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Brain functioning such as cognitive performance depends on the functional interactions between brain areas,
namely, the functional brain networks. The functional brain networks of a group of patients with brain tumors
are measured before and after tumor resection. In this work, we perform a weighted network analysis to
understand the effect of neurosurgery on the characteristics of functional brain networks. Statistically signifi-
cant changes in network features have been discovered in the beta �13–30 Hz� band after neurosurgery: the link
weight correlation around nodes and within triangles increases which implies improvement in local efficiency
of information transfer and robustness; the clustering of high link weights in a subgraph becomes stronger,
which enhances the global transport capability; and the decrease in the synchronization or virus spreading
threshold, revealed by the increase in the largest eigenvalue of the adjacency matrix, which suggests again the
improvement of information dissemination.
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I. INTRODUCTION

Complex networks are abstract expressions of the interac-
tions or relations among elements within complex systems.
Examples range from biological networks and manmade net-
works such as the Internet to social networks. The character-
istics of networks have been extensively investigated to clas-
sify networks and to understand the effect of the network
structure on its functioning �1–3�.

The brain with its 1010 neurons and 1014 connections is
one of the most challenging complex networks. Network
theory has been applied to the human brain for almost a
decade �4� and it has become clear that properties of brain
networks may predict brain functioning such as cognitive
performance �5,6�. Optimal brain functioning depends on
functional interactions between brain areas �5,6�, intercon-
nected in the form of functional brain networks. The concept
of functional connectivity refers to the statistical interdepen-
dencies between physiological time series recorded in vari-
ous brain areas, and is thought to reflect communication be-
tween several brain areas �7�. Magnetoencephalography
�MEG�, a recording of the brain magnetic activity, is a
method used to assess functional connectivity within the
brain. A functional brain network is created by regarding
each MEG channel as a node, and the functional connectivity
between each pair of channels represents a link whose
weight reflects the strength of the connectivity or correlation.

In this work, we compare functional brain networks of a
group of patients with brain tumors before and after surgery,
the aim of which was to remove the tumor. In brain tumor
patients, it has been shown that brain networks are altered
when compared to healthy controls �8,9�. Their network to-
pologies seem more random, although contrary findings have
been reported in aforementioned two studies. Thus, brain
networks are known to be abnormal in brain tumor patients,
but the effect—if any—of surgical treatment on these net-
work abnormalities remains incompletely understood �10�. In
this previous work, functional connectivity proved to change

after the removal of the brain tumor. Especially in the theta
band �4–8 Hz�, a decrease in connectivity occurred, which
was related to functional outcome in terms of epilepsy. As
theta band connectivity has been reported to be pathologi-
cally increased in brain tumor patients �8,9�, this mechanism
may represent a “normalization” after tumor resection. Our
general goal in the current study is to identify changes in
network characteristics when measured before and after tu-
mor resection. In particular, we are interested to identify
those topological characteristics of brain networks that might
explain clinical changes in the postoperative situation.

Many real-world networks are represented as weighted
networks using link weights to quantify a certain property of
a link such as the distance or strength of a link. The charac-
terization of weighted networks consists of studies �a� of the
correlation between link weight structure and topology �see,
e.g., �11–13�� and �b� of the link weight structure. In the
second category �b�, for example, the link weight correlation
of links incident to a same node is examined in �14�. Since
the functional brain networks are complete graphs, we inves-
tigate only the link weight structure via various link weight
correlations. The second goal of this work is to propose
weighted network analysis on the functional brain networks.
In this paper, we introduce innovative measures to character-
ize weighted networks with respect to �a� link weight corre-
lation of links incident to a node, �b� link weight correlation
within triangles, and �c� clustering of high link weights in a
subgraph. The spectrum, the eigenvalues of a weighted net-
work, is also used to characterize the link weight correlation
as well as the dynamic processes on a weighted network.
These measures are shown to capture important changes in
characteristics of functional brain networks measured before
and after tumor resection.

Often, weighted functional brain networks are trans-
formed into unweighted networks �5� by, e.g., mapping L
links with the highest link weight so that classical un-
weighted networks analysis can be applied afterward. We are
going to illustrate that the weighted network analysis may
infer, to some extent, properties in the so transformed un-
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weighted networks such as the degree variance, degree cor-
relation, and clustering coefficient. The unweighted networks
are shown to capture only partial characteristics of the origi-
nal weighted network. These observations motivate a
weighted network analysis as the most comprehensive strat-
egy to explore the changes in network properties.

II. CONSTRUCTION OF FUNCTIONAL
BRAIN NETWORKS

Neurons are electrically excitable cells in the nervous sys-
tem that process and transmit information by electrochemical
signaling. MEG is a noninvasive technique first used in 1968
to measure electric signals produced by neurons. Thus, MEG
provides direct information about the dynamics of neural ac-
tivity and the location of their sources in the brain. Sensor-
level MEG information has been used to assess brain net-
works on multiple occasions in past years, yielding accurate
results �5,10,15–17�. Although MEG measurement always
involves some methodological problems �e.g., volume con-
duction and inverse problem�, these and other recent studies
have shown that brain activity may indeed be measured us-
ing this type of recordings.

MEG measures brain activity with 151 recording chan-
nels, allowing for extensive analysis of functional connectiv-
ity between these different channels. Four artifact-free ep-
ochs of 4096 samples �6.5 s� were carefully selected by
visual analysis from a data set of both the preoperative and
postoperative registrations in brain tumor patients �10�. Sub-
sequently, functional connectivity can be used as indication
of link weight. In this case, the synchronization likelihood
�SL� �18� was used as a measure of functional connectivity.
SL is based on the concept of general synchronization �19�
between two time series, which takes linear as well as non-
linear synchronization into account. The SL ranges between

�0,1�, with low SL indicating no synchronization and high SL
meaning total synchronization. A network or graph can be
deducted from the full matrix of SLs between all MEG chan-
nels. In such a graph, each channel represents a node and
links exist between each node pair. The corresponding link
weight is the SL between two nodes. One of the channels of
the MEG apparatus was malfunctioning due to technical
problems and could thus not be used for further analyses.
Thus, the functional brain network we measured is a com-
plete graph with N=150 nodes.

The functional brain networks are measured in 15 patients
before and after brain tumor resection. The study protocol
was approved by the medical ethics committee of the VU
University Medical Center. All patients gave written in-
formed consent before participating. Clinical characteristics
of these patients can be seen in Table I. MEG was recorded
during resting state, with eyes closed. From the total record-
ing of 5 min, four artifact-free epochs of 4096 samples �6.5
s� were selected; thus, the functional brain network is mea-
sured four times for each patient �see �10� for more informa-
tion on selection methods�. The calculations were carried out
in five frequency bands: 0.5–4 Hz �delta�, 4–8 Hz �theta�,
8–10 Hz �lower alpha�, 10–13 Hz �upper alpha�, and 13–30
Hz �beta�.

III. WEIGHTED NETWORK ANALYSIS

In this section, we apply our weighted graph analysis to-
gether with measures commonly employed in the literature
to functional brain networks. The general goal is to identify
the different characteristics of the brain networks measured
before and after tumor resection. The relation among the
weighted network measures or metrics will be also dis-
cussed.

TABLE I. Clinical characteristics of patients with brain tumors. T=temporal; F=frontal; P=parietal;
FT=frontoparietal; Me=meningioma; AI–IV=astrocytoma grade I–IV; OB=oligodendroglioma grade B;
OC=oligodendroglioma grade C; OD=oligodendroglioma grade D.

Patient Gender Age Lateralization Localization Histology

1 M 29 L F AIII

2 F 66 R T Me

3 F 39 L F AIII

4 M 33 R P AIII

5 F 30 R FP AII

6 M 32 L F AII

7 F 27 R FP OB

8 M 31 L F AIV

9 M 38 L F AIII

10 F 41 L P OC

11 F 35 L FT AII

12 M 63 L P AIV

13 F 48 R T AII

14 F 26 L F OB

15 M 43 R F Me
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A. Link weight and node strength distribution

The probability density function �pdf� of link weights in
functional brain networks measured before and after neuro-
surgery is given in Fig. 1. A similar link weight distribution
�approximately exponentially distributed in the tail�, as has
been reported in anatomical and functional brain networks
previously �20–22� is observed before and after neurosurgery
in each frequency band. The average link weight is smaller
for higher frequency bands. The link weight distribution is
one of the most important features of weighted networks
�23�. Many measures can be applied to compare different
networks only if these networks possess the same link weight
distribution, which will be further discussed in the later sec-
tions.

The node strength si=� j�N�i�wij is defined as the total
weight of links connected to the node, where N�i� denotes

the set of direct neighbors of node i. If the link weight wij is
considered as the strength of functional influence between
nodes i and j, the node strength characterizes the functional
influence of a node over all the other nodes in a complete
network. The node strength follows approximately a similar
distribution fs�x� before and after neurosurgery, as shown in
Fig. 2. However, after tumor resection, the maximal node
strength reduces in frequency bands 0.5–4, 8–10, and 10–13
Hz and increases in 4–8 and 13–30 Hz. The changes in 4–8
Hz and 13–30 are statistically significant, implying that the
global functional influence of hubs with respect to their node
strengths is increased after neurosurgery. The increase in
maximal node strength can be introduced by the increase in
link weight correlation around a node, which is discussed at
the end of Sec. III B.

B. Link weight correlation around a node

The link weight correlation of links incident to a node
determines whether links connected to a same node tend to
possess similar or dissimilar weights. We introduce three
measures to examine the link weight correlation around a
node.

1. �w

A measure quantifying link weight correlation around a
node has been proposed by Ramasco and Gonçalves �14�. It
compares the ratio of the average link weight variance
around each node to that of an ensemble of weight-reshuffled
instances of the original graph. For example, the non-
normalized variance of the link weight around a node i can
be defined as
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FIG. 1. �Color online� The pdf of a link weight in the brain
functional networks measured before �empty markers� and after
�solid markers� neurosurgery.
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FIG. 2. �Color online� The pdf of node strength in MEG before �red crosses� and after �blue circles� neurosurgery.
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�w
2 �i� = � j�N�i��wij −

� j�N�i�wij

di
�2

,

where di is the degree of node i and � j�N�i�wij /di is the
average weight of the links arriving at i. The link weight
correlation is then measured as

�w =
Eorg��w�
Erand��w�

, �1�

where the average standard deviation is estimated for the
original graph and an ensemble of weight-reshuffled �24� in-
stances. The type of link weight correlation around each
node in a network is revealed by comparing with the ran-
domized instances: positive ��w�1�, negative ��w�1�, or
noncorrelated ��w=1�. The average link weight correlation
E��w� of functional brain networks derived based on �1� is
shown in Table II.

2. �r

The measure �w depends, however, on the link weight
distribution. The link weight correlations around nodes in
networks possessing different link weight distributions can
be better compared via the rank correlation of links sur-
rounding a node �r. A link has rank r if its link weight is the
rth largest among all the link weights in the network. If we
replace each link weight wij with the rank of that link, the
rank correlation �r of links incident to a node is derived via
Eq. �1�. Tables II and III show that both measures point out
the positive correlation since �w�1,�r�1; however, �r
��w, because the rank of links in a network is uniformly
distributed within �1,L�, where L is the number of links in

the network, while the original link weights w possess a dis-
tribution as shown in Fig. 1. Throughout this work, we study
the link weight correlation around a node mainly via �r to
take into account the small difference in link weight distri-
bution before and after neurosurgery. As shown in Table III,
link weights around a node are positively correlated in all
functional brain networks since �r�1. The correlation is
stronger if �r is smaller. The most evident change is in 8–10
Hz: �E��r�G���−E��r�G��	 /E��r�G��=0.61%. However, the
evident change in the average link weight correlation E��r�
does not imply that this change occurs in each patient or in
most patients.

In addition to visual inspection of the means in Table I,
the statistical significance of these results is investigated. A
statistically significant finding indicates that the results are
unlikely to have occurred by chance, while a statistically
nonsignificant finding is more likely due to chance. In this
study, our hypothesis is that graph measures change after
surgery in brain tumor patients, and the level of significance
refers to the likeliness of this hypothesis not being rejected.
In order to test the statistical significance of changes in a
graph measure that was calculated both before and after tu-
mor resection, nonparametric statistical tests are used. Most
common statistical procedures, such as Student’s t-tests and
analysis of variance, assume a normal or Gaussian distribu-
tion of observed values. However, functional connectivity
and graph theoretical measures usually have a skewed distri-
bution, warranting nonparametric testing. The nonparametric
Wilcoxon signed rank test compares two repeated measure-
ments in the same sample by ranking both measurements
�25�. With this nonparametric procedure, no assumptions re-
garding the underlying distribution of values are made. The
changes in link weight correlation �r�G��−�r�G� in each
network are statistically tested using the Wilcoxon signed
rank test, as shown in Table III. The p value that is chosen to
represent the level of significance of the observed results
indicates whether the observed result is by chance more
likely to deviate from the null hypothesis that there was no
change after surgery. Thus, a p value below 0.05 �which is
the most commonly used threshold of significance �� means
that there is more than 95% chance that the null hypothesis
can be rejected, and it implies that changes after surgery are
actually present in the current study. There are no significant
changes in the five frequency bands with respect to link
weight correlation, although a trend toward significance was
observed in the beta band. Other network measures to be
examined may change significantly in different frequency
bands. We always provide a table like Table III for each
network measure in all frequency bands and also to under-
stand the relation among all the measures.

3. (si+sj) Õ2(N−1) versus wij

A third measure of link weight correlation around a node
examines the relation between the weight wij of a link �i , j�
and the normalized node strength �si+sj� /2�N−1� of nodes i
and j. Since each node in the functional brain network is
connected to all the other N−1 nodes, the average link
weight incident to a node is s

N−1 . The averaged �si+sj� /2�N
−1� is actually the average link weight around nodes i and j.

TABLE II. The link weight correlation �w �1� around a node in
functional brain networks.

E��w�G�� before
neurosurgery

E��w�G��� after
neurosurgery

E��w�G���−E��w�G��
E��w�G��

�%�

0.5–4 Hz 0.9456 0.9465 0.10

4–8 Hz 0.9599 0.9502 −1.01

8–10 Hz 0.9418 0.9378 −0.42

10–13 Hz 0.9452 0.9442 −0.11

13–30 Hz 0.9654 0.9580 −0.77

TABLE III. The link weight correlation around a node �r of
functional brain networks and its statistical tests.

E��r�G��
before

neurosurgery

E��r�G���
after

neurosurgery

E��r�G���−E��r�G��
E��r�G��

�%� p

0.5–4 Hz 0.9548 0.9557 0.094 0.933

4–8 Hz 0.9807 0.9790 −0.17 0.406

8–10 Hz 0.9597 0.9656 0.61 0.756

10–13 Hz 0.9678 0.9711 0.34 0.467

13–30 Hz 0.9841 0.9804 −0.38 0.062
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The relation of �si+sj� /2�N−1� versus wij is examined over
all the links in a network. If �si+sj� /2�N−1� and wij are
positively correlated, a high link weight wij implies a high
average link weight around nodes i and j. In this case, links
connected to nodes i and j possess similar link weight as wij
�26�. A positive link weight correlation around a node can be
expected.

In contrast to the geometric mean 
sisj, the arithmetic
mean �si+sj� /2�N−1� allows for theoretical analysis. An up-
per bound for the covariance of �si+sj� /2 and wij can be
deduced as follows:

Cov� si + sj

2
,wij� = E� si + sj

2
· wij� − E� si + sj

2
�E�wij�

=
1

2� �
k�N�i�

E�wik · wij� + �
q�N�j�

E�wjq · wij��
− �N − 1��E�w��2, �2�

where E�si�= �N−1�E�w�, because the functional brain net-
works are complete graphs. If all link weights surrounding a
node are independent, then

Cov� si + sj

2
,wij� =

1

2� �
k�N�i�

E�wik�E�wij�

+ �
q�N�j�

E�wjq�E�wij�� − �N − 1��E�w��2

= 0.

When all link weights around a node are maximally corre-
lated, wik ·wij =wij

2 and E�wik ·wij�=E�wij
2 �. In this case,

Cov� si + sj

2
,wij� = �N − 1�E�w2� − �N − 1��E�w��2

= �N − 1�Var�w� .

Therefore, the covariance of �si+sj� /2 and wij is always up-
per bounded by Cov��si+sj� /2,wij�� �N−1�Var�w�. The lin-
ear correlation coefficient between �si+sj� /2 and wij or, ap-
proximately, Cov��si+sj� /2,wij� illustrates how the scatter
plots in Fig. 3 are close to a line. The slope of �si+sj� /2�N
−1� versus wij reflects the relative strength of link weight
correlation surrounding a node.

In Fig. 3, the relation between �si+sj� /2�N−1� and wij is
illustrated �27�. The measure E��r� in Table III and the mea-
sure �si+sj� /2�N−1� and wij in Fig. 3 reveal the same
changes in link weight correlation around a node after tumor
resection over all frequency bands: whenever E��r�G���
−E��r�G���0, the slope of �si+sj� /2�N−1� versus wij in-
creases. While the relation �si+sj� /2�N−1� versus wij pro-
vides the average link weight around each link wij in a net-
work, �r allows us to quantify the link weight correlation
around nodes without curve fitting and thus can be applied to
a large number of networks.

Another observation is that after neurosurgery the link
weight correlation surrounding a node �see Table III� in-
creases �decreases� when the maximal node strength �see
Fig. 2� increases �decreases� in each frequency band:
�E��r�G���−E��r�G��	�smax�G��−smax�G�	�0. This can be
understood as follows: both high link weights and a strong
positive link weight correlation around a node contribute to a
high node strength. Since a similar link weight distribution is
followed before and after neurosurgery in most bands, the
maximal node strength is mainly determined by the link
weight correlation.
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FIG. 3. �Color online� Correlation between �si+sj� /2�N−1� and wij of the brain function networks before �red crosses� and after �blue
circles� neurosurgery.
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C. Weighted clustering coefficient

As proposed in �28�, the weighted clustering coefficient of
node i is

ci =
1

di�di − 1� �j=1

j�i

N

�
k=1

k�j,i

N

�wijwikwjk�1/3, �3�

where di is the degree of node i. The contribution of each
triangle to the clustering coefficient ci depends on all con-
stituent link weights. Thus, a triangle in which each link has
a link weight of 1 contributes unity to the sum, while a
triangle having one link with a negligible weight will have a
negligible contribution to the clustering coefficient. The
weighted clustering coefficient C= 1

N�i=1
N ci of a network is

the average over all the nodes. Given the set of link weights
in a network, a large weighted clustering coefficient implies
that links within a triangle tend to possess similar link
weights or, equivalently, a positive link weight correlation
within triangles. Since the link weight distributions before
and after tumor resection are similar, the change in link
weight correlation within triangles of a network after neuro-
surgery can be revealed via the changes in the weighted clus-
tering coefficient. As shown in Table IV, the average
weighted clustering coefficient decreases greatly �E�C�G���
−E�C�G��	 /E�C�G��=−49% in 8–10 Hz, which is however
statistically not significant because p=0.383�0.05. The in-
crease in the weighted clustering coefficient in the 13–30 Hz
band is statistically significant. In previous studies, decreased
clustering coefficients in this frequency band have been
found in brain tumor patients when compared to healthy par-
ticipants �8,9�. The current results suggest—as was the case
with theta band connectivity findings �10�—that a normaliza-
tion of beta band clustering may occur after the removal of
the tumor in these patients.

Comparing Tables III and IV, we find that �E�C�G���
−E�C�G��	�E��r�G���−E��r�G��	�0 holds in each fre-
quency band except for in 0.5–4 Hz where (�E�C�G���
−E�C�G��	�E��r�G���−E��r�G��	) /E�C�G��E��r�→0. Af-
ter neurosurgery, the average weighted clustering coefficient
increases �decreases� when the link weight correlation
around a node increases �decreases�, which corresponds to
the decrease �increase� in �r. If link weights around each
node are positively correlated, any two links in a triangle are
connected to a same node, thus tending to have similar link

weight. As a result, all links within a triangle possess similar
link weights. The link weight correlations around nodes and
within triangles are positively correlated.

D. Maximum spanning tree

The maximum spanning tree �MaST� of a network is a
tree spanning over all the nodes of a network, while the total
weight of these N−1 links is maximal. Similar to Kruskal’s
minimum spanning tree algorithm �29,30�, a MaST starts as
empty and is constructed as follows: �a� sort all L links in
decreasing order of their link weights and �b� proceed from
the highest link weight to the smallest: a link belongs to the
MaST if this link addition allows the MaST to span more
nodes and no loop is generated. The process of constructing
the MaST ends when the MaST spans all the nodes in the
network.

We have examined the link weight correlation surround-
ing nodes and within triangles in Secs. III B and III C. Here,
via the MaST, we investigate whether high link weights are
distributed all over the network or are isolated in a subgraph
of the network. Recall that a link weight has rank r if it is the
rth highest in a network. We use rmin�MaST� to denote the
rank of the minimum link weight in a MaST. In the construc-
tion of a MaST, the last link joining the MaST has the small-
est link weight wmin�MaST� and the largest rank rmin�MaST�
compared to other links in the MaST. The rank dominance
��G� of the MaST in a graph G can be defined by

��G� =
L − rmin�MaST�

L − N − 1
,

where L is the number of links in the network G. Clearly,
0���1 and when rmin�MaST�=N−1, then �=1: the
MaST is composed of the N−1 links with the highest link
weight in the network. However, if a node is connected with
the rest of the network by only one link, whose link weight
is the minimum of the network, then this link belongs to the
MaST, and rmin�MaST�=L such that �=0. The percentage
of the network’s links whose weight is smaller than the mi-
nimum link weight in the MaST approximates �, i.e.,
Pr�w�wmin�MaST���. When high link weights appear
only in a subgraph, rmin�MaST� would be large and the rank
dominance � would be small. Therefore, a large � value
indicates that high link weights are distributed all over the
network such that all nodes can be reached only via high link
weights. On the other hand, a small � value implies that high
link weights appear only in a subgraph.

The average rank dominance of networks measured be-
fore and after neurosurgery over different frequency bands is
given in Table V. Most brain networks possess a high ��G�
value. Hence, relatively high link weights are at least not
isolated in a subgraph, but are evenly spread over the entire
brain. Table V shows that statistically significant changes
�p=0.00�0.05� occur in band 13–30 Hz: the average rank
dominance decreases by �E���G���−E���G��	 /E���G��
=−1.7%. This change suggests that after neurosurgery,
higher link weights are increasingly present in only a sub-
graph of the network. Why this change occurs is not yet
understood. Speculatively, this rank dominance could be re-

TABLE IV. The weighted clustering coefficient C of functional
brain networks measured before and after neurosurgery and its sta-
tistical tests.

E�C�G�� before
surgery

E�C�G��� after
surgery

E�C�G���−E�C�G��
E�C�G��

�%� p

0.5–4 Hz 0.001218 0.001226 0.66 0.709

4–8 Hz 3.358	10−5 4.428	10−5 32 0.041

8–10 Hz 0.01271 0.006480 −49 0.383

10–13 Hz 0.005229 0.004266 −18 0.353

13–30 Hz 1.6891	10−5 1.9424	10−5 15 0.005
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lated to the degree of subspecialization in the network, which
may indicate that subgrouping in modules is enhanced after
neurosurgery. One previous study shows that patients with
epilepsy have altered modularity in the brain: although the
number of modules was comparable to healthy participants,
the role of the modules was changed in patients �31�.

Furthermore, the rank dominance ��G� of a graph G is
positively correlated with its link weight correlation �r�G� of
links surrounding a node. This is verified in functional brain
networks. First, comparison of Table III with Table V gives
�E���G���−E���G��	�E��r�G���−E��r�G��	�0. Second,
the positive correlation between �r and � is illustrated by the
120 functional brain networks measured both before and af-
ter neurosurgery in each frequency band. The scatter plots
are not shown here, because Figs. 6 and 7 show that both �r
and � are negatively correlated with the spectral radius 
1 of
the graph. When link weights incident to a node are strongly
positively correlated, a node that is surrounded by small link
weights will be reached or spanned by the MaST via a small
link weight. In this case, rmin�MaST� is large and � is small.
Therefore, a strong positive link weight correlation around a
node leads to a MaST including low link weight or a small
�. In other words, a strong positive link weight correlation
contributes to the clustering of high link weights in a sub-
graph. This agrees with Ramasco and Gonçalves’ observa-
tion �14� that a stronger positive link weight correlation
around nodes implies a superhighway with larger size and
higher weight in total, where a superhighway is the incipient
percolation cluster �IIC�, a subgraph of the MaST that is used
by transport �32� more often. A strong positive link weight
correlation around a node is thus claimed to improve the

global transport. In the brain, this type of positive link
weight correlation, or assortativity, may be beneficial to
spread information throughout all parts of the brain in a fast
and efficient manner. It seems that, even in brain tumor pa-
tients, this characteristic of the brain’s network is preserved.

E. Weighted spectrum

A weighted network G consisting of N nodes and L links
can be described by the weighted adjacency matrix A, a
N	N 0-1 matrix, where the element aij =wij if there is a link
between nodes i and j; else aij =0. Since A is a symmetric
matrix, all eigenvalues are real and A possesses an eigen-
value decomposition �33�, Art. 9, p. 443,

A = X�XT,

where X= �x1 x2 . . . xN� is an orthogonal matrix �such that
XTX= I� with as columns the real and normalized eigenvec-
tors x1 ,x2 , . . . ,xN of A, corresponding to the eigenvalues

1�
2� ¯ �
N−1�
N in descending order and the diago-
nal matrix �=diag�
1 ,
2 , . . . ,
N−1 ,
N�. The set of eigenval-
ues 
1�
2� ¯ �
N−1�
N is called the spectrum of a net-
work G. The spectrum is conjectured �34� to be the unique
fingerprint of a large network. Recall Wigner’s Semicircle
Law �35�

Theorem 1. If the link weights aij =wij are independent
and identically distributed with �2=Var�wij�, thus uncorre-
lated, the probability function f
�AN��x� of an eigenvalue 
�AN�

of the scaled matrix AN= A

N

tends for N→ to

lim
N→

f
�AN��x� =
1

2��2

4�2 − x21�x��2�.

Hence, for sufficiently large N, the distribution of the ei-
genvalues of A


N
does not depend anymore on the link weight

distribution. We first illustrate the semicircle law by an ex-
ample. We take one functional brain network whose spec-
trum, actually the probability density function of eigenval-
ues, is displayed in Fig. 4�a�. The spectrum is far from a
semicircle, because link weights are positively correlated
around nodes and within triangles as illustrated in Secs. III B
and III C. After all the link weights are randomly reshuffled,
they are not correlated anymore. Figure 4�b� shows the spec-
trum of 104 reshuffled �see Sec. III B� networks, which fol-

TABLE V. The rank dominance � of networks measured before
and after neurosurgery and its statistical tests.

E���G�� before
surgery

E���G��� after
surgery

E���G���−E���G��
E���G��

�%� p

0.5–4 Hz 0.907 0.906 −0.11 0.527

4–8 Hz 0.945 0.938 −0.74 0.068

8–10 Hz 0.896 0.914 2.0 0.739

10–13 Hz 0.927 0.928 0.11 0.829

13–30 Hz 0.962 0.946 −1.7 0.000
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FIG. 4. �Color online� The spectra of one brain functional network and of the 104 weight-reshuffled networks.
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lows nicely the Wigner semicircle law. The spectrum of the
functional brain networks measured before and after tumor
resection is depicted in Fig. 5. The spectrum over 0.5–4 Hz
is farther from the semicircle centered at the origin compared
to all the other frequency bands, implying that link weights
are strongly correlated over 0.5–4 Hz. This observation is
consistent with what we have discovered in Table III: the
average link weight correlation E��r� in 0.5–4 Hz is smaller
than in the other frequency bands.

Actually, the largest eigenvalue may well measure the link
weight correlation of a network and characterize the dynamic
processes on the network. The largest eigenvalue 
1, also
called the spectral radius, follows


1 = sup
x�0

xTAx

xTx
,

and the maximum is attained if and only if x is the eigenvec-
tor of A belonging to 
1. For any other vector y�x, it holds
that 
1�xTAx /xTx. By choosing the vector y=u
= �1,1 , . . . ,1�, we have


1 �
1

N
�
i=1

N

�
j=1

N

wij =
1

N
�
i=1

N

si = EG�S� , �4�

where si is the node strength of node i and EG�S� is the
average node strength of the graph G. When y is any 0-1
vector such as y= �1,0 ,1 , . . . ,0�, yTAy /yTy gives the average
node strength EGs

�S� of a subgraph composed of the set of
nodes corresponding to the 1’s in y and links in between the
set of nodes. Therefore, the spectral radius is lower bounded
by


1 � max�EGs
�S�,EG�S�	 . �5�

When link weights are highly correlated such that a large
subgraph composed mostly of high link weights exists, the
large average node strength of this subgraph tends to render
a large spectral radius. In other words, the largest eigenvalue
may capture the link weight correlation, in the sense that
large link weights cluster in a subgraph.

Intuitively, the link weight correlation around nodes or
within triangles contributes to the existence of such a sub-
graph with large average node strength, thus leading to a
higher spectral radius. This conjecture is supported by Ra-
masco and Gonçalves’ observation �14� as mentioned in Sec.
III D. Rigorously, we show in �36�, for all integers k�1, that


1 � �uTA2ku

uTu
�1/2k

� �uTAku

uTu
�1/k

,

from which limk→�uTAku /N�1/k=
1. Thus, 
1�uTAu /uTu
leads to Eq. �4� and


1 �
uTA2u

uTu
=
 1

N
�
k=1

N

sk
2 = 
Var�S� + �E�S��2.

Functional brain networks measured before and after neuro-
surgery possess a similar link weight distribution, and thus a
similar average node strength E�S�. A stronger link weight
correlation around a node �r contributes to a large variance
Var�S� of node strength. This is observed in functional brain
networks �see the pdf of the node strength in Fig. 2 and
E��r� in Table III�. Hence, a strong link weight correlation
around a node �a small �r� implies a large spectral radius 
1.
Figure 6 shows the negative correlation between �r and 
1 in
the 120 functional brain networks in each frequency band.
Finally, both a large spectral radius 
1 and a small rank
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FIG. 5. �Color online� The spectra �in the range around zero� of the brain function networks measured via MEG before �red crosses� and
after �blue circles� tumor resection.
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dominance � imply strong clustering of high link weights in
a subgraph. Figure 7 demonstrates the negative correlation
between � and the largest eigenvalue 
1.

The changes in 
1 introduced by neurosurgery are given
in Table VI. The largest eigenvalue increases statistically sig-
nificantly in the 13–30 Hz frequency band, indicating again
that assortative beta band local clustering within subregions
of the brain tends to increase after tumor removal in these
patients. The susceptible-infected-susceptible virus spreading
�37� and the Kuramoto type of synchronization process of

coupled oscillators �38� have been characterized on a given
but general network topology. Both dynamic and nonlinear
processes feature a phase transition that specifies the onset of
a remaining fraction of infected nodes and of locked oscilla-
tors, respectively. The more curious aspect is that each of the
phase transitions in these different processes occurs at an
effective spreading rate �c and coupling strength gc, respec-
tively, that is proportional to 1 /
1. After surgery, the de-
crease in synchronization and/or spreading threshold in the
13–30 Hz frequency band implies the improvement of infor-

0.98

0.96

0.94

0.92

0.90

0.88

∑
r

24222018161412

λ1

0.5-4 Hz

0.99

0.98

0.97

0.96

∑
r

6.56.05.55.04.54.03.5

λ1

4-8 Hz

0.98

0.96

0.94

0.92

0.90

0.88

0.86

0.84

0.82

∑
r

16141210864 λ1

8-10 Hz

0.98

0.96

0.94

0.92

0.90

0.88

∑
r

987654
λ1

10-13 Hz 0.98

0.96

0.94

0.92

∑
r

4.54.03.53.0 λ1

13-30 Hz

0.98

0.96

0.94

0.92

0.90

0.88

∑
r

24222018161412

λ1

0.5-4 Hz

0.99

0.98

0.97

0.96

∑
r

6.56.05.55.04.54.03.5

λ1

4-8 Hz

0.98

0.96

0.94

0.92

0.90

0.88

0.86

0.84

0.82

∑
r

16141210864 λ1

8-10 Hz

0.98

0.96

0.94

0.92

0.90

0.88

∑
r

987654
λ1

10-13 Hz 0.98

0.96

0.94

0.92

∑
r

4.54.03.53.0 λ1

13-30 Hz

FIG. 6. �Color online� The scatter plot of link weight correlation around a node �r versus the largest eigenvalue 
1 of each of the
networks measured before and after tumor resection.
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mation processing capability. The positive correlations
among link weight correlation around a node, the clustering
of large link weights in a subgraph, and the spectral radius
explain why �E�
1�G���−E�
1�G��	�E��r�G���−E��r�G��	
�0 and �E�
1�G���−E�
1�G��	�E���G���−E���G��	�0
hold in each frequency band.

In summary, statistically significant changes have been
observed in 13–30 Hz characterized by the increase in link
weight correlation around a node, within triangles and in a
subgraph, and by the increase in spectral radius, implying
that traffic transportation has been improved both locally and
globally. Although no statistically significant correlations
were found between these changes in network topology and
functional outcome in terms of epilepsy after surgery, these
findings could point toward a normalization of brain func-
tioning after the brain tumor is removed from these patients.

IV. RELATION BETWEEN WEIGHTED AND
UNWEIGHTED NETWORK ANALYSES

A weighted network is usually transformed into an un-
weighted network by sampling links which are “important”
according to their link weights due to the simplicity of an
unweighted network analysis. In functional brain networks, a
high link weight represents high strength of the functional
connectivity between two parts of the brain. Usually, an un-
weighted network is mapped as the union of links whose link
weight is above a threshold x or, equivalently, as the union of
a number L of links with the highest link weight in the origi-
nal weighted network. When we choose a different value of
L, a different view of the original weighted network is cap-
tured in the unweighted network. A representative number of
links L is difficult to obtain. In this sense, the analysis on the
original weighted network is more reliable and accurate, al-
though more complex �39�.

In this section, we examine the relation between the
weighted and unweighted analyses. We transform each
weighted brain network into an unweighted network by se-
lecting the L=E�D�N /2 links with the highest link weight.
Recall in Sec. III D that the MaST includes the high link
weights that are necessary to span all the nodes of G�N�. Let
Gs�N� denote any subgraph that spans over all the nodes of
the network G�N�. The minimum link weight in Gs�N� is
always smaller or equal to the smallest link weight in the
MaST �40�, i.e., wmin(Gs�N�)�wmin�MaST�. The rank of

wmin(Gs�N�) is then larger than that of wmin�MaST�. There-
fore, a subgraph should contain at least L�rmin�MaST� links
such that all nodes are connected. Approximately, L
� � N

2 ��1−��. Table V indicates that the unweighted network
has to include at least 10% links, so that it connects all the
nodes in one component. In this section, we examine, as an
example, the case when the average degree E�D�=30 as well
as E�D�=50 only if necessary �41�. We deduce from the
weighted analysis the most studied topological characteris-
tics of the corresponding unweighted networks: standard de-
viation of the degree, the degree correlation of nodes con-
nected by a link, and the clustering coefficient of a network.

A. Standard deviation of degree

The degree distribution of the unweighted brain function
networks, as illustrated in Fig. 8, approximately follows a
Gaussian distribution both before and after neurosurgery. A
Gaussian distribution �1 /�
2��exp�−�x−��2 /2�2� can be
characterized by the average � and the standard deviation �.
Each unweighted brain network has average degree E�D�
=30, as the way it is constructed. When link weights of a
node are positively correlated, high �low� link weights are
likely connected to a same node, which contributes to a high
�low� degree node in the corresponding unweighted network.
In this case, the variance of degree in the unweighted net-
work is expected to be large. We claim that a strong positive
link weight correlation around a node implies high-degree
variance in the corresponding unweighted network.

The average standard deviation E[��D�] of the un-
weighted functional brain networks measured before and af-
ter neurosurgery is presented in Table VII. The degree vari-
ance increases �decreases� after tumor resection if link
weight correlation surrounding a node increases �decreases�:
�E��r�G���−E��r�G��	�E[��D�G���]−E[��D�G��]	�0 �see
Tables III and VII�.

B. Degree correlation

Assortativity refers to a preference for nodes to attach to
others that are similar in degree, i.e., a highly connected
node tends to be connected with other high-degree nodes. On
the other hand, a network is disassortative if high-degree
nodes tend to attach to low-degree nodes. The assortativity
and disassortativity describe the degree correlation of nodes
connected by a link, which is also referred to as the mixing
pattern of a network. If links around node are positively cor-
related in a weighted network, the link weights around node
i and around node j tend to possess a similar link weight as
wij. Nodes i and j are likely to have a similar degree in the
corresponding unweighted network. Hence, a strong positive
link weight correlation around a node may imply assortativ-
ity in the unweighted network.

The degree correlation �42� can be measured by the aver-
age degree of the neighbors of degree k nodes, E�DN�i� �di
=k�, where N�i� are the direct neighbors of node i. If there is
no degree correlation of neighboring nodes, E�DN�i� �di=k� is
independent of k. When E�DN�i� �di=k� is an increasing �de-
creasing� function of k, nodes with high degree tend to con-

TABLE VI. The largest eigenvalue 
1 of networks measured
before and after neurosurgery and its statistical tests.

E�
1�G��
before
surgery

E�
1�G���
after

surgery

E�
1�G���−E�
1�G��
E�
1�G���

�%� p

0.5–4 Hz 14.8599 15.0620 1.36 0.551

4–8 Hz 4.2700 4.5650 6.9 0.061

8–10 Hz 5.8706 5.4793 −6.7 0.561

10–13 Hz 5.0542 4.8587 −3.9 0.419

13–30 Hz 3.5504 3.7193 4.8 0.002

WANG et al. PHYSICAL REVIEW E 82, 021924 �2010�

021924-10



nect to high �low� degree nodes, and the network is classified
as �dis�assortative.

As shown in Fig. 9, the unweighted networks follow a
similar positive degree correlation before and after neurosur-
gery. The positive degree correlation is coherent with the
positive link weight correlation of links connected to a same
node, as shown in Sec. III B. However, the difference in
degree correlations before and after neurosurgery is not evi-
dent.

C. Clustering coefficient

In an unweighted network, the clustering coefficient of a
node ci

u characterizes the density of connections in the envi-
ronment of a node i. The clustering coefficient is defined as
the ratio of the number of links y connecting the di�1
neighbors of i over the total possible di�di−1� /2; thus, ci

u

=2y /di�di−1�. The average clustering coefficient Cu�G� of a
network G is the average clustering coefficient of nodes
whose degree is larger than 1. When the weighted clustering
coefficient is large, links with large weight tend to appear in

a triangle. Such triangles possessing three high link weights
are likely to remain in the corresponding unweighted net-
work, which contribute to a large clustering coefficient of the
unweighted network. Therefore, a strong link weight corre-
lation within triangles or a large weighted clustering coeffi-
cient implies a high clustering coefficient in the unweighted
network. In Table VIII, we present the average clustering
coefficient E�Cu� of the unweighted functional brain net-
works measured before and after neurosurgery. The average
clustering coefficient increases slightly after tumor resection
over each frequency band when E�D�=30. The decreases
over 8–10 and 10–13 Hz implied by weighted clustering co-
efficient in Table IV are not observed. When we map the
unweighted network with more links, E�D�=50, the decrease
in clustering coefficient over 10–13 can be recognized, as
given in Table VIII.

The evident features in the unweighted networks deduced
from the weighted analysis, such as assortativity and the
change in degree variance after surgery, have been observed
in the case E�D�=30. However, the unweighted network cap-
tures the information of the original weighted network only
partially. Some changes in weighted network features like
the weighted clustering coefficient cannot be revealed in un-
weighted networks mapped with only E�D�=30. The
weighted network analysis turns out to be crucial, especially
to exploring the changes in network properties. This moti-
vates the weighted analysis as a potentially standard ap-
proach in future neuroscience studies.

V. CONCLUSION

The functional brain networks of a group of patients with
brain tumors have been measured before and after tumor
resection. In this work, we perform a weighted network
analysis to understand the effects of neurosurgery on features

TABLE VII. The standard deviation 
var�D� of the unweighted
brain functional networks measured before and after neurosurgery.

E���D�G���
before
surgery

E[��D�G���]
after

surgery

E[��D�G���]−E[��D�G��]
E[��D�G��]

�%�

0.5–4 Hz 13.228 12.918 −2.3

4–8 Hz 9.756 10.254 5.1

8–10 Hz 12.643 12.336 −2.4

10–13 Hz 11.796 11.644 −1.3

13–30 Hz 9.597 10.221 6.5
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FIG. 8. �Color online� The degree distribution of the unweighted brain functional networks before �red crosses� and after surgery �blue
circles� as well as the Gaussian curve fitting �black dotted line�.
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of functional brain networks. We introduce innovative mea-
sures to examine link weight correlations around a node,
within a triangle and in a subgraph. Furthermore, by inves-
tigating the spectral radius, we set up the relation between
the link weight correlation of a network and dynamic pro-
cesses such as synchronization on the network.

Our statistical tests show that neurosurgery induces statis-
tically significant changes mainly in the 13–30 Hz frequency
band: the link weight correlation around nodes, within tri-
angles as well as in a subgraph, and the spectral radius all
increase in this frequency band. A strong positive correlation
of link weights surrounding a node contributes to �a� a strong
link weight correlation within triangles and to �b� the clus-
tering of high link weights in a large subgraph. The former
�a� associates with high local efficiency of information trans-
fer and robustness �43�. The latter �b� introduces a large in-
cipient percolation cluster �IIC� in both size and weight,
which enhances the global transport capability �14�. The in-
crease in the spectral radius, or the decrease in synchroniza-
tion and/or spreading threshold, again, suggests the improve-

ment of information dissemination. Previous studies in brain
tumor patients have shown that local clustering is decreased
in the beta band when compared to healthy controls �8,9�.
The current results—although investigated differently with
respect to methodology—indicate that this disturbance in
network topology that occurs in brain tumor patients may be
normalized after the removal of the tumor. However, in the
absence of a healthy control population in this study, this
remains to be elucidated. Additionally, whether the decrease
in synchronization threshold indicates, e.g., the increase in
seizure frequency or cognitive status remains an open ques-
tion. In 8–10 Hz, evident decreases in these link weight cor-
relations and the spectral radius have been observed in a
small number of patients, although these changes are statis-
tically not significant due to great variance of SL in this
frequency band.

Finally, weighted networks are traditionally transformed
into unweighted networks by mapping L links with the high-
est link weight and are studied by unweighted network
analysis afterward. We have investigated the relation be-

TABLE VIII. The average clustering coefficient of the unweighted brain functional networks measured
before E�Cu�G�� and after E�Cu�G��� neurosurgery.

E�D�=30 E�D�=50

E�Cu�G�� E�Cu�G���

E�Cu�G���−E�Cu�G��
E�Cu�G���

�%� E�Cu�G�� E�Cu�G���

E�Cu�G���−E�Cu�G��
E�Cu�G���

�%�

0.5–4 Hz 0.5017 0.5045 0.56 0.5533 0.5539 0.11

4–8 Hz 0.3909 0.4086 4.5 0.4484 0.4583 2.2

8–10 Hz 0.4313 0.4455 3.3 0.4920 0.4965 0.91

10–13 Hz 0.4257 0.4276 0.45 0.4809 0.4784 −0.52

13–30 Hz 0.4308 0.4556 5.8 0.4507 0.4658 3.4
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FIG. 9. �Color online� The average degree E�DN�i� �di=k� of the neighbors of nodes with a given degree k, in the unweighted networks
measured before �red crosses� and after surgery �blue circles�.
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tween the weighted and unweighted network analysis results
and illustrate that the weighted analysis is more reliable and
accurate than the unweighted network analysis, which al-
ways captures only partial information of the original
weighted network.
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