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Epidemics have so far been mostly studied in undirected networks. However, many real-world networks, such
as the online social network Twitter and the world wide web, on which information, emotion, or malware spreads,
are directed networks, composed of both unidirectional links and bidirectional links. We define the directionality ξ

as the percentage of unidirectional links. The epidemic threshold τc for the susceptible-infected-susceptible (SIS)
epidemic is lower bounded by 1/λ1 in directed networks, where λ1, also called the spectral radius, is the largest
eigenvalue of the adjacency matrix. In this work, we propose two algorithms to generate directed networks with a
given directionality ξ . The effect of ξ on the spectral radius λ1, principal eigenvector x1, spectral gap (λ1 − |λ2|),
and algebraic connectivity µN−1 is studied. Important findings are that the spectral radius λ1 decreases with
the directionality ξ , whereas the spectral gap and the algebraic connectivity increase with the directionality ξ .
The extent of the decrease of the spectral radius depends on both the degree distribution and the degree-degree
correlation ρD . Hence, in directed networks, the epidemic threshold is larger and a random walk converges to its
steady state faster than that in undirected networks with the same degree distribution.
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I. INTRODUCTION

Much effort has been devoted to understand epidemics
on networks, mainly because of the increasing threats from
cybercrime and the expected outbreak of new fatal viruses
in populations. Epidemics have been studied on undirected
networks for a long time and many authors (see Refs. [1–7])
addressed the existence of an epidemic threshold τc in the
susceptible-infected-susceptible (SIS) epidemic process [8].
We consider the SIS epidemic process in an undirected network
G(N,L), characterized by a symmetric adjacency matrix A
consisting of elements aij that are either one or zero depending
on whether node i is connected to j or not. Each node i
has two possible states at time t : either Xi(t) = 0, meaning
that the node is healthy and susceptible, or Xi(t) = 1, for
an infected node. Initially, a certain percentage of nodes are
randomly selected as infected. The infection from an infected
node to each of its healthy neighbors and the curing of an
infected node are assumed to be independent Poisson processes
with rates β and δ, respectively. Every node i at time t
is either infected, with probability vi(t) = Prob[Xi(t) = 1]
or healthy (but susceptible) with probability 1 − vi(t). This
is the general continuous-time description of the simplest
type of a SIS epidemic process on a network. The epidemic
threshold τc separates two different phases of the epidemic
process on a network: if the effective infection rate τ ! β/δ
is above the threshold, the infection spreads and becomes
persistent; if τ < τc, the infection dies out exponentially
fast. The epidemic threshold τ (1)

c = 1
λ1

of the N-intertwined
mean-field approximation (NIMFA) [7,9–11] of the SIS model
lower bounds the real threshold, where λ1 is the largest
eigenvalue of the adjacency matrix A, also called the spectral
radius.
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Topologies of undirected networks have been mostly
modeled by Erdős and Rényi1 [12–14] as binomial networks,
by Bárabasi and Albert2 [15] as power-law networks, or by
Watts and Strogatz3 [16] as small-world networks. More
complicated static and dynamic models, such as the con-
figuration model [17–19], are also proposed to approximate
real-world networks. However, many real-world networks are
directed networks, some examples are shown in Table I.
The data set of the real-world networks is obtained from
[20,21] and the description of these networks is attached in
Appendix A.

Two kinds of links, namely bidirectional links and unidirec-
tional links, exist in directed networks. If node i is connected
to node j (denoted by i → j ) then j is also linked to i (denoted
by j → i), one bidirectional link exists between nodes i and
j ; and if either i → j or j → i exists, but not both in between
the node pair i and j , a unidirectional link exists. Here, we
define the directionality as ξ = Lunidirectional/Larcs, where the
number of arcs (the number of 1-elemets in the adjacency
matrix) Larcs =

∑
i

∑
j aij = uT Au, (u is the all-one vector),

can also be calculated by Larcs = Lunidirectional + 2Lbidirectional.
A directed network with directionality ξ is denoted by
G(ξ ). The network G(ξ=0) is a bidirectional network or an
undirected network, whose adjacency matrix is symmetric,
when ξ = 0. The network G(ξ=1) is a directed network without

1An Erdős-Rényi random graph can be generated from a set of N

nodes by randomly assigning a link with probability p to each pair
of nodes.

2A Bárabasi-Albert graph starts with m nodes. At every time step,
we add a new node with m links that connect the new node to m

different nodes already present in the graph. The probability that
a new node will be connected to node i in step t is proportional
to the degree di(t) of that node. This is referred to as preferential
attachment.

3A Watts-Strogatz small-world graph can be generated from a ring
lattice with N nodes and k edges per node, by rewiring each link at
random with probability p.
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TABLE I. Percentage of unidirectional links in real-world
networks.

Real-world networks N Larcs ξ

Enron 69 244 276 143 84.29%
Ljournal-2008 5 363 260 79 023 142 25.32%
Twitter-2010 41 652 230 1 468 365 182 64.29%
WordAssociation-2011 10 617 72 172 76.77%
cnr-2000 325 557 3 216 152 70.33%
in-2004 1 382 908 16 917 053 60.68%
eu-2005 862 664 1 935 140 67.80%
uk-2007-05@100000 100 000 3 050 615 82.23%
uk-2007-05@1000000 1 000 000 41 247 159 79.71%

any bidirectional link, when ξ = 1. A high directionality
is observed in Twitter, as shown in Table I. A link runs
from user A to user B if user A follows user B in Twitter,
where user A is called the “follower” of user B. The fact
that user A “follows” user B, does not necessarily mean that
the reverse is also true. For example, a famous person could
have millions of followers but he/she may not follow many
others. This explains the high directionality ξ of Twitter. The
virtual-community social networks, such as LiveJournal, have
a low directionality (see Table I), mainly because they aim to
construct virtual connections in between real-life friends, and
friendship relations are usually mutual.

There has been an increasing interest in the study of directed
networks. Topological properties of directed networks, such
as the short loops, closure connectivity, degree, domination,
and communities on realistic directed networks have already
been studied in Refs. [22–27]. Garlaschelli and Loffredo [28]
investigated the reciprocity [29] in directed networks, where
the reciprocity is equal to 1 − ξ . Processes taking place on
networks, such as synchronization, percolation, and epidemic
spread, have also been researched [28,30–33] in real directed
networks. Percolation theory for directed networks with ξ = 1
was first developed by Newman et al. [19,34]. Then, Boguñá
and Serrano [35] pointed out that even a small fraction of
bidirectional links suffices to percolate the network. Moreover,
Meyers et al. [36] used a generating function method to predict
the epidemic threshold in directed networks with ξ < 1 and the
size of the infected cluster. Recently, Van Mieghem and van de
Bovenkamp have proven that the NIMFA epidemic threshold
τ (1)
c = 1

λ1
of the SIS epidemic process also holds for directed

networks [10]. Stimulated by the directed social networks with
different directionalities, here, we focus on the influence of the
directionality ξ on the epidemic threshold τ (1)

c = 1
λ1

and other
spectral properties.

This paper is organized as follows. In Sec. II, we propose
two algorithms that could be applied to a bidirectional
network to generate a directed network with an arbitrary given
directionality ξ , by rewiring or resetting links. The in- and
out-degree distribution of the generated directed network is the
same as the degree distribution of the original bidirectional net-
work. Chen and Olvera-Cravioto [37] proposed an algorithm
to generate a directed network with a given in- and out-degree
distribution, which is similar to the configuration model. How-
ever, their algorithm in Ref. [37] cannot generate a directed
network with a given directionality ξ . In Sec. III, we investigate

the effect of the directionality ξ on the spectral radius λ1, the
principal eigenvector x1 (the eigenvector corresponding to λ1),
the spectral gap λ1 − |λ2|, and the algebraic connectivity µN−1
in both directed binomial4 and power-law networks, whose in-
degree and out-degree both follow a binomial (or power-law)
distribution. Interestingly, we find that the spectral radius λ1 of
networks G(ξ=0) is larger than that of directed networks G(ξ=1)

when the degree distribution and the assortativity of these
networks are the same. This means that the epidemic threshold
τc in undirected networks is smaller than that in directed
networks with the same degree distribution and assortativity.
Furthermore, we explore the influence of the Pearson degree
correlation coefficient ρD (also called the assortativity) on
the epidemic threshold τ (1)

c in both directed binomial and
directed power-law networks with different ξ , in Sec. IV. The
ρD is the Pearson correlation coefficient of degrees [38] at
either end of a link and lies in the range [−1,1]. Actually,
there are four degree correlations, namely the in-degree and
in-degree correlation, the in-degree and out-degree correlation,
the out-degree and in-degree correlation, and the out-degree
and out-degree correlation, in directed networks. We consider
directed networks where the in-degree and out-degree of each
node are the same. In this case, the four degree correlations
are equal to each other and can be all referred as the degree
correlation (or the assortativity). The decrease of the spectral
radius λ1 with ξ is large when the assortativity ρD is large in
directed binomial networks, whereas the opposite is observed
in directed power-law networks.

II. ALGORITHM DESCRIPTION

The networks mentioned in this paper are simple, without
self-loops and multiple links from any node to any other node.
Here, we propose two algorithms, in-degree and out-degree
preserving rewiring algorithm (IOPRA) and the link resetting
algorithm (LRA), which both can be applied to any network
to generate a directed network with a given directionality
ξ . In this study, we only apply these two algorithms to
generate directed networks with the same in- and out-degree
distribution. The difference is that IOPRA preserves the in- and
out-degree of each node, while, LRA may change the in- and
out-degree of any node. The IOPRA is inspired by the degree
preserving rewiring, which has been presented in Refs. [39,40].
We first introduce the degree-preserving rewiring, which
monotonously increases or decreases the assortativity ρD ,
while maintaining the node degrees unchanged, in undirected
networks. Afterwards, we describe the IOPRA and LRA in
detail.

A. Degree-preserving rewiring

The degree-preserving rewiring [39] can either increase
or decrease the assortativity of a bidirectional network: (a)
the degree-preserving assortative rewiring: randomly select
two links associated with four nodes and then rewire the two

4For example, an Erdős-Rényi random network is a binomial
network with the Pearson degree correlation ρD = 0. A general
binomial network could possibly have an assortativity ρD within a
large range.
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(a) (b)

FIG. 1. (Color online) In-degree and out-degree preserving
rewiring.

links such that the two nodes with the highest degree and the
two lowest-degree nodes are connected,respectively. If any
of the newly rewired links exists before rewiring, discard
this step and a new pair of links is randomly selected; (b)
the degree-preserving disassortative rewiring: randomly select
two links associated with four nodes and then rewire the two
links such that the highest-degree node and the lowest-degree
node are connected, and the remaining two nodes are also
connected, as long as the newly rewired links do not exist
before rewiring. Either rewiring step (a) or (b) can be repeated
to monotonically increase or decrease the assortativity in a
bidirectional network.

B. In-degree and out-degree preserving
rewiring algorithm (IOPRA)

The IOPRA can be applied to change the directionality of
networks. We define our in-degree and out-degree preserving
rewiring algorithm (IOPRA) as follows: randomly choose
two unidirectional links with four end nodes, and rewire
the two unidirectional links. In the IOPRA, the head of one
unidirectional link only can rewire with the head of the other
unidirectional link, in order to maintain both the in-degree
and out-degree of the four nodes unchanged (see Fig. 1).
We don’t rewire if such rewiring can introduce duplicated
links from any node to any other. We discard the rewiring
step if this rewiring step doesn’t change the directionality ξ
towards the given directionality. In both cases, we randomly
reelect a pair of unidirectional links associated four nodes. We
illustrate the process of IOPRA changing the directionality in
Algorithm 1 (see Appendix C). The IOPRA actually changes
the directionality ξ of a given network G without changing the
in- and out-degree of each node. If the original network G is
an undirected network, the in-degree sequence is exactly the
same as the out-degree sequence in the directed network G(ξ )

generated by the IOPRA.
The IOPRA changes the directionality, as well as randomiz-

ing the connections of the original network, without changing
the degree of any node. Hence, if the initial network is a random
network, e.g., an Erdős-Rényi (ER) network or a scale-free net-
work generated by the configuration model, where the connec-
tions are originally laid at random, the IOPRA changes only the
directionality ξ . However, if we apply the IOPRA to a nonran-
dom network, e.g., a lattice, the resulting network has not only
a different directionality but also a more randomized structure.

C. Link resetting algorithm (LRA)

We start with a bidirectional network G, and use the link
resetting algorithm (LRA) to change the directionality (see

Algorithm 2 in Appendix C). We randomly choose a fraction
ξ of the bidirectional link pairs from G. Then, we randomly
choose only one unidirectional link from each bidirectional
link, and randomly relocate the selected unidirectional links
to a place without any link. In this work, we only apply the
LRA to ER networks. In this case, the in- and out-degree
of the generated directed network follow the same binomial
degree distribution as the original network. However, the in-
degree and out-degree of any node in the generated network
may differ from those in the original network G. When the
LRA is applied to other types of networks, such as the power-
law networks, the original in- and out-degree distributions are
destroyed, and tend to be binomial.

In summary, two types of directed binomial networks can be
generated: one is generated by the IOPRA (called the IOPRA
directed binomial networks), whose nodes have the same in-
degree and out-degree; the other, created by the LRA (called
the LRA directed binomial networks), has the same in- and
out-degree distribution, while allowing the in- and out-degree
of any node to be different.

III. SPECTRAL PROPERTIES IN DIRECTED NETWORKS

A. Spectral radius of directed networks

The adjacency matrix of a directed network is an asym-
metric matrix, whose spectral radius λ1 is still real by
the Perron-Frobenius theorem (see Ref. [41]). We generate
directed networks, with the directionality ξ ranging from 0 to 1,
by applying the IOPRA to the ER (N = 1000, p = 2lnN/N )
and the BA (N = 1000, m = 4) networks gradually. An ER
network is connected, if p > pc ≈ lnN/N for large N , where
pc is the disconnectivity threshold. In this work, we choose
p " 2pc to be sure that the original networks are connected.
The influence of the directionality ξ on the spectral radius λ1
and the assortativity ρD is studied in both directed power-law
networks and directed binomial networks (see Fig. 2).

Apart from some wobbles, the spectral radius λ1 de-
creases almost linearly with the directionality ξ . The same
phenomenon can also be observed in large, sparse directed
networks (see Appendix D). Moreover, the assortativity ρD of
the network fluctuates slightly around 0. We also have observed
a similar phenomenon in large sparse networks. We observe
that the tiny leaps of spectral radius λ1 happen when the
assortativity ρD has a rise, which is understandable, because it
has been shown in Ref. [39] that the spectral radius λ1 increases
with the increase of the assortativity ρD . Figure 3 exemplifies
that the spectral radius λ1 may increase instead of decreasing
when the directionality increases due to the assortativity ρD .
We will study the effect of the assortativity ρD on the decrease
of the spectral radius λ1 with the directionality ξ in Sec. IV.

With the LRA, we generate directed binomial networks with
directionality ξ from 0 to 1 with step 0.1. The assortativity ρD

of all the directed binomial networks generated by the LRA
is around 0. Hence, the effect of the assortativity ρD can be
ignored here. The spectral radius λ1 is calculated in directed
networks with different directionality ξ . We performed all the
simulations for 103 network realizations. The spectral radius
λ1 is plotted as a function of the directionality ξ for directed
binomial networks with p = 2lnN/N and p = 0.05 in Fig. 4.
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FIG. 2. Plot of the spectral radius versus the directionality in (a) and (b), as well as the assortativity versus the directionality in (c) and (d),
in both directed binomial and power-law networks generated by the IOPRA.

From the observation, the spectral radius λ1 is inversely
proportional to the directionality ξ with the factor $ −1, which
is independent from the link density p of the networks. This
observation can be explained by the following proposition.

Proposition 1. Let G(ξ=0) = Gp(N ) be a connected Erdős-
Rényi (ER) random graph with a finite N , and let G(ξ ) be a
directed binomial network generated by LRA whose in- and
out-degree follow the same binomial distribution as Gp(N ).
The average spectral radius satisfies

E[λ1(G(ξ ))] $ E[λ1(Gp(N ))] − ξ . (1)

Arguments. A directed binomial network G(ξ ) generated by
LRA with link density p, can be equivalently constructed by
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FIG. 3. (Color online) Example: the spectral radius increases with
the directionality ξ , because of the increase of the assortativity [where
ρD(Gleft) = −0.6190, ξ (Gleft) = 0.8333, and ρD(Gright) = −0.5714,
ξ (Gright) = 0.9167].

randomly adding 2pξ (N2 ) unidirectional links to a bidirectional
ER network Gp(1−ξ )(N ) with size N and link density p(1 − ξ ).
The average spectral radius ( [41], p. 173, art. 137) of
Gp(1−ξ )(N ) is

E[λ1(Gp(1−ξ )(N ))] = (N − 2)p(1 − ξ ) + 1 + O

(
1√
N

)
.

The principal eigenvector of an adjacency matrix A is denoted
by x1 obeying the normalization xT

1 x1 = 1. Let C denote the
adjacency matrix of the resulting network after adding one
unidirectional link to network G. The largest eigenvalue is
increased due to the addition of the link (i → j ) ([41], p. 236,
Lemma 7) as

λ1(C) $ λ1(A) + (x1)i(x1)j ,
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FIG. 4. (Color online) Average spectral radius as a function of
the directionality for directed binomial networks generated by LRA
with size N = 1000. Two values for the link density p are shown:
p = 2lnN/N (red circles) and p = 0.05 (orange diamonds).
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FIG. 5. (Color online) Sum of the product of components in
the principal eigenvector as a function of the link density p in ER
networks (N = 1000).

where the increase is strict if the adjacency matrix A is
irreducible. Hence, the average increase of the spectral radius
by adding m unidirectional links in random networks is
obtained as

E[λ1(C) − λ1(A)] $ mE[(x1)i(x1)j ].

The sum of the product of components in the principal
eigenvector of Erdős-Rényi networks is approximated by a
function of link density p (see Fig. 5). The fitting function can
be expressed as,

E




N∑

j=1

N∑

i=1

(x1)i(x1)j



 = N − 1
p

+ O(1),

when the network is connected. Since xT
1 x1 = 1 and since the

expectation E[.] is a linear operator, we obtain

E[(x1)i(x1)j ] =
N − 1

p
− 1

N (N − 1)
+ O

(
1

N2

)
, (2)

when i &= j . Directed binomial networks generated by the
LRA from ER with N and p, have the same E[(x1)i(x1)j ].
Hence, the average spectral radius of the directed network
obtained by adding m = 2pξ (N2 ) unidirectional links to the
network Gp(1−ξ )(N ) can be approximated by

E[λ1(G(ξ ) )] $ E[λ1(Gp(1−ξ )(N ))]

+ 2 (N (N − 1)/2) pξE[(x1)i(x1)j ].

Using (2),

E[λ1(G(ξ ) )] $ (N − 2)p + 1 − ξ + O

(
1√
N

)
,

which leads to (1). #
Juhász [42] also pointed out that the largest eigenvalue

λ1(G(ξ=1)) of a directed random network with link density
p and size N is almost surely Np, when N is large. In ER
random networks,the spectral radius E[λ1(G(ξ=0))] → Np +
1, when N is large (see [41], p. 173, art. 137). Both earlier
results are consistent with Proposition 1, and support that the
proportionality factor between the spectral radius λ1 and the
directionality ξ is around −1.

Proposition 1 also reveals the effect of the size N on
the relative largest decrease of the spectral radius ' =
λ1(G(ξ=0))−λ1(G(ξ=1))

λ1(G(ξ=0)) . We predict that ' → 0 if N → ∞ for
directed binomial networks, because the decrease of the
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FIG. 6. (Color online) Change of the components of principal
eigenvector from bidirectional networks to directed networks.

spectral radius [λ1(G(ξ=0)) − λ1(G(ξ=1))] is almost a constant
value, whereas the spectral radius λ1(G(ξ=0)) of dense directed
binomial networks increases with the size of the networks. This
implies that the effect of the directionality ξ on the spectral
radius is small in large dense binomial networks.

B. Principal eigenvector in directed networks

The principal eigenvector x1 was first proposed as a
centrality metric by Bonacich [43] in 1987, to indicate the
influence of each node. For example, the decrease of the spec-
tral radius [44,45] by removing nodes, can be characterized
by the corresponding principal eigenvector components. In
this section, we explore the principal eigenvector in directed
networks. The principal eigenvector of the directed networks,
with the directionality ξ from 0 to 1 with step 0.1, are
calculated. Then, the components of the principal eigenvector
are sorted in an ascending order. For each ξ , we simulate
103 network realizations and compute the average sorted
principal eigenvector components. Figure 6 illustrates that the
components of the principal eigenvector are more uniform in
directed binomial networks: the principal eigenvector x1 →

u√
N

as ξ → 1; moreover, the variance of components of the
principal eigenvector linearly decreases with the directionality
ξ in both directed binomial networks and the directed power-
law networks (see Fig. 7). The observation implies that when
the directionality is larger, the influence of each node on the
spectral radius is more similar. This experimental evidence
suggests that increasing the directionality enables all nodes to
contribute more similarly to the robustness against epidemic
in directed networks.

The decrease of the variance V ar[x1] in directed binomial
networks by the LRA is larger than that in directed binomial
networks by the IOPRA [see Fig. 7(a)]. The connections in
the LRA directed binomial networks are more random than
that in the IOPRA directed binomial networks, in the sense
that the LRA allows each node to have a different in- and
out-degree, although the in- and out-degree distribution are
the same in both the LRA and IOPRA binomial networks. As
a consequence, the principal eigenvector x1 is more uniform
with a smaller V ar[x1] in the LRA directed binomial networks
than that in the IOPRA directed binomial networks when the
directionality is the same. Thus, nodes in the LRA directed
binomial networks have more equal contributions to the
spectral radius than nodes in the IOPRA directed binomial
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networks with the same directionality. Li et al. [46] have shown
that both a large variance of the degree and a large assortativity
ρD contribute to a large variance V ar[x1] of the components
of the principal eigenvector x1. Here, we point out further that
a large directionality ξ leads to a small variance V ar[x1] of
the components of x1.

C. Spectral gap of directed networks

The difference (λ1 − λ2) between the largest eigenvalue λ1
and the second largest eigenvalue λ2 is called the spectral
gap. All eigenvalues of the symmetric adjacency matrix
of an undirected network are real. Here we focus on the
directed networks, whose adjacency matrix is asymmetric. The
eigenvalues of directed networks can be complex numbers (as
exemplified in Fig. 13 in Appendix B). In directed networks,
the spectral gap is defined as λ1 − |λ2|, where |λ2| is the
modulus of λ2. The spectral gap λ1 − |λ2| increases with the
directionality ξ in both the directed binomial networks and the
directed power-law networks (see Fig. 8). As introduced in
Sec. III A, the spectral radius decreases with the directionality.
Our observation implies that the second largest eigenvalue
|λ2| decreases with the directionality faster than the spectral
radius. The larger the spectral gap is, the faster a random
walk converges to its steady state ( [41], p. 64). Thus, the
dynamic process in a directed network reaches the steady
state faster than that in an undirected network with the same
degree distribution. Figure 8(a) implies that a dynamic process

is slightly faster to reach the steady state in the IOPRA
directed binomial networks than in the LRA directed binomial
networks. The existence of large spectral gap together with
a uniform degree distribution results in higher structural
sturdiness and robustness against node and link failures [47].
Hence, directed networks with high directionality ξ and a
uniform degree distribution are more robust than undirected
networks with large variance of degree.

D. Algebraic connectivity of directed networks

The Laplacian matrix [48] is defined as Q = 1
2BBT , where

the incidence matrix B is an N × L matrix with elements [41]

bil =






1 if link el = i → j
−1 if link el = j → i
0 otherwise.

The Laplacian matrix can be equivalently expressed as Q =
( − Ā, where ( = 1

2 ((in + (out), (in, and (out are diagonal
matrices, which contain the in-degree and out-degree of each
node respectively, and Ā = 1

2 (A + AT ). If the network is an
undirected network, Ā is the adjacency matrix A and ( =
diag(d1,d2, . . . ,dN ) is the degree matrix. The second smallest
eigenvalue µN−1 of the Laplacian Q was named algebraic
connectivity by Fiedler [49]. The Laplacian Q is always
symmetric as defined. Hence, the algebraic connectivity of a
directed and connected network is a positive real number. The
algebraic connectivity, together with the spectral gap, quanti-

11.0

10.0

9.0

8.0

7.0

6.0

λ 1
 −

 |λ
2|

1.00.80.60.40.20.0
ξ

directed power-law networks
(N = 1000, m = 4)

 fitting curve λ1−|λ2| = 6.06+5.39ξ

44.0

43.0

42.0

41.0

40.0

39.0

38.0

37.0

λ 1
 −

 |λ
2|

1.00.90.80.70.60.50.40.30.20.10.0
ξ

directed binomial networks
(N = 1000, p = 0.05) 

 by IOPRA   by LRA
 fitting curve λ1−|λ2| = 37.11 + 7.01ξ
fitting curve λ1−|λ2| = 37.11 + 5.85ξ

(a) (b)

FIG. 8. (Color online) Plot of the spectral gap as a function of the directionality (a) in directed binomial networks (generated by the LRA
in yellow squares and by the IOPRA in red triangles) and (b) in directed power-law networks (103 network realizations).
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34.0
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µ N
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1.00.90.80.70.60.50.40.30.20.10.0
ξ ξ

directed binomial networks
N = 1000, p = 0.05

 by IOPRA  by LRA 
 fitting curve µN-1 = 27.47 + 0.86ξ
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2.20

2.10
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µ N
-1

1.00.80.60.40.20.0

directed power-law networks
N = 1000, m = 4

 fitting curve µN-1 = 2.02 + 0.49ξ

(a) (b)

FIG. 9. (Color online) Plot of the algebraic connectivity as a function of the directionality (a) in directed binomial networks (generated by
the LRA in yellow squares and by the IOPRA in red triangles) and (b) in directed power-law networks (103 network realizations).

fies the robustness and the network’s well-connectedness. The
larger the algebraic connectivity is, the more difficult it is to
cut the network into disconnected parts. Here, we study the
influence of the directionality ξ on the algebraic connectivity
µN−1 of directed networks. As illustrated in Fig. 9, the
algebraic connectivity increases with the directionality ξ in
both the directed binomial networks and the directed power-
law networks. This suggests that the directed networks with
high directionality are more difficult to break into parts and
synchronize faster. As the directionality increases, the number
of nonzero elements of Ā increases and the variance of the
elements of Ā decreases. This could be one possible reason
why the network is better connected. Moreover, the algebraic
connectivity µN−1 is greater in the LRA directed binomial
networks than in the IOPRA binomial networks [see Fig. 9(a)].

The algebraic connectivity µN−1 approaches the spectral
gap λ1 − λ2, as the network tends to be regular bidirectional
networks ([41], p. 71), which suggests the spectral gap is related
to the algebraic connectivity. Figures 8 and 9 show that both
the spectral gap and the algebraic connectivity, increase with
the directionality ξ in directed networks, which is consistent
with the relation between the algebraic connectivity and the
spectral gap.

IV. EFFECTS OF THE ASSORTATIVITY ON THE
SPECTRAL RADIUS OF DIRECTED NETWORKS

In the directed networks generated by applying the IOPRA
to ER or BA networks, the in- and in-degree correlation, the in-

and out-degree correlation, the out- and in-degree correlation,
and the out- and out-degree correlation are the same. Thus,
the four correlations are all referred as the degree correlation
(or the assortativity). In Sec. III, we have discussed how the
spectral properties change with the directionality in directed
networks, where the assortativity is always close to zero.
Here, we study how the spectral radius λ1 changes with the
directionality ξ when the assortativity ρD is the same, and how
the change of the spectral radius λ1 with ξ is influenced by the
assortativity in directed networks. Two approaches are applied
to investigate this problem.

Approach 1. First, we perform degree-preserving rewiring
on ER networks (or BA networks) to obtain a set of bidi-
rectional networks with assortativity ρD from −0.8 to 0.8 (or
−0.3 to 0.3) with step 0.1. Second, we alter the directionality ξ
of all bidirectional networks with each assortativity using the
IOPRA. The directionality ξ is changed from 0 to 1 with
step 0.1. The IOPRA randomizes network connections, and
thus pushes the assortativity of the resulting directed network
towards zero, if the original network has a nonzero assorta-
tivity. Figure 10 plots the simulation results of one binomial
network realization and 102 binomial network realizations.
The simulation of one realization is almost the same as the
result of a large number of network realizations, which points
to almost sure behavior [50]. The results in the directed
power-law networks are shown in Fig. 11.

Approach 2. First, we generate ER networks (or BA
networks) G(ξ=0) whose directionality ξ = 0. Second, we
apply the IOPRA to ER (or BA) networks G(ξ=0) to generate

17.0

16.0

15.0

λ 1

-0.8 -0.4 0.0 0.4 0.8
ρD

directed binomial networks (N = 1000, p = 2lnN/N)
17.0

16.0

15.0

λ 1

-0.8 -0.4 0.0 0.4 0.8
ρD

directed binomial networks (N = 1000, p = 2lnN/N)

(a) one network realization (b) 102 network realizaitons

FIG. 10. (Color online) Spectral radius as a function of the assortativity in directed binomial networks with ξ from 0 to 1 with step 0.1 is
scatter plotted in different color (or grayscale) lines, from the gray (upper) line to the pink (lower) line.
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λ 1

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30
ρD

directed power-law networks (N = 1000, m = 4)

FIG. 11. (Color online) Spectral radius as a function of the
assortativity in directed power-law networks with ξ from 0 to 1 with
step 0.1, is scatter plotted in different color (or grayscale) lines, from
the gray (upper) line to the pink (lower) line.

directed binomial networks (or directed power-law networks)
G(ξ=1) with directionality ξ = 1. Then, we change the assor-
tativity of ER networks (or BA networks) G(ξ=0) and directed
binomial networks (or directed power-law networks) G(ξ=1) by
degree-preserving rewiring and in- and out-degree preserving
rewiring, respectively, without changing the directionality.
Note that the in- and out-degree preserving rewiring can be
applied not only to change the directionality, but also to change
the assortativity. Figure 12 plots the spectral radius of the
networks G(ξ=0) and G(ξ=1) as a function of the assortativity.

The two approaches both change the assortativity and the
directionality of the networks while the order of change is
different: Approach 1 changes the assortativity first and then
the directionality; Approach 2 is the opposite. Figures 10, 11,
and 12, show that the spectral radius λ1 always decreases
with the directionality ξ when the networks have the same
degree distribution and the same assortativity ρD . Moreover,
the degree distribution of the network also influences the
change range of the spectral radius λ1 with ξ . The decrement
of the spectral radius λ1 with ξ increases with the assortativity
in directed binomial networks [see Figs. 10 and 12(a)]. On the
contrary, the decrement of the spectral radius λ1 with ξ goes
down with the assortativity in directed power-law networks
[see Figs. 11 and 12(b)]. Furthermore, the decrease of the
spectral radius in directed power-law networks is larger than
that in directed binomial networks, when the assortativity
is zero. Many real-world networks are directed power-law

networks, where λ1 could possibly be tuned within a large
range by controlling the directionality in real-world networks.

Summarizing, the spectral radius λ1 decreases with the
directionality ξ when the assortativity remains constant. In
order to protect the network from virus spreading via in-
creasing the epidemic threshold, while maintaining the degree
distribution and the assortativity, increasing the directionality
of networks is recommended. Meanwhile, the spectral gap and
the algebraic connectivity are also increased, which means that
the topological robustness is also enhanced in return.

V. CONCLUSIONS

In this work, two algorithms to generate directed networks
with a given directionality ξ are proposed. This allows us
to study the influence of the directionality ξ on the spectral
properties of networks. The spectral radius λ1, which is the
inverse of the SIS NIMFA epidemic threshold τ (1)

c , is studied
in directed networks. A universal observation is that the
spectral radius decreases with the directionality when the
degree distribution and the assortativity of the network is
preserved. We may, thus, increase the epidemic threshold to
suppress the virus spread via increasing the directionality of
the network. The possible range to increase the epidemic
threshold is relatively large in directed binomial networks
with a high assortativity and directed power-law networks
with a low assortativity. The variance of the components of
the principal eigenvector decreases with the directionality,
which indicates that the influence of each node on the spectral
radius is similar in networks with a high directionality.
Moreover, the spectral gap and the algebraic connectivity
increase with the directionality, implying that an increase of
the directionality enhances the connectivity of the network.
Furthermore, we observe that the spectral gap increases faster
with the directionality in the IOPRA than in the LRA directed
binomial networks, on the contrary, the algebraic connectivity
increases with the directionality faster in the LRA than in the
IOPRA directed binomial networks. This observation may be
due to the fact that the in- and out-degree of each node could
be different in the LRA directed binomial networks, while, are
exactly the same in the IOPRA directed binomial networks.
The influence of the difference between in- and out-degree of
nodes on spectral properties for directed power-law networks
remains an open question.

32

28

24

20

16

12

λ 1

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30
ρD

power-law networks N = 1000, m = 4
λ1(G

(ξ = 0))  λ1(G
(ξ = 1))15.5

15.0

14.5

λ 1

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
ρD

binomial networks N = 1000, p = 2ln(N)/N
λ1(G

(ξ = 0))    λ1(G
(ξ = 1))

(a) (b)

FIG. 12. (Color online) Spectral radius as a function of the assortativity (a) in directed binomial networks (N = 1000, p = 2lnN/N) and
(b) in directed power-law networks (N = 1000, m = 4) for 103 network realizations.
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APPENDIX A: INTRODUCTION OF
REAL-WORLD NETWORKS

1. Enron

This data set was made public by the Federal Energy Reg-
ulatory Commission during its investigations: it is a partially
anonymized corpus of e-mail messages exchanged by some
Enron employees (mostly part of the senior management). This
data set is a directed graph, whose nodes represent people and
with an arc from x to y whenever y was the recipient of (at
least) a message sent by x.

2. Ljournal-2008

LiveJournal is a virtual-community social site started in
1999: nodes are users and there is an arc from x to y if x
registered y among his friends. It is not necessary to ask y
permission, so the graph is directed. This graph is the snapshot
used by Chierichetti, Flavio et al. [51].

3. Twitter-2010

Twitter is a web site, owned and operated by Twitter Inc.,
which offers a social networking and microblogging service,
enabling its users to send and read messages called tweets.
Tweets are text-based posts of up to 140 characters displayed
on the user’s profile page. This is a crawl presented by Kwak,
Haewoon et al. [52]. Nodes are users and there is an arc from
x to y if y is a follower of x. In other words, arcs follow the
direction of tweet transmission.

4. Word Association-2011

The Free Word Association Norms Network is a directed
graph describing the results of an experiment of free word
association performed by more than 6000 participants in the
United States: its nodes correspond to words and arcs represent
a cue-target pair (the arc x → y means that the word y was
output by some of the participants based on the stimulus x).

5. WWW networks

The networks, cnr-2000, in-2004, eu-2005, uk-2007-
05@100000, and uk-2007-05@1000000 are small WWW
networks that were crawled from the Internet. The cnr-2000
is crawled from the Italian CNR domain. A small crawl
of the .in domain performed for the Nagaoka University
of Technology is in data in-2004. The eu-2005 is a small
crawl of the .eu domain. This network uk-2007-05@100000
and uk-2007-05@1000000 have been artificially generated by
combining twelve monthly snapshots of the .uk domain and
collected for the DELIS project.

APPENDIX B: EIGENVALUES OF THE
DIRECTED NETWORKS

The spectral radius λ1 and the spectral gap (λ1 − λ2) are
considered as important metrics for the percolation processes
on networks. Here we also present all eigenvalues in directed

0.6
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0.4

0.3

0.2

0.1
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-0.3

-0.4

-0.5

Im
ag

e

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
Real

directed binomial networks (N = 10, p = 0.25)
ξ = 0 : 0.1 : 1
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λ2 λ4 λ6 λ8 λ10

FIG. 13. (Color online) Change of the eigenvalues with the
directionality. When the directionality increases, the real parts of the
eigenvalues tend to 0.

networks in an Image-Real figure. The eigenvalues are cal-
culated on 103 simulation realizations. The changes of the
eigenvalues λi with the directionality ξ from 0 to 1 with step
0.1 in directed binomial networks (N = 10, p = 0.25) are
shown in Fig. 13. Surprisingly, the real part of all eigenvalues
tends to 0, when the directionality ξ increases.

APPENDIX C: ALGORITHMS

Algorithm 1 IOPRA(G, ξ )

1: Create a bidirectional network G(N, L);
2: Save network G(N,L) as Gs and calculate the

directionality ξs of network Gs ;
3: while |ξs − ξ | > 10−5 do
4: Randomly select two unidirectional links i → j and

k → l associated with the four nodes i, j, k, l;
5: Rewire the link pair i → j and k → l into i → l and

k → j . The new network Gn is obtained;
6: calculate the directionality ξn of the network Gn;
7: if |ξs − ξ | > |ξn − ξ | then
8: Gs ← Gn;
9: ξs ← ξn;
10: else
11: give up this rewired node pair;
12: end if
13: end while
14: return Gs

Algorithm 2 LRA(G, ξ )

1: Create a bidirectional network G(N, L);
2: Randomly choose ξ percentage of bidirectional link

pairs;
3: Randomly choose one unidirectional link from each link

pair;
4: Randomly reset the chosen unidirectional links to the

locations without any link;
5: Save the new network as Gs ;
6: return Gs
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APPENDIX D: SPECTRAL RADIUS OF LARGE SPARSE NETWORKS (SEE FIG. 14)

FIG. 14. (Color online) Spectral radius as a function of the directionality in large, sparse directed binomial networks.
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