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Shifting the Link Weights in Networks
Huijuan Wang and Piet Van Mieghem

Abstract— Transport in large networks follows near to shortest
paths. A shortest path depends on the topology as well as on the
link weight structure. While much effort has been devoted to
understand the properties of the topology of large networks,
the influence of link weights on the shortest path received
considerably less attention. Here, we first compute analytically
and by simulation the effect of shifting the uniform distribution
for the link weights from [0, 1] to (a, 1] where a > 0. When
a > 0, the properties of the shortest path (hopcount and weight)
differ from those of small a close to zero. The difference is shown
to be highly related to the topology. Furthermore, by tuning the
link weight parimeter a, the traffic can be controlled. When a is
large, the traffic is more likely to follow the minimum hopcount
shortest path, which leads to more balanced traffic traversing
the network.

Index Terms— Link weight, graph, network, shortest path,
network simulations.

I. INTRODUCTION

While in most practical networks, there exist many possible
paths between a source and a destination, usually the path
that minimizes some link weight (e.g. the hopcount, the delay,
the monetary cost, etc.) is preferred. Paths in the Internet can
be observed via the trace-route utility. About 70-80% of the
Internet paths are shortest paths and we expect that this portion
will still increase, because of efficiency and cost reduction
reasons: the more the path deviates from a shortest, the larger
the loss in resources or, equivalently, the higher its cost. In
this article we concentrate on properties of shortest paths, in
particular, the influence of the link weights on the shortest
path.

Although link weights are obviously needed to compute a
shortest path in a graph, in practice, little is known about
the link weights. We will not infer link weights from the
shortest path measurements [2]. Instead, we are interested in
the combined modeling of the topology of the network and
the link weights. It is natural to first investigate the effect
of the link weight structure on the resulting routes with given
topology. In fixed networks, link weights are usually chosen as
part of an optimization process with given togology and traffic
characteristics, which is also termed as traffic engineering [1].
Our work provides insights on how the link weight structure
affects the traffic.

Partial studies of effects of link weights on the optimal
or shortest path in complex networks are found in [3][4]
which characterize many biological, social and communication
systems [5][6][7].

We confine ourselves to additive and strict positive link
weights such that the shortest path is the minimizer of the sum
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of the link weights of any path between those two nodes. We
investigated the influence of shifting the uniform distribution
of link weights. Any other link weight distribution can be
generated as a function of the shifted uniform distribution.
Therefore, our work contributes to the selection of link weight
structure for network simulations.

In this paper, we will briefly review theory on the weight and
hopcount of the shortest path in Section II. And relate this with
weak and strong disorder regimes studied in physical complex
system. The motivation to investigate the shifted uniform
distribution in different classes of graphs is also explained.
The shifted uniform distribution is defined in Section III. In
the next Section IV, we show by simulation and by analytic
computation how the characteristics of the shortest path change
when the link weight distribution is shifted away from zero
in random graphs. In Section V, the simulation and analytic
results are presented for the square lattice. The results are
summarized in Section VI.

II. THE SHORTEST PATH

In large networks, the link weights are hardly correlated and
can be considered as independent to a good approximation. A
notable exception are wireless ad-hoc networks in which the
"air-capacity" correlates all links in a certain (small) area. A
focal point is the importance of the distribution of the link
weights around zero.

Since the shortest path (SP) is mainly sensitive to the
smaller, non-negative link weights, the probability distribution
of the link weights around zero will dominantly influence the
properties of the resulting shortest path tree. A regular link
weight distribution Fw(x) = Pr [w ≤ x] has a Taylor series
expansion around x = 0,

Fw(x) = fw (0)x+O
¡
x2
¢

since Fw(0) = 0 and F 0w(0) = fw(0) exists. A regular
link weight distribution is thus linear around zero. The factor
fw(0) only scales all link weights, but it does not influence
the shortest path. However, adding a constant to all link
weights can change the shortest paths. Indeed, suppose that
the shortest path contains many hops and the second shortest
path only a few. In that case, there always exists a positive
constant that, after added to all link weights, dethrones the
initial shortest path. As further illustrated in Section IV, the
probability distribution of the weight of the shortest path can
change dramatically when adding a constant to all link weights
in the network.

The simplest distribution of the link weight w with a distinct
different behavior for small values than a regular distribution
is the polynomial distribution,

Fw(x) = xα1x∈[0,1] + 1x∈[1,∞), α > 0, (1)
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where the indicator function 1x is one if x is true else it is zero.
The corresponding density is fw(x) = αxα−1, 0 < x < 1.
The exponent

α = lim
x↓0

logFw (x)

log x

is called the extreme value index of the probability distribution
of w and α = 1 for regular distributions. By varying the
exponent α over all non-negative real values, any extreme
value index can be attained and a large class of corresponding
shortest path trees (SPT), in short α-trees, can be generated.

Let us consider a connected graph G (N,L) with N nodes
and L links and with independent polynomial link weights
specified by (1). We briefly present three special α-trees for
α = 1,∞ and 0, respectively and then limit ourselves to the
range α ∈ [1,∞] in Section IV and Section V.

Link weights with α = 1 are e.g. those that are uniformly
or exponentially distributed. All links contribute to the sum,
the weight of the shortest path and this case corresponds to
weak disorder. Earlier in [16], it was shown that the SPT in the
complete graph with uniform (or exponential) link weights is
precisely a Uniform Recursive Tree (URT). A URT is grown
by sequentially attaching a new node uniformly to a node that
is already in the URT. A URT is asymptotically the shortest
path tree in the Erdös-Rényi random graph Gp(N) (see e.g.
[10]) with link density p above the disconnectivity threshold
pc ∼ lnN

N . The interest of the URT is that analytic modeling
is possible (see e.g. [15, Part III]) and that it serves as a
reasonable first order model to explain measurements in the
Internet.

If α→∞, it follows from (1) that w = 1 almost surely for
all links. Since all links have unit weight, the α→∞ regime
reduces to the computation of the SPT in the underlying
graph. The α → ∞ regime is thus entirely determined by
the topology of the graph because the link weight does not
differentiate between links. This also corresponds to the week
disorder regime. In the Erdös-Rényi random graphs [10] with
unit link weight and also in a small world graph, the average
hopcount of the shortest path E[HN ] scales as logN .

If α → 0, the ratio
√

Var[w]
E[w] ∼ 1√

α
diverges which means

that, in this limit, the link weights possess strong fluctuations.
The α → 0 regime corresponds to a strong disorder regime
where one link, the one with the maximum link weight in a
path, controls the selection of the shortest path. This regime
exhibits a quite eccentric behavior as shown in [18] and
[17]. Equipping such link weight structure to the Erdös-Rényi
random graphs, the average hopcount of the shortest path
E[HN ] scales as N1/3.

Figure 1 illustrates schematically the probability distribution
of the link weights around zero (0, �], where � > 0 is an
arbitrarily small, positive real number. The larger link weights
in the network will hardly appear in a shortest path provided
the network possesses enough links. These larger link weights
are drawn in Figure 1 from the double dotted line to the right.
The nice advantage that only small link weights dominantly
influence the property of the resulting shortest path tree lies in
that the remainder of the link weight distribution (denoted by
the arrow with larger scale in Figure 1) only plays a second

Fw(x)

x0

α = 1 α > 1

α < 1

1ε larger scale

1

Fig. 1. A schematic drawing of the distribution of the link weights for the
three different α-regimes. The shortest path problem is mainly sensitive to
the small region around zero. The scaling invariant property of the shortest
path allows us to divide all link weights by the largest possible such that
Fw (1) = 1 for all link weight distributions.

order role. However, the properties of the shortest path will
change when the link weights are shifted away from zero.
Perhaps the simplest case is the uniform distribution between
0 < a < b, which we call the shifted uniform distribution, and
which is studied in this paper. Apart from being attractive in a
theoretical analysis, the uniform distribution is the underlying
distribution to generate an arbitrary other distribution and is
especially interesting for computer simulations. Hence, this
distribution appears most often in network simulations and
deserves – for this reason alone perhaps – to be studied.

The understanding of the shortest path with shifted uni-
formly distributed link weights will also give more insights
into the stability of paths. For instance, the changes in the
shortest path due to the adding of constant noise to all link
weights. The interest in understanding the stability of paths
lies in the fact that it could direct efficient triggers for network
updates. For example, when does a node decide to inform the
rest of the network about the changes in the state of one or
more of its links.

As shown earlier in [17], by tuning the extreme value
index α in Equation (1), all traffic can flow over a critical
backbone, the minimum spanning tree. In contrast, by tuning
the parameter a in the shifted uniform distribution as defined
by (3) below, we are able to force more balanced traffic in the
network. When a is large, as will be shown in Section IV and
Section V, the weight of paths with more hops is more likely
higher than that of paths with less hops. Hence, resources in
the network are used more efficiently and the total traffic in
the network is likely more balanced.

We study the following complex network models: the Erdös-
Rényi random graph Gp(N), the square lattice and the scale-
free graph. Traditionally, the complex networks have been
modeled as Erdös-Rényi random graphs. Besides that, the
Erdös-Rényi random graphs are reasonably accurate models
for peer-to-peer networks [20] and ad-hoc networks [11]. The
square lattice, in which each node has four neighbors, is the
basic model of a transport network as well as in percolation
theory [14]. It is also frequently used to study the network
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traffic (see e.g. [21][22][23]). The scale-free graph [24] is
proposed as model for complex networks that have a power-
law degree distribution [8], such as the World Wide Web and
the Internet.

III. NOTATIONS OF THE SHIFTED UNIFORMLY
DISTRIBUTED LINK WEIGHTS

Any shifted uniformly distributed link weights w can be
specified by

fw(x) =
1a<x≤b
b− a

(2)

The shifted link weight probability density function (2) can be
considered as a result from adding a constant a to a uniform
link weight in [0, 1] when b = 1 + a.

Figure 2 shows the three possible cases. The scaling of all

Fig. 2. Shifted uniform distribution. (left) 0 < a < b ≤ 1, (middle)
0 < a ≤ 1 < b and (right) 1 ≤ a < b.

link weights in the graph by a positive number does not change
the shortest path. Multiplying all weights w by 1

b reduces all
three cases to the left one in Figure 2 where b then equals
1. If (capital) W denotes the weight of the shortest path, the
scaling of the link weights w by 1

b , results in a weight W
b of

the shortest path with probability density function (pdf )

fW
b
(x) =

d

dx
Pr

∙
W

b
≤ x

¸
=

d

dy
Pr[W ≤ y] · dy

dx

¯̄̄̄
y=bx

= bfW (bx)

After scaling by 1
b , the only specifier of the link weight is the

parameter a with 0 < a < 1 and (2) reduces to

fw(x) =
1a<x≤1
1− a

, 0 ≤ a < 1 (3)

If h denotes the hopcount of a path P in a graph with link
weights specified by (3), then the weight of P is bounded by

ah ≤ w (P ) ≤ h

Since we assume that all link weights are i.i.d. and additive
such that w (P ) =

Ph
j=1w(nj → nj+1), we observe that for

large h the weight of an arbitrary path tends to a Gaussian

w (P )
d→ N (hE [w] , hvar [w])

by the Central Limit Theorem. Interestingly, this holds for
any distribution of i.i.d.. link weights. Thus, for large h, the
shortest path P ∗ between two nodes is the minimum of all
Gaussian random variables that represent a path between those
two nodes. For realistic networks, this number of possible

paths nP is huge such that, to a good approximation, we
can assume that nP → ∞. Now, the complicating factor
is that most of these paths have links in common, in other
words, they are not independent. When we assume that these
paths are independent, the limit distribution of w (P ∗) can be
computed and will lead, after appropriate scaling, to a Gumbel
distribution (see e.g. [9]). However, the assumption that paths
are independent is in most cases not realistic. Simulation on
a lattice, for example, where the source and the destination
node are placed on the corner of the diagonal to assure a
large hopcount h, show that w (P ∗) is almost Gaussian which
means that the minimum of those dependent Gaussian random
variables is again a Gaussian random variable. Unfortunately,
the mean E [w (P ∗)] and variance var [w (P ∗)] are generally
difficult to compute. In the sequel, we confine the discussion
therefore to small world graphs (see e.g. [19]) for which h is
small with high probability.

IV. THE SHORTEST PATH IN Gp(N) WITH SHIFTED
UNIFORMLY DISTRIBUTED LINK WEIGHTS

In this Section, we compute the weight and the hopcount of
the shortest path in Erdös-Rényi random graphs Gp (N) with
shifted uniform link weights.

A. The complete graph (p = 1)
Let us first confine to the complete graph of which any other

graph is a subgraph. The complete graph K N with N nodes
can be regarded as the random graph G1 (N) with link density
p = 1. Figure 3 shows the pdf fW (x) of the weight of the
shortest path for different values of a ≤ 1

2 .
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a = 0.1

a = 0.45

N = 25, p = 1

Fig. 3. The pdf of the weight of the shortest path in the complete graph with
N = 25 nodes and with link weights given by (3) for various a ∈ 0, 1

2
with step ∆a = 0.05.

The sequel is devoted to explain the curious behavior of
the pdf of the weight of the shortest path in the complete
graph with shifted uniform link weights specified by (3). The
main interest here lies in a > 0 because the case a = 0
is known in detail. As mentioned in Section II, when a =
0, the shortest path tree in the complete graph with uniform
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links (or equivalently with exponential links since the extreme
value index for both distributions is the same) is a URT. The
probability generating function of the shortest path is derived
in [15, Section 16.3] as

ϕWN
(z) = E

£
e−WNz

¤
=

1

N − 1

N−1X
k=1

kY
n=1

n(N − n)

z + n(N − n)

(4)
Although the inverse Laplace transform can be computed
analytically, the resulting expression for fWN (x) is not quite
insightful. Fortunately, a nice closed form asymptotic expres-
sion exists.

1) The case 1
2 ≤ a < 1: When a = 1

2 , the link weights
are uniformly distributed within ( 12 , 1]. The weight of a path
Pk−1 = n1 → n2 · · ·→ nk consisting of k − 1 hops or links
equals the sum of the weights of its constituent links

w(Ph=k−1) =
k−1X
j=1

w(nj → nj+1)

where w(Ph=i) stands for the weight of a path with i hops.
In the complete graph with link weights specified by (3) with
1
2 ≤ a < 1, the shortest path must be the direct link, because
the weight w(Ph>1) of any path with h > 1 hops and the
weight w(Ph=1) of the direct link between the source and
destination nodes obey

w(Ph>1) =
hX

j=1

w(nj → nj+1) ≥
2X

j=1

w(nj → nj+1)

> 1 ≥ w(Ph=1)

This argument shows that, when 1
2 ≤ a < 1, the shortest path

is the direct link (which always exists in the complete graph).
The hopcount of the shortest path is always one and the weight
of the shortest path is uniformly distributed within (a, 1] which
precisely explains the simulations in Figure 3 with a = 1

2 . This
is the reason why the class of uniform distributions with a > 1

2
are not simulated.

The same idea can be applied to explain why all the pdfs
of the weight of the shortest paths in Figure 3 have certain
uniformly distributed part. In a complete graph with uniformly
distributed link weights specified by (3) with 0 < a < 1

2 , the
weight w(Ph>1) of any path with h > 1 hops is bounded by

w(Ph>1) =
hX

j=1

w(nj → nj+1) > a.h

From this relation we can draw two consequences. First, the
direct link w is always the shortest path with w(Ph=1) = w
provided w ∈ (a, 2a] because in the complete graph there are
always N − 2 paths with h = 2 hops. Thus, the probability
density of the uniform part observed in Figure 3 is

fW (x) =
1

1− a
, x ∈ (a, 2a]

There are two extreme cases. When a = 0, the uniformly dis-
tributed area becomes a point with value 1, which corresponds
to the point fW (0) = 1 in Figure 3. When a ≥ 1

2 , the pdf is
uniformly distributed for x ∈ (a, 1]. Second, since the weight

of the direct link w(Ph=1) is bounded by 1, the maximum
possible number of hops in the shortest path P ∗ follows from
minw(Ph>1) ≤ 1 as h <

£
1
a

¤
where [x] denotes the integer

part of the real number x. Hence, if 1
k+1 ≤ a < 1

k for any
integer k ≥ 1, the shortest path has at most k hops.

2) The case 1
3 ≤ a < 1

2 : This case corresponds to k =
2. Therefore, when the direct link weight lies in (a, 2a], the
weight of shortest path is uniformly distributed as explained
above. When the direct link weight lies in (2a, 1], the path with
one hop and the N−2 paths with two hops compete to become
the shortest path P ∗. Any pair of paths between the source and
destination node with one or two hops is independent, because
these two hop paths do not have links in common and link
weights are assumed to be independent.

Theorem 1: In the complete graph KN equipped with link
weights uniformly distributed within (a, 1] and 1

3 ≤ a < 1
2 ,

the pdf of the weight of the shortest path is

fW (x) =
1a<x≤2a
1− a

+
12a<x≤1
1− a

Ã
1− 1

2

µ
x− 2a
1− a

¶2!N−2

+
(N − 2)(1− x)(x− 2a)

(1− a)3

×
Ã
1− 1

2

µ
x− 2a
1− a

¶2!N−3

· 12a<x≤1 (5)

Proof: See Section A. ¤
This analytic result (5) is verified by simulation in Figure

4 for a = 0.4

2.0

1.5

1.0

0.5

0.0

f W
(x

)

0.80.60.40.20.0

x

 Simulation
 Theory

         a = 0.4
         N =25

Fig. 4. The pdf of the weight of the shortest path in the complete graph
with link weights specified by (3) with a = 0.4 both computed by (5) and
simulated.

3) The case a < 1
3 : When a < 1

3 , the same reasoning
as above shows that the shortest path can have three or
more hops. In general, paths with three or more hops can
be overlapping, which prevent simple analytic derivations as
above and necessitates a combinatorial approach as shown in
[13].
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B. The Random Graph (p < 1)
We will extend the previous analysis to the broader class

of Erdös-Rényi random graphs Gp (N) which may serve as a
first order graph model for e.g. wireless Ad-Hoc networks.

1) The case a = 1
2 : In contrast to the complete graph (p =

1), the weight of the shortest path in Gp (N) can exceed unity
if the direct link does not exist. By the law of total probability,
we have

fW (x) = fW |Ph=1(x) Pr [Ph=1 exists]
+fW |Ph>1(x) Pr [Ph=1 does not exist]

= 2p · 10.5<x≤1 + (1− p)fW |Ph>1(x) (6)

because fW |Ph=1(x) = fw (x) is uniformly distributed within
(0.5, 1]. When a = 0.5, the weight of any path with h hops is
bounded by

h

2
< w(Ph) ≤ h

Suppose the shortest path P ∗ has k hops and suppose that
there exists a path with h hops. Then k

2 < w (P ∗) ≤ h, which
implies that the shortest path cannot have more than 2h hops.
Since the probability that no path with 2 hops exists in Gp(N),

Pr[Ph=2 does not exist] = (1− p2)N−2

rapidly decrease for p < 1 and sufficiently large N , the weight
in case the direct link does not exist, is mainly determined by
the 2 hops and 3 hops paths.

Theorem 2: For large N , in the Erdös-Rényi random
graphs Gp (N) with link density p > pc ∼ lnN

N , i.e. as long
as the graph Gp(N) is connected and equipped with link
weights uniformly distributed within (12 , 1], the pdf of the
weight of the shortest path is

fW (x) ' 2p · 10.5<x≤1 + 4p2(1− p)(N − 2)(x− 1)
×(1− 2p2(x− 1)2)N−3 · 11<x≤1.5 (7)

Simulations in Figure 5 confirm the correctness of Theorem
2.

Proof: See Section B. ¤
2) The Case 1

2 < a < 1: Similar to the case of a = 0.5, the
pdf of the weight of the shortest path as illustrated in Figure
6 consists of two parts: the uniform part when the direct link
exists and the more complicated part when the direct link does
not exist. For the second part, when the direct link does not
exist, the pdf starts from 2a, since

ah < w(Ph) ≤ h

The probability Pr[w(P ∗h=2) ≤ 3a] that the shortest path with
two hops is smaller than 3a is similarly derived as (12) and
equals

Pr[w(P ∗h=2) ≤ 3a] =

⎧⎪⎪⎨⎪⎪⎩
1− (p

2

2 (3−
1

1−a)
2 + 1− p2)N−2

for 1
2 < a ≤ 2

3
1− (1− p2)N−2

for 2
3 < a ≤ 1

which increases with a. Therefore, the probability for the
shortest path to have more than 2 hops is even smaller than

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

f W
(x

)

1.81.61.41.21.00.80.60.40.20.0
x

 Simulation
 Theory

          a = 0.5
          p = 0.8, N = 25

Fig. 5. The pdf of the weight of the shortest path with a = 0.5, p = 0.8
and N = 25 computed by (7) and by simulations.
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7

6

5

4

3

2

1

0

f W
(x

)

1.81.61.41.21.00.80.60.40.20.0
x

 a=0.55
 a=0.75
 a=0.9

N = 25, p =0.8

Fig. 6. The pdf of the weight of the shortest path with a > 0.5 (in creased
in steps of ∆a = 0.05)

in the previous case a = 0.5. The pdf of the weight of the
shortest path in this case can be calculated analogously as for
the case a = 0.5 with the result

fW (x) =
p

1− a
· 1a<x≤1 + p2(1− p)(N − 2)

× x− 2a
(1− a)2

Ã
1− 0.5p2

µ
x− 2a
1− a

¶2!N−3

×12a<x≤1+a
+p2(1− p)(N − 2) 2− x

(1− a)2
· 11+a<x≤2

×
Ã
0.5p2

µ
2− x

1− a

¶2
+ 1− p2

!N−3

The third part is very small when p and N are large enough
and can be approximated by 0.

3) The case 1
3 ≤ a < 1

2 : When the direct link exists and
its weight is uniformly distributed within (a, 2a], the weight is
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0.5
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x

a = 0

a = 0.05

a = 0.1
a = 0.25

a = 0.35

a = 0.5

N = 25, p = 0.8

Fig. 7. The pdf of the weight of the shortest path in G0.8 (25) with a ≤ 0.5
(in steps of ∆a = 0.05).

uniformly distributed with the density p
1−a . When the weight

is distributed within (2a, 1], the shortest path must have one
or two hops because the weight of any 3 hops path is larger
than 1. The shortest path with weight distributed within (1, 3a]
is caused by the competition among two hops paths to be
the shortest path. When the weight of the shortest path is
larger than 3a, the computation of the pdf is complicated
due to overlapping links. For example, the weight of the
shortest path distributed within (3a, 4a] is the result of the
competition among paths with 2 hops and 3 hops, where
complex correlations exist among these paths.

4) The case a < 1
3 : Similar to the corresponding case

for p = 1, no simple analysis is expected for this case due
to the dependence of paths that compete to be the shortest.
Simulation results are shown in Figure 7.

C. Summary
We have shown in this section that the case a ≥ 1

3 is
analytically tractable. Earlier [12], the case for a = 0 has
been computed analytically, which leaves the case a ∈

¡
0, 13

¢
open as a problem that still requires an analytic solution.

The random graph of the class Gp (N) are reasonable
models for Ad-Hoc networks [11]. If a is not too small, almost
all shortest paths are shown to consist of a few hops which
seems to agree with practice in multi-hop wireless networks.
In these networks where the link weight represents the delay,
the value of a is indeed bounded from below by (a) the
propagation delay and (b) the minimum processor time to
transmit an IP packet. On the other hand, interpretations of
simulations that target e.g. to compare routing algorithms or
protocols should take the quite small hopcount into account
when a shifted uniform link weight distribution as (2) is used
in small world networks.

V. THE SHORTEST PATH IN A SQUARE LATTICE
WITH SHIFTED UNIFORMLY DISTRIBUTED LINK

WEIGHTS
The Erdös-Rényi random graphs Gp (N) belongs to the

class of "small-world" graphs [25], where the average hop-

count of the shortest path is usually small, with average on the
order O(logN). In a lattice with N nodes, the hopcount of the
shortest path is much larger than that in a random graph, on
average on the order O(

√
N). In this Section, we investigate

the weight and the hopcount of the shortest path in a two-
dimensional square lattice with shifted uniformly distributed
link weight specified by (3). The lattice has size x and contains
N = (x + 1)2 nodes. Two cases are studied: (a) the source
and destination are positioned at the diagonal points and (b)
they are randomly chosen among the N nodes in the lattice.

A. The source and destination nodes are positioned at diago-
nal points

Here, the diagonal points are always chosen as the source
and destination nodes. For the class of square lattices with N
nodes, the minimum hopcount between the diagonal points is
hmin = 2

√
N−2 and the number of paths with such minimum

hopcount is
¡
2x
x

¢
, where 2x = hmin.

Fig. 8. The pdf of the weight of the shortest path in square lattice with
0 ≤ a < 1 (in steps of ∆a = 0.1) and N = 1024.

Figure 8 shows the pdf fW (x) of the weight of the shortest
path for different values of 0 ≤ a < 1 in a square lattice
with N = 1024 nodes. Each pdf with a specified a resembles
a Gaussian which is characterized by its mean and standard
deviation. This is in contrast to the random graph, where the
pdf change dramatically as a increases as shown previously
in Section IV.

We further examine the mean and standard deviation
σ(W ) =

p
V ar(W ) of the weight of the shortest path as

a function of a, which are shown in Figure 9 and Figure 10.
Both the average and standard deviation seem to be linear with
a. When a is large, and exactly a = 1, the shortest path must
have hmin = 2

√
N − 2 = 62 hops. In this case, the average

weight of the shortest path must be linear with a.
Assume that we have three graphs G1, G2 and G3, which

have the same topology, a square lattice with 1024 nodes. The
links in G1 are uniformly distributed within (0, 1]. The graph
G2 with uniform links distributed within (b, 1+ b] is obtained
by adding a constant b to all links of G1. Scaling all links
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Fig. 9. The average weight of the shortest path in a square lattice with 1024
nodes and 0 ≤ a < 1 (in steps of ∆a = 0.1).

Fig. 10. The standard deviation of the weight of the shortest path in a square
lattice with 1024 nodes and 0 ≤ a < 1 (in steps of ∆a = 0.1).

in G2 by 1
1+b , we get G3 which has the shifted uniformly

distributed link weights specified by (3) with a = b
1+b . The

shortest paths in G2 and G3 are the same, because the shortest
path will not change when all the links are scaled. When a
is large, the shortest path in G2 and G3 has hopcount hmin.
Moreover, it is equal to the shortest path among paths with
hmin hops in G1. Hence, in G3, which corresponds to the
graph we simulated, the average weight of the shortest path
obeys

E[W3(P
∗)] =

E[W1(P
∗
hmin

)] + b ∗ hmin
1 + b

(8)

=
E[W1(P

∗
hmin

)] + a
1−a ∗ hmin

1 + a
1−a

= (hmin −E[W1(P
∗
hmin)]) ∗ a+E[W1(P

∗
hmin)]

where P ∗hmin denotes the shortest path among paths with hmin
hops and E[W1(P

∗
hmin

)] is the average weight of P ∗hmin in G1.
Our simulation results show that when a ≥ 0.5, the shortest
path always has hmin hops. These simulations indicate that (8)

only holds for a ≥ 0.5. For any 0 ≤ a < 1,

E[W3(P
∗)] ≥ E[W1(P

∗)] + b ∗ hmin
1 + b

where the shortest path in G3 with weight W3(P
∗) may be

different from the shortest path in the corresponding G1 with
weight W1(P

∗). The reasons, why in Figure 9, the average
weight seems always linear with a, are:
• In G1 where a = 0, the weight of the shortest path
E[W (P ∗)] is very close to E[W (P ∗hmin)]. We further
fit the points with a ≥ 0.5 and obtain the fitting curve
15.93 + 46.07 ∗ a, which indicates that E[W (P ∗hmin)] =
15.93. The simulation results show that E[W (P ∗)] =
15.77 which is close to E[W (P ∗hmin)].

• The hopcount of the shortest path in G1 is very close to
hmin. In simulations, the average hopcount of the shortest
path in G1 is 64.2, while hmin = 62.

Similarly, when a is large, the variance of W1(P
∗
hmin

) in
G1 is equal to the variance of W2(P

∗) in G2. However, the
variance in G3 is

V ar[W3(P
∗)] = (

1

1 + b
)2 · V ar[W1(P

∗
hmin)]

= (1− a)2 · V ar[W1(P
∗
hmin)]

where V ar[W1(P
∗
hmin

)] is the variance of P ∗hmin in G1. Hence,
the standard deviation is

σ[W3(P
∗)] = −a ∗ σ[W1(P

∗
hmin)] + σ[W1(P

∗
hmin)]

Since the W1(P
∗
hmin

) is close to W1(P
∗) in G1, the standard

deviation σ[W3(P
∗)] of the weight of the shortest path in G3

is almost linear with a.

B. The source and destination nodes are chosen randomly
The analysis can be extended to a more general case, where

the source and destination nodes are randomly chosen within
a graph with N nodes. We show by simulation again the two
points: in G1 or when a = 0, the hopcount of the shortest
path is very close to hmin and the weight of the shortest path
W (P ∗) is very close to W (P ∗hmin), which are responsible for
the linear behavior of the average weight of the shortest path
with a as shown in previous section V-A.

We carried out 106 iterations for each simulation. Within
each iteration, uniformly distributed link weights within [0, 1)
are assigned independently to all the links in the square lattice
with N = 1024 nodes. The minimum hopcount and the
hopcount of the shortest path between the randomly chosen
source and destination are calculated. The average hopcount
of the shortest path with a given minimum hopcount is shown
in Figure 11. The hopcount of the shortest path appears to
be close to the minimum hopcount. The largest difference
3.8 occurs when the minimum hopcount is 30. According
to the definition of G1 and G2 in Section V-A, by adding
a constant link weight b to all the links in G1 which are
uniformly distributed within [0, 1), we arrive at G2. The
constant link weight added may be caused by e.g. reserving
certain resources of the network or by the delay due to traffic
jam. The fact that H(P ∗) ≈ H(P ∗hmin) in G1 indicate that,
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Fig. 12. The weight of the shortest path W (P∗) and the weight of the
shortest path among paths with the minimum hopcount W (P∗hmin) in a
square lattice with N = 1024 and a = 0.

when adding a constant to all links, the path is stable and
rerouting is not needed. The difference in path weight is upper
bounded by (H(P ∗)−H(P ∗hmin)) ∗ b, which is small if b is
not so large.

The shortest path subject to a given hopcount is more
complex to calculate than the unconstrained shortest path
problem. In fact, that problem is NP-complete. By shifting
link weights, we can calculate the shortest minimum hopcount
path much simpler. We observe that, when a = 0.9, all shortest
paths follow the shortest minimum hopcount path. Hence, we
first find the shortest path in G3 with N = 1024 and a = 0.9
and corresponding b = 9. The weight of the shortest path is
denoted by W3(P

∗). Then, the weight of the shortest hmin
hop path in the corresponding graph G1 is

W1(P
∗
hmin) =W3(P

∗) · (1 + b)− hmin · b

The pdf of weight of the shortest minimum hopcount path
W1(P

∗
hmin

) and the weight of the shortest path W1(P
∗) are

shown in Figure 12. We compare the pdf instead of presenting
the difference in weight due to the large variance of W1(P

∗)
when the source and destination are chosen randomly. Figure
12 indicates that, when a = 0, W (P ∗hmin) ≈ W (P ∗) with
average E[W (P ∗hmin)] = 6.77 and E[W (P ∗h )] = 6.31. Hence,
even when we add a large constant to the links in G1, the path
can be stable if we choose the shortest minimum hopcount path
P ∗hmin in both G1 and G2.

In summary, after adding a small constant to all links in a
square lattice, the weight of the shortest path by rerouting is
close to the weight of the original shortest path. The weight of
the shortest minimum hopcount path W (P ∗hmin) is close to the
weight of the shortest path W (P ∗). Hence, the route P ∗hmin
can always be chosen, no matter how large the constant added
is. The shortest path in the lattice is more stable than that in
the random graph. By shifting the link weight, the shortest
path is more likely to follow the shortest minimum hopcount
path, which leads to a simpler method to find the shortest path
with hopcount hmin in the lattice.

VI. CONCLUSION

We have shown that the properties of the shortest path
crucially depend on the extreme value index of the probability
distribution of the link weights. Further, we have analyzed
the effect of shifting the uniform distribution for the link
weights from [0, 1] to (a, 1] where a > 0. By tuning the
link weight parameter a to a larger value, the shortest path is
more probable to have a less hopcount. The network resources
are used more efficiently with balanced traffic traversing the
network. In the Erdös-Rényi random graph, the case that
a > 0 causes the properties of the shortest path (hopcount
and weight) to be dramatically different than for a small
(a → 0). However, the shortest paths in the square lattice
are more stable in contrast to the small-world graphs. After
shifting the link weights, the weight of the shortest path does
not differ much from the weight of the original shortest path.
The intuition is that, inrespective of the link weights, if hmin is
large, the i.i.d. link weights only seem a small perturbation of
the w = 1 case. As a final remark, the scale-free networks are
tree-like sparse graphs. There are few paths between the source
and destination nodes [26]. Hence, the scale-free networks are
expected to be stable when link weights are shifted.
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for his suggestions. This research was supported by the
Netherlands Organization for Scientific Research (NWO) un-
der project number 643.000.503.

APPENDIX

A. Proof of Theorem 1
When the direct link weight lies in (a, 2a], the weight of

shortest path is uniformly distributed as explained above.
When the direct link is uniformly distributed within (2a, 1],

we only consider the direct link and N −2 paths with 2 hops,
because only one and two hop paths compete to be the shortest
path and they are independent. The weight of the shortest
path w (P ∗) is the minimum of the weights of these N − 1
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paths. The weight of any path with 2 hops is the sum of two
independent uniform link weights. The pdf of the weight of
such a two hops path is (see e.g. [15, Chapt. 3])

fw(Ph=2)(x) =
1

2πi

] c+i∞

c−i∞

�
e−az − e−z

(1− a)z

�2
· ezxdz

=
(x− 2a)
(1− a)2

· 1x>2a −
2(x− a− 1)
(1− a)2

· 1x>(1+a)

+
(x− 2)
(1− a)2

· 1x>2

After integration, we obtain

Pr[w(Ph=2) > x] =

⎧⎪⎪⎨⎪⎪⎩
1, x ≤ 2a

1− 1
2(

x−2a
1−a )

2, 2a < x ≤ 1 + a
1
2(
2−x
1−a )

2, 1 + a < x ≤ 2
0, x > 2

(9)
If w(Ph=1) > 2a, then w(P ∗h≤2) is the minimum weight of
N − 1 independent paths. For independent random variables
{Xk}1≤k≤m holds that

Pr

∙
min

1≤k≤m
Xk ≤ x

¸
= 1−

mY
k=1

Pr[Xk > x] (10)

Thus, we have that

y = Pr[w(P ∗h≤2) ≤ x|w(Ph=1) > 2a]
= 1− Pr[w(Ph=1) > x] · (Pr[w(Ph=2) > x])N−2

=

⎧⎪⎨⎪⎩
0, x ≤ 2a

1− 1−x
1−2a

³
1− 1

2(
x−2a
1−a )

2
´N−2

, 2a < x < 1

1, 1 < x

By derivation with respect to x, we obtain

fW |w(Ph=1)>2a(x) =
12a<x≤1
1− 2a

Ã
1− 1

2

µ
x− 2a
1− a

¶2!N−2

+
(N − 2) (1− x) (x− 2a)

(1− 2a) (1− a)
2

×
Ã
1− 1

2

µ
x− 2a
1− a

¶2!N−3

12a<x≤1

As mentioned above, if and only if the weight of the direct
link is distributed within (a, 2a], the shortest path must be
the direct link with path length uniformly distributed within
(a, 2a]. By the law of total probability (see e.g. [15, Chapt.
1]), the pdf of the link weight of the shortest path then is

fW (x) = fW |w(Ph=1)≤2a(x)Pr [w(Ph=1) ≤ 2a]
+fW |w(Ph=1)>2a(x) Pr [w(Ph=1) > 2a]

=
1

1− a
· 1a<x≤2a

+
1− 2a
1− a

· fW |w(Ph=1)>2a(x) · 12a<x≤1

where the first part follows from the definition of the condi-
tional probability,

Pr [W ≤ x|w(Ph=1) ≤ 2a] Pr [w(Ph=1) ≤ 2a]
= Pr [{W ≤ x} ∩ {w(Ph=1) ≤ 2a}]
= Pr [W ≤ x] · 1a<x≤2a

Finally, for 13 ≤ a < 1
2 , we arrive at the exact result 5. ¤

B. Proof of Theorem 2
We will first compute the weight of the shortest path in case

that path consists of merely 2 hops. Applying (10), we have

Pr[w(P ∗h=2) > x] = (Pr[w(Ph=2) > x])N−2 (11)

For an arbitrary path with two hops,

Pr[w(Ph=2) < x] = Pr[w(Ph=2) < x|Ph=2 exists ]
×Pr[Ph=2 exists]

Using (9), we find that

Pr[w(Ph=2) < x|Ph=2 exists ] =

⎧⎪⎨⎪⎩
0, x ≤ 1

2(x− 1)2, 1 < x ≤ 1.5
1− 2(2− x)2, 1.5 < x ≤ 2

1, 2 < x

such that

Pr[w(Ph=2) > x] =

⎧⎪⎪⎨⎪⎪⎩
1, x ≤ 1

1− 2p2(x− 1)2, 1 < x ≤ 1.5
1− p2 + 2p2(2− x)2, 1.5 < x ≤ 2

1− p2, 2 < x

Substituted into (11) yields

Pr[w(P ∗h=2) > x] =

⎧⎪⎪⎨⎪⎪⎩
1, x ≤ 1�

1− 2p2(x− 1)2
�N−2

, 1 < x ≤ 1.5�
1− p2 + 2p2(2− x)2

�N−2
, 1.5 < x ≤ 2�

1− p2
�N−2

, 2 < x
(12)

If w(P ∗h=2) ≤ 1.5 and the direct link does not exist, the
shortest path must have 2 hops, because the weight of any 3
hops path is larger than 1.5. From (12), we observe that

Pr[w(P ∗h=2) ≤ 1.5] = 1−
µ
1− 1

2
p2
¶N−2

For N sufficiently large and p ≤ 1, Pr[w(P ∗h=2) ≤ 1.5] tends
to 1 exponentially fast. This justifies the approximation

fW |Ph>1(x) ≈ fw(P∗h=2)(x)

where

fW |Ph>1(x) ≈
dPr[w(P ∗h=2) ≤ x]

dx
≈ 4p2(N − 2)(x− 1)

×(1− 2p2(x− 1)2)N−3 · 11<x≤1.5
because, as explained before, Pr[w(P ∗h=2) ≤ 1.5] ≈ 1, so the
pdf for 1.5 < x ≤ 2 is approximated by 0. With (6), we finally
arrive at (7). ¤
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