find
themselves in densely connected clusters more often than other nodes.
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Table 1. The number of positive instances for various combinations of network and
biological function (i.e., proteins having given biological functions).



Both overall classification performance, as well as performance associated
with individual biological categories are dependent on the way in which bio-
logical categories are defined. Some categories are more general than others (for
example, “Development” includes proteins engaged in diverse functions, whereas
“Transcription” is a more specific function), contributing to differences in clas-
sification performance between categories. When the categories are too general,
overall classification performance suffers as classifier inputs become difficult to
distinguish. We have performed experiments (data not shown) in which we used
two levels of the MIPS labels (labels of the form “xx.yy” rather than just “xx”,
i.e., more specific categories). Two-level categories led to better classification per-
formance in some cases (notably those associated with transcription) and worse
performance in other cases. The culprit is likely a paucity of positive instances
associated with many of the two-level labels.

Another salient aspect of Figure 3(a) and Figure 3(b) is that the three topo-
logical signatures perform very similarly. We tested whether the AUC values of
the individual signatures (i.e., not the combined signature) for each biological
category were different, using a one-way ANOVA (Table 2). We consider p-values
of 0.05 and below to be statistically significant and find only 10 dataset/function
combinations that pass this threshold.
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Table 2. p-values of one-way ANOVA tests applied to the AUC values of the three
topological signatures (graphlet, spectral and simple) for each network and biological
function combination. We consider p-values of 0.05 and below to be significant (shown
in bold text).

Although the three topological signatures lead to similar classification re-
sults, it may be possible that they nevertheless measure different (discriminative)
topological characteristics. If this is true, combining the signatures should lead



to improved classification performance. However, Figure 3(a) and Figure 3(b) do
not support such a conclusion. Thus, in the context of our datasets and classifier,
the topological signatures are not complementary.

Given that the simple metric signature is competitive with the graphlet and
spectral signatures, it is natural to ask whether it cannot be further simpli-
fied. We investigated all possible combinations of the four metrics (number of
nodes, number of links, density and transitivity) that make up the simple met-
ric signature, constructing 14 simpler signatures: 4 signatures using only one
metric each, 6 signatures using pairs of metrics and 4 signatures using triplets
of metrics. The mean classification performance of these metrics, taken over all
datasets and all biological categories, is shown in Figure 4. The link count L and
transitivity 7" are sufficient for obtaining good classification performance. The
implication is that what matters in function prediction in protein interaction
networks, is the number of nodes and the “clusteredness” (transitivity). Since
proteins of similar function tend to form clusters, their neighborhoods overlap
and therefore they share topological characteristics. Apparently, “clusteredness”
signatures are unique enough to distinguish similar proteins from other proteins.

4 Conclusion

At the start of this paper, we asked to what extent structure — i.e., topology —
determines function in biology. We focused on the use of signatures to express
topological properties of neighborhoods surrounding nodes in molecular inter-
action networks. Our study is motivated by the use of topological signatures
as a tool for discovering similar genes or proteins (under the assumption that
topological similarity implies functional similarity). We specifically studied the
use of such signatures to discriminate between proteins with a given biological
function and those without it, using protein interaction networks derived from
Saccharomyces cerevisiae and support vector machines.

Current node signatures, such as the graphlet signature [6] and signatures
based on spectra [4] capture very detailed topological profiles. We compared
these with our own topological signature, based on very simple network metrics.
For all signatures, classifier performance tended to be weak, implying that topol-
ogy is, at least for Saccharomyces cerevisiae protein interaction networks, a weak
predictor of function. However, with the exception of one noisy protein interac-
tion network classifiers performed better than random, showing that topology
and function are linked. How much better depends on the functional category
considered, with performance particularly strong for transcription and protein
synthesis.

Our simple metric signature performed on par with the graphlet and spec-
tral signatures. We also established that the signatures are not complementary
for protein function prediction, as a combined signature incorporating all three
signatures does not yield better accuracy. Since our simple metric signature cap-
tures less topological information than the other signatures, we conclude that
fine topological detail is not very useful in the prediction of protein function.
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Fig. 3. Classification performance of the three topological signatures, as well as a
signature that combines the three signatures. (a) Performance of our SVM classifiers
averaged MIPS categories present in all datasets (excluding the high-throughput Yeast-
net dataset; see text for explanation). Error bars show the standard deviation. (b)

Classification performance of the three topological signatures on the literature-curated
Yeastnet network [9].
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Fig. 4. Classification performance of various combinations of the features used in the
simple metric signature averaged over all datasets and all functions. Here, N is the
number of nodes (in a neighborhood), L is the number of links, D is the density and
T is the transitivity.

Strikingly, performance when using only the link count and transitivity, mea-
sures of “clusteredness”, is as good as when using the more complex signatures.
This is not simply a side-effect of dataset noise, as our simple metric signature
performs equally well in the high quality networks.

Our work opens a number of paths for future research. For our conclusions
to hold generally, the techniques used in this paper should be applied to other
types of interaction networks (for example, co-expression networks and synthetic
sick-or-lethal networks) and to networks derived from other organisms. It would
be particularly interesting if link count and transitivity are found to be equally
determinative in other interaction network types. Finally, it is not yet known
how different “resolutions” contribute to signature performance and whether a
particular resolution (i.e., k-neighborhoods of a particular k) dominates classifi-
cation performance.

References

1. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabési, A.L.: Hierarchical
organization of modularity in metabolic networks. Science 297(5586) (August
2002) 1551-1555

2. Liao, C.S., Lu, K., Baym, M., Singh, R., Berger, B.: IsoRankN: spectral methods
for global alignment of multiple protein networks. Bioinformatics 25(12) (June
2009) i253-i258

3. Milenkovié, T., Ng, W.L.L., Hayes, W., Przulj, N.: Optimal network alignment
with graphlet degree vectors. Cancer Informatics 9 (2010) 121-137

4. Patro, R., Kingsford, C.: Global network alignment using multiscale spectral sig-
natures. Bioinformatics (2012)

5. Milenkovié, T., MemiSevié¢, V., Ganesan, A.K., Przulj, N.: Systems-level can-
cer gene identification from protein interaction network topology applied to
melanogenesis-related functional genomics data. Journal of The Royal Society
Interface 7(44) (2010) 423-437



12

10.

11.

12.

13.

14.

Milenkovié¢, T., Przulj, N.: Uncovering biological network function via graphlet
degree signatures. Cancer informatics 6 (2008) 257-273

Milenkovic, T., Lai, J., Przulj, N.: GraphCrunch: A tool for large network analyses.
BMC Bioinformatics 9(1) (2008) 70

Kim, W.K., Marcotte, E.M.: Age-Dependent evolution of the yeast protein inter-
action network suggests a limited role of gene duplication and divergence. PLoS
Computatinal Biology 4(11) (November 2008)

McGary, K., Lee, 1., Marcotte, E.: Broad network-based predictability of saccha-
romyces cerevisiae gene loss-of-function phenotypes. Genome Biology 8(12) (2007)
R258

Krogan, N.J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu,
S., Datta, N., Tikuisis, A.P., Punna, T., Peregrin-Alvarez, J.M., Shales, M., Zhang,
X., Davey, M., Robinson, M.D., Paccanaro, A., Bray, J.E., Sheung, A., Beattie,
B., Richards, D.P., Canadien, V., Lalev, A., Mena, F., Wong, P., Starostine, A.,
Canete, M.M., Vlasblom, J., Wu, S., Orsi, C., Collins, S.R., Chandran, S., Haw,
R., Rilstone, J.J., Gandi, K., Thompson, N.J., Musso, G., St Onge, P., Ghanny, S.,
Lam, M.H.Y., Butland, G., Altaf-Ul, A.M., Kanaya, S., Shilatifard, A., O’Shea, E.,
Weissman, J.S., Ingles, C.J., Hughes, T.R., Parkinson, J., Gerstein, M., Wodak,
S.J., Emili, A., Greenblatt, J.F.: Global landscape of protein complexes in the
yeast saccharomyces cerevisiae. Nature 440(7084) (March 2006) 637643

von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork,
P.: Comparative assessment of large-scale data sets of protein-protein interactions.
Nature 417(6887) (May 2002) 399-403

Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M., Tetko,
1., Giildener, U., Mannhaupt, G., Miinsterkoétter, M., Mewes, H-W.: The funcat, a
functional annotation scheme for systematic classification of proteins from whole
genomes. Nucleic Acids Research 32(18) (2004) 5539-5545

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12 (2011) 2825-2830
Wessels, L.F.A., Reinders, M.J.T., Hart, A.A.M., Veenman, C.J., Dai, H., He, Y.D.,
van 't Veer, L.J.: A protocol for building and evaluating predictors of disease state
based on microarray data. Bioinformatics 21(19) (2005) 3755-3762



